Authorea

Abstract

Dieser Artikel testet die Möglichkeiten von Authorea bei der Formatieung von Texten in Markdown (1), LaTeX (2) und an einem Beispielartikel in LaTeX (3).

1. Markdown Basics

Paragraph

EMPTY LINE

Headers

Heading 1

Heading 2

Heading 3

Heading 4

Heading 5

Emphasis

Italic

Bold

Link

www.pandoc.org

Image

Alt Text

Alt Text

Blockquotes

Blockquote

Nested blockquote

Horizontal Rule


Bulleted List

  • Bulleted Item
  • Bulleted Item
  • Bulleted Item

Numbered List

  1. Numbered Item
  2. Numbered Item
  3. Numbered Item

Nested List

  1. Numbered Item
  • Bulleted Item
  • Bulleted Item
  1. Numbered Item

Code

This is an example of inline code.

This is a code block.

Table

|  Tables  |      Are      | Cool |
|----------|:-------------:|-----:|
| col 1 is |  left-aligned | $100 |
| col 2 is |    centered   |  $52 |
| col 3 is | right-aligned |   $9 |

Footnotes (in Authorea NOT supported)

Sentence with a footnote label.[^1]

[^1]: Footnote content.

Superscript and Subscript (in Authorea NOT supported)

2^nd^

H~2~O

Citations

[@cite:0]

More Information

Pandoc's version of Markdown: http://pandoc.org/README.html

2. LaTeX Basics

Paragraph

EMPTY LINE

Headers

Heading 1

Heading 2

Heading 3

Heading 4
Heading 5

Emphasis

Italic or Emphasis

Bold

Link

Image

Figure 1: Alt Text Figure 2: Alt Text

Blockquotes

Blockquote

Nested blockquote

Horizontal Rule

 

Bulleted List

  • Bulleted Item

  • Bulleted Item

  • Bulleted Item

Numbered List

  1. 1.

    Numbered Item

  2. 2.

    Numbered Item

  3. 3.

    Numbered Item

Nested List

  1. 1.

    Numbered Item

  • Bulleted Item

  • Bulleted Item

  1. 2.

    Numbered Item

Code

This is an example of inline code.

This is a code block.

Table

  Tables       Are  Cool
col 1 is  left-aligned $100
col 2 is     centered  $52
col 3 is right-aligned   $9

Footnotes

Sentence with a footnote label.11Footnote content.

Superscript and Subscript

2nd

H2O

Citations

More Information

3. Test Article (LaTeX)

A central problem in convex algebra is the extension of left-smooth functions. Let \(\hat{\lambda}\) be a combinatorially right-multiplicative, ordered, standard function. We show that \({\mathfrak{{\ell}}_{I,\Lambda}}\ni{\mathcal{{Y}}_{\mathbf{{u}},\mathfrak{{v}}}}\) and that there exists a Taylor and positive definite sub-algebraically projective triangle. We conclude that anti-reversible, elliptic, hyper-nonnegative ho