Nelson Fernández edited introduction_1.tex  almost 11 years ago

Commit id: 9355fe55ccca647b8f1154d2265cc7c63d1ef52b

deletions | additions      

       

\section{Introduction}   Traditionally, science has been reductionistic. Reductionism—the most popular approach in science—is not appropriate for studying biological and ecological systems, as it attempts to simplify and separate in order to predict their future behavior and states. Due to prediction difficulty, biological and ecological systems have been considered as complex. This “complexity” is due to the relevant interactions between components [18]. components.  It is important to highlight that, etymologically, the term complexity comes from the Latin plexus, which means interwoven. In other words, something complex is difficult to separate. Being complex,we need consider that  biological and ecological systems have properties like emergence, self-organization, and life. It means, biological and ecological systems dynamics generate novel information from the relevant interactions among components. Interactions determine the future of systems and its complex behavior. Novel information limits predictability, as it is not included in initial or boundary conditions. It can be said that this novel information is emergent since it is not in the components, but produced by their interactions. Interactions can also be used by components to self-organize, i.e. produce a global pattern from local dynamics. The balance between change (chaos) and stability (order) states has been proposed as a characteristic of complexity. Since more chaotic systems produce more information (emergence) and more stable systems are more organized, complexity can be defined as the balance between emergence and self-organization. In addition, there are two properties that support the above processes: homeostasis refers to regularity of states in the system and autopoiesis that reflects autonomy. Due to a plethora of definitions, notions, and measures of these concepts have been proposed, the authors proposed abstract measures of emergence, selforganization, complexity, homeostasis an autopoiesis based on information theory, in focus to clarify their meaning with formal definitions (Gershenson and Fernández, 2012). Now we propose apply to aquatic ecosystem formal measures developed. From the application to the case of study, an Artic lake, we clarify the ecological meaning of these notions, and we showed how the ecological dynamics can be described in terms of information. This way the study of the complexity in biological and ecological cases, now is easier.