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Abstract— Cities around the world are struggling with 

environmental pollution. The conventional monitoring 

approaches are not effective for undertaking large-scale 

environmental monitoring due to logistical and cost-related issues. 

The availability of low-cost and low-power Internet of Things 

(IoT) devices has proved to be an effective alternative to monitor 

the ambient environment. Such systems have opened up 

environment monitoring opportunities to researchers and citizens 

while simultaneously confronting them with challenges like sensor 

accuracy, accumulation of large data sets, and data analysis, which 

itself is a formidable task that requires extensive computational 

resources and technical expertise. To address this challenge, a 

social, open-source, and citizen-centric IoT (Soc-IoT) framework 

is proposed that combines tools for real-time environmental 

sensing with an intuitive data analysis and visualization 

application. Soc-IoT has two main components: (1) CoSense Unit 

– a resource-efficient, portable and modular environment 

monitoring device intended for citizen sensing and complementing 

official environment monitoring infrastructure, and (2) exploreR – 

an intuitive cross-platform data analysis and visualization 

application that offers a comprehensive set of tools for systematic 

analysis of sensor data without any coding requirement. 

Developed as a proof-of-concept framework to monitor the 

environment at scale, Soc-IoT aims to promote environmental 

resilience and open innovation by reducing technological barriers. 

 
Index Terms— Smart City, Air Quality Monitoring, PM2.5, 

Data Analysis 

I. INTRODUCTION AND BACKGROUND 

 

Over the past years, the world has seen massive growth in 

urbanization at regional and national levels. The blind pursuit 

of urban and economic growth has also intensified 

environmental degradation [1]. Activities like excessive use of 

fossil fuels for energy production and deforestation to create 

more urban spaces are already contributing to the degradation 

of air quality. The effect is not only limited to developing or 

under-developed countries, but even high-income countries are 

getting adversely affected by it [2]. According to a report by 

World Health Organization [3], indoor and outdoor air pollution 

exposure is strongly linked to heart and cardiovascular diseases. 

Among different pollutants, particulate matter (PM) is known 

to be more dangerous for human health as compared to gaseous 

components [4]. While there have been numerous efforts by 
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governments and environmental protection agencies to combat 

the threat of air pollution, there has been limited success in a 

reduction in the levels of pollutants like PM. This has been 

mainly due to the limited availability of accurate and fine-

grained air quality data to create effective policies. The official 

monitoring networks used in most of the countries around the 

world comprise a limited number of fixed monitoring stations. 

They are accurate but only covered a limited geographical area 

[5]. Due to the expensive and bulky nature of such stations, it is 

not logistically possible to do a mass deployment of such 

stations.  

With the emergence of smart cities and the idea of 

environment monitoring using Wireless Sensor Networks 

(WSN), it has become easier than ever to perform large-scale 

environmental monitoring [6], [7]. The availability and use of 

low-cost Internet of Things (IoT) based sensor systems have 

already changed the technological paradigm by introducing 

new types of intelligence that connect people and the 

environment and promote interaction between them. Such 

technologies are transforming smart cities into sustainable 

smart cities by allowing citizens to engage with smart city 

ecosystems using digital means [8]. The IoT systems enable air 

quality monitoring at a finer spatio-temporal scale by using a 

network of monitoring devices around the city. These devices 

provide real-time air quality data that can be useful for 

understanding the ambient environment and assisting decision-

makers in making better policies for pollution control. There 

have been several examples of how low-cost environmental 

monitoring solutions have been implemented around the world 

to raise air pollution awareness [9]–[11], create air pollution 

data sets [12]–[14], promote citizen participation in air quality 

monitoring [15]–[18], and create applications for data-informed 

decision making [19]–[22].  The IoT technology has been used 

to work towards creating more inclusive and resilient cities that 

can advance the knowledge and information-sharing 

capabilities of citizens with crowdsourcing and crowd-sharing 

platforms. The valuable data that is crowdsourced using IoT 

directly impacts the location-based services that are offered to 

the citizens. The data is instrumental in creating advanced air 

quality data analysis frameworks [23], [24], PM2.5 forecasting 

systems [25], [26], and ecosystems for smart environment 



 

governance [27].  

  

 
Fig.1 Network visualization of frequently occurring terms 

within the existing literature related to keywords “Internet of 

Things” and “Air pollution monitoring”. 

 

Bibliometric Analysis: Bibliometric analysis is an efficient 

method to understand research trends and scholarly networks in 

different disciplines [28].  To understand how the keywords like 

“Internet of Things” and “Air pollution monitoring” have been 

used within the existing literature and in what context, 

quantitative bibliometric analysis and knowledge mapping 

approaches were used. The term co-occurrence method was 

used to find the keywords that are discussed more frequently 

together. To perform the analysis, first, a search query was 

created that searched all the papers indexed in the Web of 

Science1 database containing the topics “Internet of Things” 

AND “Air pollution monitoring”. The search query resulted in 

65 papers. The data from those 65 papers were used to create 

the keyword co-occurrence network graph, shown in Fig. 1. 

bibliometrix package of R was used to perform the network 

analysis [29]. For creating the network, 50 highly occurring 

terms were chosen as the nodes. Each node had at least two 

edges. To detect the communities in the network, the Louvain 

method of community detection was implemented [30]. It is a 

clustering algorithm that is based on the greedy approach to 

modularity optimization. In the beginning, every node is 

assigned to a unique cluster. This is followed by placing each 

node is into another cluster to make the network more modular. 

The process is repeated several times until there is no further 

scope for improving the network modularity. It can be observed 

in Fig. 1 that there are three key research clusters. The largest 

cluster is mainly focused on air pollution monitoring systems, 

the environment, and smart cities. Between the other two 

clusters, one focuses on the IoT devices, data, and information 

while the other is more centered around PM, networks, and 

sensors. Despite a strong focus of existing research on IoT 

 
1 https://www.webofscience.com/wos/woscc/basic-search 

systems, environment, data, and cities, surprisingly there was 

no mention of keywords like ‘citizens’, ‘community’, ‘open-

source’, or ‘sustainability’. There is a clear gap when it comes 

to bridging the IoT, air quality monitoring, citizen participation, 

and open-source solutions. This reinforces the relevance of this 

study that aims at creating a proof-of-concept framework for 

environmental monitoring citizen-centric, open-source, and 

sustainable.  

 

Motivation: While the use of low-cost sensors has improved the 

air quality data availability and access, several challenges still 

need to be addressed. Data quality and accuracy of low-cost 

sensors remain one of the key challenges [31]–[33]. It is been 

widely discussed how an IoT application could be considered 

useless due to poor sensor data quality [34]. This not only 

restricts the potential use of IoT data for various applications 

but also creates an environment where the acceptability of 

citizen-generated data reduces to lack of accuracy. This makes 

it imperative that the hardware and software components of the 

IoT framework can successfully handle the sensor data with 

minimum errors and missing data. It has also been observed that 

sometimes IoT systems are designed in less human-centric 

ways. This can be related to highly automated sensors, black-

box algorithms, data accessibility, and complex data analysis 

tools. The lack of value-sensitive design often results in user 

disempowerment followed by disengagement [8], [35]. This is 

a critical concern as the majority of citizen science air quality 

monitoring projects depend on volunteers who are investing 

their time and resources. For example, in many citizen science 

air quality monitoring projects, the citizens rely on experts to 

do the data analysis and interpretation. Though scientific 

expertise is needed to analyze data but creating opportunities 

for citizens to do data analysis and interpretation allows 

bridging the gap between experts and non-experts. It also 

fosters a sense of collaboration and trust that are important for 

successfully doing citizen science.  Another pressing issue is 

the consideration of sustainability factors for the design, 

development, and implementation of low-cost sensor systems. 

Based on a study [36], it was found that there is limited 

literature when it comes to understanding the long-term 

sustainability of low-cost sensor solutions for environmental 

monitoring. The predominant focus of most of the studies has 

been on data collection and analysis. This could be partly 

because most of these sensor studies are conducted in regions 

that have significant resources and infrastructure [36].  This 

paper addresses these challenges by outlining the design, 

implementation, and potential impact of a social, open-source, 

and citizen-centric IoT (Soc-IoT, pronounced as ‘Society’) 

framework. Fig. 2 shows the overview of the proposed 

framework. Soc-IoT is proposed as an environment monitoring 

framework that is a combination of two components. CoSense 

Unit, a modular and open-source environment sensing device 

that can provide consistent and accurate air quality data. It has 

been extensively tested in a real-world environment as well as 

evaluated by co-locating it with the official environment  



 

the monitoring station in Switzerland. The sustainability aspect 

of the CoSense Unit is also investigated by examining the 

carbon footprint and energy consumption of these low-cost 

devices. The second core component is the framework is the 

exploreR that is an open-source RShiny2 based data analysis 

and visualization application. The application is designed to 

reduce the technological barriers especially related to 

programming and allow citizens as well as experts to analyze 

and interpret sensor data in a meaningful way. The complete 

framework is designed to create an innovative ecosystem that 

enables collaboration, sustainable practices, and inclusion to 

address the pressing issue of collaborative environmental 

sensing. 

The paper is organized as follows: Section 2 discusses the 

methodology behind the design and implementation of the Soc-

IoT framework, describing the hardware and software 

components. Section 3 discusses the sensor validation and 

evaluation. The conclusions are reported in Section 4. 

II. METHODS 

This section describes the methodology behind the design of 

the proposed Soc-IoT framework. The following paragraphs 

provide a detailed overview of the system architecture, sensor 

prototype, and data analysis application. 

A. System Architecture 

The Soc-IoT framework3 is based on the principle of open-

source hardware and software. Fig. 3 shows the system 

 
2 https://shiny.rstudio.com/ 

architecture of the proposed framework. It comprises four 

major components: 

• Data Acquisition Layer: This layer consists of the 

sensors that are responsible for sensing the 

environmental variables monitored by the CoSense 

Unit. The current version of the CoSense Unit consists 

of a Sensirion SPS 30 PM sensor that can sense PM1, 

PM2.5, and PM10. The Enviro+ board for Raspberry Pi 

is used to monitor temperature, pressure, humidity, 

light intensity, noise, and gas concentration (NO2, 

NH3, and CO). As the codes for these sensors are open-

source, the users can easily reprogram the sensors 

based on their requirements as well as examine and 

verify the sensors without any complications. More 

details about the hardware components are available in 

the next section. 

• Data Processing and Communication Layer: This 

layer is responsible for processing and integrating data 

from different sensors and communicating it to the 

data storage layer. A Raspberry Pi Zero handles all the 

functions related to data processing and 

communication. The Wi-Fi module of Raspberry Pi 

Zero is used to create an access point that allows a 

continuous flow of data from the Raspberry Pi Zero to 

the data storage layer. Different data transmission 

protocols were considered for data transmission. The 

current version of the CoSense Unit uses the Hyper 

Text Transfer Protocol (HTTP) due to its high 

3 https://github.com/sachit27/Soc-IoT 
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transmission reliability and infrastructure [33], [37]. 

• Data Storage Layer: This layer is responsible for 

securely storing the data. The current version of the 

framework allows two storage options. Either the data 

can be directly transmitted to the ThingSpeak database 

or the user can save the data locally in the SD card that 

comes with the Raspberry Pi. This is beneficial in case 

of unavailability of the internet to send the data to 

ThingSpeak cloud. The users can simply upload the 

data from the SD card to their data stream at a later 

stage. This also provides more control to the users over 

their data. If the users prefer not to share their data, 

they can opt-out of making their data stream public 

and use the data from the stream and the SD card for 

their information.  

• Application Layer: The data from the storage layer is 

used to create applications that are used to make sense 

of the raw data. This includes data streams, 

visualizations, and data analysis applications. The  

Soc-IoT framework includes two core applications: 

(1) ThingSpeak dashboard that allows a user to create 

data streams, visualize data, and use Matlab functions 

to perform data analysis. (2) An R-based application 

that allows a user to do data processing, analysis, 

visualization, and performs Machine Learning (ML) 

on the data. Section 3 includes more details about the 

applications. 

 

B. Hardware Implementation 

The CoSense Unit is the hardware component that is 

responsible for environmental monitoring. It has been designed 

using state-of-the-art sensors and a single board computer. The 

current version of the CoSense Unit measures: (1) PM 

concentration in the air; (2) temperature, pressure, humidity; (3) 

gas (NO2, NH3, CO) concentration; (3) light intensity; and (4) 

noise. The modular nature of the device allows users to easily 

remove and add more sensors based on their requirements. The 

CoSense Unit is easy to assemble and can be used for indoor 

 
4 https://shop.pimoroni.com/products/enviro?variant=31155658457171 

and outdoor environment sensing. For building a participatory 

sensing unit, it is important to select the most suitable sensors. 

While there are a lot of low-cost sensors circulating in the 

market, not all of them are accurate and efficient when it comes 

to long-term environmental monitoring. For PM monitoring, 

the CoSense Unit uses a Sensirion SPS30 PM sensor. The 

sensor was selected because of its high precision, accuracy, and 

low bias as compared to other available PM sensors like 

Plantower PMS5003, SM-UART-04L PM sensor [38], [39].  

The SPS30 is capable of monitoring PM1, PM2.5, PM4, and PM10 

using the light-based scattering principle. The current version 

of the CoSense Unit is programmed to monitor PM1, PM2.5, and 

PM10.  In addition to the SPS30 sensor, a sensor array called 

Enviro Plus4 that has sensors like BME280 (temperature, 

humidity, pressure), MICS6814 analog gas sensor (NO2, NH3, 

and CO), LTR-559 light and proximity sensor, and a MEMS 

microphone (noise) is also added to the CoSense Unit. It also 

includes the ADS1015 analog to digital converter for 

converting data from the analog gas sensor and a color LCD. 

The data produced by the analog gas sensor is in kOhms, which 

is not the standard unit for gas concentration monitoring. The 

sensor program converts it into parts per million (ppm) to get 

an indicative value. Due to a lot of conversion processes, it is 

difficult to precisely validate it with a regulatory or industry-

grade monitor. Nevertheless, the values from the gas sensor can 

be used as indicative values for understanding how the 

concentration is changing in a given environment, as 

highlighted by many studies [40], [41]. 

 Enviro Plus is particularly efficient due to its small size, 

seamless sensor integration, and compatibility with single 

board computers like Raspberry Pi. The CoSense Unit uses a 

Raspberry Pi Zero to communicate with the sensors using the 

General-Purpose Input Output (GPIO) ports. As Raspberry Pi 

has multiple GPIO ports, it allows flexibility to add more 

sensors based on the requirement of a user. Fig. 4 shows the 

detailed view of the CoSense Unit with components and 

annotations. All the components are housed within a 3D-printed 

enclosure. The CoSense Unit is powered using a USB cable to 

Fig. 4 A complete and exploded view of the CoSense Unit with annotations. 



 

provide a 5V supply. The users have a choice to use an adapter 

or a power bank for powering the Raspberry Pi. This allows the 

device to be used flexibly for mobile or stationary 

environmental monitoring. 

 

C. Software Implementation 

     The CoSense Unit uses a Raspberry Pi Zero to communicate 

with sensors and handles tasks related to network creation, data 

transmission, and storage in an SD card. Fig. 5 shows the 

flowchart of the CoSense Unit source code.  

The CoSense Unit source code is written in Python 

programming language [42] and uses standard sensor libraries 

to communicate with the sensors. As shown in Fig. 5, once the 

Raspberry Pi is powered on, it goes in the set-up mode. The Wi-

Fi module of the Raspberry Pi goes into the Access Point (AP) 

mode and allows the user to connect to the device's Wi-Fi 

network. Once this connection is successful, the users are 

redirected to a web interface that allows them to connect to a 

secure Wi-Fi network. The device automatically saves the Wi-

Fi credentials that allow the device to connect to the saved Wi-

Fi network in case of a reboot. In case no Wi-Fi network is 

available, the device goes into offline mode. In either case, the 

sensors are put in the active mode following the connection test. 

The sensors stay awake for 30 seconds and do the measurement. 

The measured data is stored in the Raspberry Pi’s SD card in 

CSV format. When the device is in an online mode, an HTTP 

connection is created and the measured data is sent to the 

ThingSpeak server using the GET request. Once the 

acknowledgment is received from the server, the connection is 

closed. To secure the data transmission, private keys are 

generated by ThingSpeak before a data stream can be created. 

The LCD screen shows the data values from the sensors. The 

availability of online and offline modes allows continuous 

sensing of data. It is also useful in case environmental 

monitoring needs to be done in a remote location without 

internet connectivity. The current version of the prototype 

measures data every 5 minutes and goes to sleep mode after the 

measurement. The users can change the sampling frequency 

based on their needs.  

 
5 https://www.empa.ch/web/s604/nabel-station-2020 

III. RESULTS AND DISCUSSION 

This section describes the criterion that was used to validate and 

evaluate the performance of the CoSense Unit, specifically 

focusing on PM2.5 concentration. The results are followed by a 

discussion to understand how the prototype works in real-life 

conditions. This section also looks into the design and development 

of the data analysis and visualization application and how the 

proposed setup compares with existing environmental monitoring 

infrastructures. 

A. Sensor Validation 

Sensor validation is a key step in the development of 

environmental monitoring infrastructure. There are different ways 

to perform quality assurance and control of a sensing unit. This 

study followed a standard approach for validating the sensor by 

looking at the inter-sensor variability and comparing the sensor 

output with the official air quality monitoring station [43], [44].  

 

Field Co-location: During the summer of 2021, two CoSense 

Units were tested in the field in Zurich, Switzerland. To analyze 

the accuracy of the sensors and evaluate the performance, two units 

were collocated at one of the sites of the National Air Pollution 

Monitoring Network (NABEL). NABEL monitors air quality at 16 

sites in Switzerland. For this study, the sensor units were collocated 

at the NABEL station in Dubendorf5. Fig. 6 (a) shows the location 

of the test site. Fig. 6 (b) shows the actual setup of CoSense Units 

for colocation at the NABEL reference monitoring station. The 

station is located at a suburban location. The area is densely 

populated with a network of heavily used roads and railway lines. 

The field test was conducted between 4 June 2021 and 8 June 2021. 

The PM2.5 was sampled every five minutes and it was averaged to 

one hour to maintain consistency with the PM2.5 data obtained from 

the reference monitor. Overall, the data was compared for 100 

hours.  

Fig. 7 presents a line plot that compares the data obtained from two 

CoSense Units (denoted by Sensor 1 and Sensor 2) and the 

reference monitor. It can be observed that the CoSense Units can 

match the variations recorded by the reference monitor. This 

highlights that the CoSense Unit can successfully capture sudden 

variations in PM2.5 concentration in a real-world environment. The 

average error between the PM2.5 recorded by the reference monitor 

and Sensor 1 was 1 µg/m3. In the case of Sensor 2, it was 1.2 µg/m3.  
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Fig. 5 Flowchart of CoSense Unit software. 

Fig. 6 (a) Red dot on the map shows the field test location. (b) 

Co-location setup at NABEL monitoring station. 



 

 
Fig. 7 Line plot of PM2.5 data obtained from two CoSense 

Units located with the reference monitor at NABEL station. 

 
 

Fig. 8 CDF of the difference between the PM2.5 values recorded 

by the reference monitor and two sensors (S1 and S2). 

 

The error value is very low and shows high accuracy and reliability 

of the data sensed by the CoSense Units. Fig. 8 shows the empirical 

cumulative distribution function (CDF) to understand the PM2.5 

measurement offset between the reference monitor and the two 

sensors. It can be observed that more than 85% of the observations 

have an offset below 5 μg/m3. A statistical summary of the co-

located data is presented in Table I. The statistical parameters show 

strong similarity between the data obtained from the reference 

monitor and two CoSense Units. 

 

TABLE I 

Summary statistics of PM2.5 (µg/m3) values recorded by the 

reference station and two CoSense Units 

 Reference 

PM2.5 

Sensor1 

PM2.5 

Sensor2 

PM2.5 

Mean 5.09 5.04 5.43 

Standard Error 0.31 0.27 0.31 

Median 3.95 3.99 4.42 

Standard Deviation 3.12 2.75 3.10 

Sample Variance 9.75 7.55 9.57 

Minimum 1.20 2.43 2.54 

Maximum 14.1 15.5 16.32 

 

 

Fig. 9 Line plot of PM2.5 data obtained from two collocated 

CoSense Units. 

TABLE II 

Summary statistics of PM2.5 (µg/m3) values recorded by two 

CoSense Units 

 Sensor1 

PM2.5 

Sensor2 

PM2.5 

Mean 4.86 4.86 

Standard Error 0.06 0.06 

Median 4.67 4.56 

Standard Deviation 1.60 1.62 

Sample Variance 2.55 2.62 

Minimum 1.86 1.74 

Maximum 10.05 12.51 

 

Inter-Unit Variability: Inter-unit variability is an important 

method to measure the similarity of data produced by the same  

sensor units. It is a useful metric that has been widely used to 

measure the data reproducibility of sensor units [33], [43]. For 

this study, two CoSense Units were collocated and the PM2.5 

data were analyzed to understand the similarity in data reported 

by two units. The study was conducted between 3 August 2021 

and 31 August 2021. Fig. 9 shows the line plot based on the data 

obtained from two units. The data from both the units show a 

similar trend, except for some outliers. The data was sampled 

every 5 minutes. For analysis, the data were aggregated to 

hourly data. Two units were compared for a total of 681 hours.  

As observed from Table II, the data from the two units showed 

high similarity. The comparison showed similarities in the 

observed mean and standard error. Strong linearity was 

observed over the entire range of hourly averaged PM2.5 data.  

Sensor Sustainability Analysis: As discussed earlier in the 

Introduction, the sustainability of IoT devices is also a critical 

component when discussing resource efficiency. Most of the 

sensors-related studies usually look into the power consumed 

by the sensors to address the sustainability of low-cost sensor 

technology. This work looks at sustainability through a 

different lens. The approach is not just limited to examining the 

energy consumption of the IoT device but also to understanding 

the carbon footprint of the sensor code. To the best of our 

knowledge, this is no work in air quality monitoring literature 

that look into this aspect of sensors. This can potentially help in 

promoting sensor code optimization as well as resource-aware 
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IoT deployment. For this study, the focus was on two 

parameters: Emissions (Emissions as CO₂-equivalents, kg of 

CO₂ emitted per kilowatt-hour of electricity) and Energy 

Consumed (power consumed in kilowatt-hours). A CoSense 

Unit with a sampling frequency of one hour would emit 

approximately 0.029 kg of CO2 for a month of regular sampling. 

Similarly, the energy consumption for one month's use of the 

CoSense Unit would be approximately 0.072 kilowatt-hours. 

To put these values in context, watching Netflix6 for half an 

hour produces 0.4 kg of CO2, and running an air purifier7 for 

twelve hours would use 0.60 kilowatt-hours. These values can 

give us an idea about how properly designed and optimized 

sensors can potentially be used in a sustainable way for 

monitoring the environment in the long run. 

B. Data Analysis and Visualization 

A key part of any IoT infrastructure is an intuitive and efficient 

data analysis and visualization platform. IoT devices produce a 

massive amount of data and to make sense of such that it is 

important to have user-friendly platforms that can be easily 

used by experts as well as non-experts. Soc-IoT framework 

provides two options to visualize and analyze sensor data. The 

first option uses the in-built data analysis and visualization 

feature of the ThingSpeak platform8. It allows the users to 

visualize data in real-time, create interactive graphs, set alerts, 

and statistically analyze the data using MATLAB functions. In 

addition to this, another non-sensor-specific sensor data 

analysis and visualization application called exploreR is 

proposed.  

                                                                         

 
6 https://www.iea.org/commentaries/the-carbon-footprint-of-streaming-

video-fact-checking-the-headlines 
7 https://reviewsofairpurifiers.com/air-purifier-electricity-consumption-

calculator/ 

exploreR9 is an open-source online application that has been 

developed using the Shiny10 package in the R programming 

language. RShiny package has been widely used in recent years 

to create interactive applications for data analysis and 

visualizations [45]–[47]. Such applications have been used as a 

motivation to create exploreR that is designed to reduce the 

technical barriers especially related to coding when it comes to 

analyzing and visualizing citizen-generated data. The next few 

paragraphs explain the design and architecture of the exploreR 

application. 

 

Design and Architecture: exploreR is designed as an intuitive 

and easy-to-use sensor data analysis and visualization. The 

application Graphical User Interface (GUI) is designed in a way 

that guides the user during the analysis process. Fig. 10 shows 

a snapshot of the GUI of the exploreR application. The left 

column of Fig. 10 (a) holds the main functions that expand once 

the user decides to use them for data analysis. Fig. 10 (b)-(d) 

shows the examples of the application of different functions 

supported by the exploreR application. The application 

framework is designed in a way that follows a series of steps 

that cover the complete cycle of data input, pre-processing, 

visualization, and analysis. Fig. 11 shows the schematic 

representation of the exploreR pipeline. 

 

While designing exploreR, one of the objectives was to create 

an application that would facilitate usability for people from 

diverse backgrounds. Different integrated workflows within the 

application allow the user to meaningfully interpret the data 

8 https://uk.mathworks.com/products/thingspeak.html 
9 https://sachitmahajan.shinyapps.io/exploreR/ 
10 https://shiny.rstudio.com/ 
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(a)

(b)

(c)

(d)

Fig. 10 Screenshot showing some of the features of the exploreR GUI: (a) Landing page, (b) Outlier detection function window, 

(c) Box plot function window and (d) Data forecast function window. 



 

without any need for coding. Here is a summary of functions 

supported by the current version of the application: 

• Data Processing: The application accepts the data in 

CSV format and allows the users to filter 

rows/columns as well as view data summary and plot 

the raw data. The plots are generated using Plotly11 

which is an interactive graphing library. The 

generated plots can easily be analyzed using the 

inbuilt functions like zoom-in/zoom-out, rescaling, 

among others. The users can save the generated plots 

in PNG format.  

• Outlier Detection: The users can use sophisticated 

statistical and machine learning methods like k-

Nearest Neighbour, ARIMA, and Artificial Neural 

Networks (ANN) to perform anomaly and outlier 

detection. Data reliability is an important topic that is 

widely discussed in low-cost sensor literature [44], 

[48], [49]. The outlier detection function allows the 

user to look for anomalies, plot them and later clean 

them using state-of-the-art methods. 

• Gap Filling: This function allows the users to fill gaps 

due to missing data or gaps that are generated after 

removing the outliers in the previous stage. The 

current version of the applications supports two 

methods: linear interpolation and Kalman filter. 

These methods have been used due to their 

widespread use in sensor literature as well as overall 

accuracy [50], [51].  

• Exploratory Data Analysis: This feature allows the 

users to implement different functions on the dataset 

to understand the data in more detail as well observe 

the strengths of the relationship between different 

variables within the data set. The users can use the 

Correlation Matrix function to calculate Pearson 

correlation. Such information can be valuable while 

creating sensor calibration models [52]. The users can 

also box plots and histograms to perform a visual 

analysis of data. The plots can be downloaded as files 

in PNG format. 

• Data Forecasting: exploreR also has features that can 

be used for more advanced analysis and 

understanding of the air quality data. The application 

allows users to use advanced machine learning 

algorithms to perform data forecasts. PM2.5 forecast is 

a major challenge as has been widely studied by 

researchers in atmospheric science, environment 

monitoring, and computer science domains. The data 

forecast functions allow the users to use methods 

ranging from simple to more complex to analyze 

which method performs well. The current version 

supports methods like Linear Regression (LR), 

Random Forest (RF) Model, XGBoost, and ANN. 

The reason for selecting these models is their 

widespread use in time-series forecasting research 

[53], [54]. Having multiple models allow users to 

 
11 https://plotly.com/r/ 

compare model performance and potentially use those 

findings for creating real-time forecasting 

applications. The forecasting results can be viewed in 

the application as well as downloaded in CSV format. 

• Data Aggregation: Different air quality sensors are 

programmed to record data at a different frequency. 

Sometimes the data may be too granular or not 

granular at all. This can lead to an imbalanced time 

series and adversely impact the overall analysis. To 

address this challenge, exploreR allows the users to 

downsample the data to daily, weekly, monthly and 

yearly data. The user can either use the sum or mean 

to aggregate the data. The aggregated data can be 

downloaded in CSV format. 

 

exploreR is a major component of the Soc-IoT framework and 

is aimed at the easy analysis of sensor data as well as assisting 

citizen scientists, policymakers, researchers from non-

programming backgrounds to perform data analysis. Such an 

open-source tool can potentially bridge the gap between experts 

and non-experts as well as allow citizen scientists to add context 

while analyzing their data, which is usually missing in case the 

data is analyzed by a third party. 
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Data Summary Outlier Removal
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Fig. 11 Schematic of the exploreR pipeline. 



 

Table III 

Comparison of exploreR with other air quality data analysis tools and softwares. 

 

 

Furthermore, exploreR facilitates the easy export of figures and 

files that can be used for reporting data, publications, and data 

dissemination. 

Comparison with Existing Applications: To understand how 

this application contributes to the field of open-source sensor 

data analysis, exploreR is compared with similar air quality 

sensor data analysis applications and softwares. Different 

applications and softwares have been proposed over the years, 

with each of them having some strengths and weaknesses. Most 

of the applications are usually designed for the data from a 

specific sensor. It works well for data from particular sensors, 

but with data from different IoT devices, it might not work well. 

This is mainly due to different data formats as well as the 

organization of the data. Similarly, with programming-

intensive tools, the users who are technically experienced can 

easily analyze the data but it becomes difficult in case the user 

has no background in programming languages. Keeping these 

points in mind, exploreR is designed as a non-sensor-specific 

application that doesn’t require any prior knowledge of 

programming. This allows the users to analyze data from 

different sensors with ease and without worrying about 

technical complexities. At the same time, the open-source 

nature of the application allows the users with training in 

programming to improve the existing framework by using their 

skills to add more functions to the application. 

 

Table III compares exploreR with other existing open-source 

tools and softwares that have been widely used for analyzing air 

quality data obtained using low-cost sensors. Most of the 

existing solutions are designed keeping in mind specific sensors 

and user groups. The comparison highlights that exploreR 

successfully combines features that allow the analysis of data 

from different sensors without any need for programming. 

IV. CONCLUSION 

Leveraging the growth in the Internet of Things (IoT) and its 

interplay with sustainable practices and open-source principles,  

this paper proposes Soc-IoT, a proof-of-concept framework for 

citizen-centric environmental monitoring. The framework 

promotes accurate and efficient environmental monitoring by  

integrating open-source hardware and software.  The core part 

of the framework focuses on enhancing embedded spatial 

intelligence where citizen empowerment meets smart 

environments and sustainable design. The proposed open-

source framework has the potential to promote and encourage 

collaboration among a wide range of stakeholders ranging from 

scientists to policymakers and citizen scientists to Maker 

groups. It can also be used for educational as well as awareness 

purposes. The high reliability and accuracy of data sensed by 

the CoSense Unit allows it to be potentially used for 

complementing official monitoring networks. The simple and 

extensible nature of the proposed framework would hopefully 

encourage others to use it as a development platform rather than 

reinventing everything from scratch. 

Future work will include more investigation into dynamic 

calibration and edge analytics. Additional enhancements to the 

data analysis tool will include improvement in the user interface 

and the addition of more functionalities. 
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exploreR Yes Web-based No No Yes Yes Yes 
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