
HPC Assignment 2 - Flat World Climate

Peter Ukkonen1

1Affiliation not available

March 12, 2019

1. Profiling

Before I set out to parallelize the code, I did a basic profiling by measuring the time elapsed on the three
computational parts of the code: radiation, energy emission, and diffusion. Diffusion was by far the most
expensive part, and radiation second. This means the diffusion function should be the prime focus.

2. Parallelization

Using OpenMP, making this code run in parallel (to at least some degree) is trivial. The longitude-latitude
points (which are actually atmospheric columns in real climate models) involve independent calculations
(with respect to other points) with the exception being the diffuse equation, which depends on neighbour-
ing grid cells. However, even this part can be made run in parallel using openMP, since the calculations
themselves are independent (do not require computations from neighbouring grid cells to finish).

I did parallelized the diffuse part simply by putting an #omp parallel for before the middle loop, and an
#omp parallel simd before the inner loop. The simd command tells the compiler that it’s safe to vectorize
the inner loop (again, due to no computational dependency).

I spent a lot of time trying different things to make the diffuse code run faster, mainly: getting rid of the
(i-1) and (i+i) iterations since these are not contiguous in memory. I did this by copying the “up”
and “down” as vectors before the innermost loop. However, this did not improve performance, instead it
decreased slightly, probably since copying from memory is expensive.

In the radiation and energy emission part of the code, I used a simple parallel for above the outermost loop,
since these were simple totally independent loop iterations.

3. Results

Figures 1 and 2 show respectively the absolute and relative performance in running time. While the per-
formance of the parallel code is “OK” relative to the sequential (2 - 2.6 factor of speedup depending on
the problem size), the small differences between using NUM THREADS=4 and NUM THREADS=10 shows
that the scaling is really bad. Probably there are some false sharing issues with the memory, which I did
not know to fix. A brief test with the “copy up and down as vectors” strategy I tried in the diffuse code
suggested that the scaling was better even though the code was overall slightly slower due to memory being

1



copied. This again makes false sharing the likely culprit. False sharing means that the different parallel
workers are sloshing back and forth on the cache line.

Figure 1: This is a caption

Figure 2: This is a caption

2


