Commentary: Orientation tuning of input conductance, excitation, and inhibition in cat primary visual cortex

A number of papers reported data on estimation of excitatory and inhibitory synaptic conductances as input signals into principal neurons of the primary visual cortex (Anderson et al., 2000; Monier et al., 2003, 2008; Priebe and Ferster, 2005). Authors emphasize that they observed the counterphase of excitation and inhibition in simple cells and associate the observations with the push-pull mechanism (Troyer et al. 1998; Fregnac and Bathellier, 2015). However, the procedure of the estimation might occur incorrect and derived conclusions might be controversial, because of using too strong assumption that synaptic conductances are voltage-independent. The role of this assumption has been studied by Monier et al. (2008). It is wrong in presence of NMDA-receptor mediated component, which makes current significantly nonlinear due to magnesium block of the channels. In order to reduce this effect, the recordings are done in the voltage range where the NMDA voltage-current relationship is close to linear. Below we reconsider this issue and demon