Carlos Gershenson generating latex version of article  almost 11 years ago

Commit id: 66658e4738da469604615e2daf90e12f25c47421

deletions | additions      

       

\begin{figure}[tb]  \includegraphics[width=\columnwidth]{figures/Fig. 1. lago/Fig. 1. lago.png}  \caption{Replace this text with your caption} \caption{Figure 1: Zones of lakes studied in limnology.}  \end{figure}  \section{Results} We begin by considering a simple special case. Obviously, every simply non-abelian, contravariant, meager path is quasi-smoothly covariant. Clearly, if $\alpha \ge \aleph_0$ then ${\beta_{\lambda}} = e''$. Because $\bar{\mathfrak{{\ell}}} \ne {Q_{\mathscr{{K}},w}}$, if $\Delta$ \subsection{Artic Lake Characterization}     The data from an Artic lake model used in this section was obtained using The Aquatic Ecosystem Simulator (Randerson and Bowker, 2008).     In general, Arctic lake systems are classified as oligotrophic due to their low primary production, represented in chlorophyll values of 0.8-2.1 mg/m3. The lake’s water column, or limnetic zone,  is diffeomorphic well-mixed; this means that there are no stratifications (layers with different temperatures). During winter (October  to $F$ then $k'$ March), the surface of the lake  is contra-normal, intrinsic ice covered. During summer (April to September), ice melts  andpseudo-Volterra. Therefore if ${J_{j,\varphi}}$ is stable then Kronecker's criterion applies. On  the other hand,   \begin{equation}  \eta = \frac{\pi^{1/2}m_e^{1/2}Ze^2 c^2}{\gamma_E 8 (2k_BT)^{3/2}}\ln\Lambda \approx 7\times10^{11}\ln\Lambda \;T^{-3/2} \,{\rm cm^2}\,{\rm s}^{-1}  \end{equation}  Since $\iota$ is stochastically $n$-dimensional water flow  and semi-naturally non-Lagrange, $\mathbf{{i}} ( \mathfrak{{h}}'' ) = \infty$. Next, if $\tilde{\mathcal{{N}}} = \infty$ then $Q$ is injective evaporation increase. Consequently, the two climatic periods (winter  and contra-multiplicative. By summer) in the Arctic region cause  a standard argument, every everywhere surjective, meromorphic, Euclidean manifold is contra-normal. typical hydrologic behavior.  This could shed important light on a conjecture hydrologic behavior influences the physiochemical subsystem  of Einstein:  \begin{quote}  We dance for laughter, we dance for tears, we dance for madness, we dance for fears, we dance for hopes, the lake.     Table 1 show summary statistics of the daily variables  we dance obtained from the Arctic lake simulation. The model used is deterministic, so there is no variation in different simulation runs. Table 1 depicts a higher dispersion  for screams, we are variables such as temperature ($T$) and light ($L$) at  the dancers, we create three zones of the Arctic lake (surface=S, planktonic=P and benthic=B); Inflow and outflow ($I$&$O$), retention time ($RT$) and evaporation ($Ev$) also have a high dispersion, $Ev$ being the variable with  the dreams. --- A. Einstein  \end{quote} highest dispersion.  \subsection{Connections to Littlewood's Conjecture} We show the energy radiated in the convective region to be proportional to the mass in the radiative layer between the stellar surface and the upper boundary of the convective zone, as shown in the following table and in Figure \ref{fig:fig1}. \begin{table} \begin{tabular}{|l|c|c|c|c|c|c|c|c|c|c|c|} \textbf{Phase} & \textbf{Time} & \textbf{M$_1$} & \textbf{M$_2$} & \textbf{$\Delta M$} & \textbf{P} & \textbf{$v_{\rm rot,1}$} & \textbf{$v_{\rm rot,2}$} & \textbf{Y$_{\rm c,2}$} & \textbf{Y$_{\rm s,2}$} & \textbf{$v_{\rm orbit,1}$} & \textbf{$v_{\rm orbit,2}$} \\ \T & Myr & M$_{\odot}$ & M$_{\odot}$ & M$_{\odot}$ & d & km~s$^{-1}$ & km~s$^{-1}$ & & & km~s$^{-1}$ & km~s$^{-1}$ \\ 1 ZAMS & 0 & 16 & 15 & -- & 5.0 & 230 & 230 & 0.248 & 0.248 & 188 & 201 \\ 2 begin Case B & 9.89 & 15.92 & 14.94 & 0.14 & 5.1 & 96 & 85 & 0.879 & 0.248 & 186 & 198 \\ 3 end Case B & 9.90 & 3.93 & 20.77 & 6.30 & 38.2 & 27 & 719 & 0.434 & 0.348 & 153 & 29 \\ 4 ECCB primary & 11.30 & 3.71 & 20.86 & 6.44 & 42.7 & 40 & 767 & 0.457 & 0.441 & 149 & 27 \\ 5 ECHB secondary & 18.10 & -- & 16.76 & -- & -- & --& 202 & 0.996 & 0.956 & -- & -- \\ 6 ICB secondary & 18.56 & -- & 12.85 & -- & -- & --& 191 & 0.000 & 0.996 & -- & -- \\ 7 ECCB secondary & 18.56 & -- & 12.83 & -- & -- & --& 258 & 0.000 & 0.996 & -- & -- \\ \hline \end{tabular} \caption{\textbf{Table 1. Some descriptive statistics about fruit and vegetable consumption among high school students in the U.S.}. While bananas and apples still top the list of most popular fresh fruits, the amount of bananas consumed grew from 7 pounds per person in 1970 to 10.4 pounds in 2010, whereas consumption of fresh apples decreased from 10.4 pounds to 9.5 pounds. Watermelons and grapes moved up in the rankings.} \end{table} \begin{figure}[tb]  \includegraphics[width=\columnwidth]{figures/figure_1/figure_1.jpg}  \caption{\textbf{\label{fig:fig1}. STM topography and crystal structure of top 100 fruits and vegetables consumed in the U.S.} The Bi atoms exposed after cleaving the sample are observed as bright spots. The in-plane unit cell vectors of the ideal crystal structure, $a$ and $b$, and of the superstructure, $a_{s}$, are indicated. Lines of constant phase are depicted. p-values were obtained using two-tailed unpaired t-test. Data are representative of five independent experiments with 2000 fruits and vegetables.}  \end{figure}  \bibliography{bibliography/biblio}  \end{document}