
FRETBursts: An Open Source Toolkit for Analysis of
Freely-Diffusing Single-Molecule FRET

Antonino Ingargiola1*, Eitan Lerner1, SangYoon Chung1, Shimon Weiss1, Xavier
Michalet1,

1 Dept. Chemistry and Biochemistry, Univ. of California Los Angeles, Los Angeles, CA,
USA

* ingargiola.antonino@gmail.com

Abstract

Single-molecule Förster Resonance Energy Transfer (smFRET) allows probing
intermolecular interactions and conformational changes in biomacromolecules, and
represents an invaluable tool for studying cellular processes at the molecular scale.
smFRET experiments can detect the distance between two fluorescent labels (donor and
acceptor) in the 3-10 nm range. In the commonly employed confocal geometry,
molecules are free to diffuse in solution. When a molecule traverses the excitation
volume, it emits a burst of photons, which can be detected by single-photon avalanche
diode (SPAD) detectors. The intensities of donor and acceptor fluorescence can then be
related to the distance between the two fluorophores.

While in recent years we observed a growing number of contributions proposing
improvements or new techniques in smFRET data analysis, rarely those publications
were accompanied by a software implementation. Remarkably, given the widespread
application of smFRET, no complete software package for smFRET burst analysis is
freely available to date.

In this paper, we introduce FRETBursts, an open source software for analysis of
freely-diffusing smFRET data. FRETBursts allows executing all the fundamental steps
of smFRET bursts analysis using state-of-the-art as well as novel techniques, while
providing an open, robust and well-documented implementation. Therefore,
FRETBursts represents an ideal platform for comparison and development of new
methods in burst analysis.

We employ modern software engineering principles in order to minimize bugs and
facilitate long-term maintainability. Furthermore, we place a strong focus on
reproducibility by relying on Jupyter notebooks for FRETBursts execution. Notebooks
are executable documents capturing all the steps of the analysis (including data files,
input parameters, and results) and can be easily shared to replicate complete smFRET
analyzes. Notebooks allow beginners to execute complex workflows and advanced users
to customize the analysis for their own needs. By bundling in a single document
analysis description, code and results, FRETBursts allows to seamless share analysis
workflows and results encourages reproducibility and facilitates collaboration among
researchers in the single-molecule community.

PLOS 1/27

1 Introduction 1

1.1 Open Science and Reproducibility 2

Over the past 20 years, single molecule FRET (smFRET) has grown into one of the 3

most useful techniques in single-molecule spectroscopy [1, 2]. While it is possible to 4

extract information on sub-populations using ensemble measurements (e.g. [3, 4]), 5

smFRET unique feature is its ability to very straightforwardly resolve conformational 6

changes of biomolecules or measure binding-unbinding kinetics in heterogeneous 7

samples [5–9]. smFRET measurements on freely diffusing molecules (the focus of this 8

paper) have the additional advantage over measurements performed on immobilized 9

molecules, of allowing to probe molecules and processes without perturbation from 10

surface immobilization or additional functionalization needed for surface 11

attachment [10,11]. 12

The increasing amount of work using freely-diffusing smFRET has motivated a 13

growing number of theoretical contributions to the specific topic of data analysis [12–24]. 14

Despite this profusion of publications, most research groups still rely on their own 15

implementation of a limited number of methods, with very little collaboration or code 16

sharing. To clarify this statement, let us point that our own group’s past smFRET 17

papers merely mention the use of custom-made software without additional 18

details [16, 17]. Even though some of these software tools are made available upon 19

request, or sometimes shared publicly on websites, it remains hard to reproduce and 20

validate results from different groups, let alone build upon them. Additionally, as new 21

methods are proposed in literature, it is generally difficult to quantify their performance 22

compared to other methods. An independent quantitative assessment would require a 23

complete reimplementation, an effort few groups can afford. As a result, potentially 24

useful analysis improvements are either rarely or slowly adopted by the community. In 25

contrast with other established traditions such as sharing protocols and samples, in the 26

domain of scientific software, we have relegated ourselves to islands of 27

non-communication. 28

From a more general standpoint, the non-availability of the code used to produce 29

scientific results, hinders reproducibility, makes it impossible to review and validate the 30

software’s correctness and prevents improvements and extensions by other scientists. 31

This situation, common in many disciplines, represents a real impediment to the 32

scientific progress. Since pioneering work of Donoho group in the 90’s [25], it has 33

become evident that developing and maintaining open source scientific software for 34

reproducible research is a critical requirement of the modern scientific enterprise [26, 27]. 35

Other disciplines have started tackling this issue [28], and even in the single-molecule 36

field a few recent publications have provided software for analysis of surface-immobilized 37

experiments [29–33]. For freely-diffusing smFRET experiments, although it is common 38

to find mention of ”code available from the authors upon request” in publications, there 39

is a dearth of such open source code, with, to our knowledge, the notable exception of a 40

single example [34]. To address this issue, we have developed FRETBursts, an open 41

source Python software for analysis of freely-diffusing single-molecule FRET 42

measurements. FRETBursts can be used, inspected and modified by anyone interested 43

in using state-of-the art smFRET analysis methods or implementing modifications or 44

completely new techniques. FRETBursts therefore represents an ideal platform for 45

quantitative comparison of different methods for smFRET burst analysis. Technically, a 46

strong emphasis has been given to the reproducibility of complete analysis workflows. 47

FRETBursts uses Jupyter Notebooks [35], an interactive and executable document 48

containing textual narrative, input parameters, code, and computational results (tables, 49

plots, etc.). A notebook thus captures the various analysis steps in a document which is 50

easy to share and execute. To minimize the possibility of bugs being introduced 51

PLOS 2/27

inadvertently [36] we employ modern software engineering techniques such as unit 52

testing and continuous integration [28,37]. FRETBursts is hosted on GitHub [38,39], 53

where users can write comments, report issues or contribute code. In a related effort, we 54

recently introduced Photon-HDF5 [40], an open file format for timestamp-based 55

single-molecule fluorescence experiments. An other related open source tool is 56

PyBroMo [41], a freely-diffusing smFRET simulator which produces Photon-HDF5 files 57

that are directly analyzable with FRETBursts. Together with all the aforementioned 58

tools, FRETBursts contributes to the growing ecosystem of open tools for reproducible 59

science in the single-molecule field. 60

1.2 Paper Overview 61

This paper is written as an introduction to smFRET burst analysis and its 62

implementation in FRETBursts. After a brief overview of FRETBursts features 63

(section 2), we introduce essential concepts and terminology for smFRET burst analysis 64

(section 3). 65

In section 4, we illustrate the steps involved in smFRET burst analysis: (i) data 66

loading (section 4.1), (ii) definition of the excitation alternation periods (section 4.2), 67

(iii) background correction (section 4.3), (iv) burst search (section 4.4), (v) burst 68

selection (section 4.5) and (vi) FRET histogram fitting (section 4.6). The aim of this 69

section is to illustrate the specificities and trade-off involved in various approaches with 70

sufficient details to enable readers to customize the analysis for their own needs. 71

Section 5 walks the reader thorough implementing Burst Variance Analysis (BVA) [23], 72

as an example of implementation of an advanced data processing technique. Finally, 73

section 6 summarizes what we believe to be the strengths of FRETBursts software. 74

Throughout this paper, links to relevant sections of documentation and other web 75

resources are displayed as “(link)”. In order to make the text more legible, we have 76

concentrated Python-specific details in subsections entitled Python details. These 77

subsections provide deeper insights for readers already familiar with Python and can be 78

initially skipped by readers who are not. Finally, note that all commands and figures in 79

this paper can be regenerated using the accompanying notebooks (link). 80

2 FRETBursts Overview 81

2.1 Technical Features 82

FRETBursts can analyze smFRET measurements from one or multiple excitation 83

spots [42]. The supported excitation schemes include single laser, alternating laser 84

excitation (ALEX) with either CW lasers (µs-ALEX [43]) or pulsed lasers 85

(ns-ALEX [44] or pulsed-interleaved excitation (PIE) [45]). 86

The software implements both standard and novel algorithms for smFRET data 87

analysis including background estimation as a function of time (including background 88

accuracy metrics), sliding-window burst search [10], dual-channel burst search 89

(DCBS) [17] and modular burst selection methods based on user-defined criteria 90

(including a large set of pre-defined selection rules). Novel features include burst size 91

selection with γ-corrected burst sizes, burst weighting, burst search with 92

background-dependent threshold (in order to guarantee a minimal signal-to-background 93

ratio [46]). Moreover, FRETBursts provides a large set of fitting options to characterize 94

FRET subpopulations. In particular, distributions of burst quantities (such as E or S) 95

can be assessed through (1) histogram fitting (with arbitrary model functions), (2) 96

non-parametric weighted kernel density estimation (KDE), (3) weighted 97

expectation-maximization (EM), (4) maximum likelihood fitting using Gaussian models 98

PLOS 3/27

https://github.com/tritemio/fretbursts_paper

Photon selection code
All-photons Ph_sel(’all’)

D-emission Ph_sel(Dex=’Dem’)

A-emission Ph_sel(Dex=’Aem’)

Table 1. Photon selection syntax (non-ALEX)

or Poisson statistic. Finally FRETBursts includes a large number of predefined and 99

customizable plot functions which (thanks to the matplotlib graphic library) produce 100

publication quality plots in a wide range of formats. 101

Additionally, implementations of population dynamics analysis such as Burst 102

Variance Analysis (BVA) [23] and two-channel kernel density distribution estimator 103

(2CDE) [24] are available as FRETBursts notebooks. 104

2.2 Software Availability 105

FRETBursts is hosted and openly developed on GitHub. FRETBursts homepage (link) 106

contains links to the various resources. Installation instructions can be found in the 107

Reference Documentation (link). A description of FRETBursts execution using Jupyter 108

notebooks is reported in SI 7.1. Detailed information on development style, testing 109

strategies and contributions guidelines are reported in SI 7.2. Finally, to facilitate 110

evaluation and comparison with other software, we setup an on-line services allowing to 111

execute FRETBursts without requiring any installation on the user’s computer (link). 112

3 Architecture and Concepts 113

In this section, we introduce some general concepts and notations used in FRETBursts. 114

3.1 Photon Streams 115

The raw data collected during a smFRET experiment consists in one or more arrays of 116

photon timestamps, whose temporal resolution is set by the acquisition hardware, 117

typically between 10 and 50 ns. In single-spot measurements, all timestamps are stored 118

in a single array. In multispot measurements [42], there are as many timestamps arrays 119

as excitation spots. 120

Each array contains timestamps from both donor (D) and acceptor (A) channels. 121

When alternating excitation lasers are used (ALEX measurements) [16], a further 122

distinction between photons emitted during the D or A excitation periods can be made. 123

In FRETBursts, the corresponding sets of photons are called “photon streams” and are 124

specified with a Ph_sel object (link). In non-ALEX smFRET data, there are 3 photon 125

streams (table 1), while in ALEX data, there are 5 streams (table 2). 126

The Ph_sel class (link) allows the specification of any combination of photon 127

streams. For example, in ALEX measurements, the D-emission during A-excitation 128

stream is usually ignored because it does not contain any useful signal [16]. To indicate 129

all but photons in this photon stream, the syntax is Ph_sel(Dex=’DAem’, Aex=’Aem’), 130

which indicates selection of donor and acceptor photons (DAem) during donor excitation 131

(Dex) and only acceptor photons (Aem) during acceptor excitation (Aex). 132

3.2 Background Definitions 133

An estimation of the background rates is needed to both select a proper threshold for 134

burst search, and correct the raw burst counts by subtraction of background counts. 135

PLOS 4/27

http://tritemio.github.io/FRETBursts
http://fretbursts.readthedocs.org/en/latest/getting_started.html
https://github.com/tritemio/FRETBursts_notebooks#run-online
http://fretbursts.readthedocs.org/en/latest/ph_sel.html
http://fretbursts.readthedocs.org/en/latest/ph_sel.html

Photon selection code
All-photons Ph_sel(’all’)

D-emission during D-excitation Ph_sel(Dex=’Dem’)

A-emission during D-excitation Ph_sel(Dex=’Aem’)

D-emission during A-excitation Ph_sel(Aex=’Dem’)

A-emission during A-excitation Ph_sel(Aex=’Aem’)

Table 2. Photon selection syntax (ALEX)

The recorded stream of timestamps is the result of two processes: one characterized 136

by a high count rate, due to fluorescence photons of single molecules crossing the 137

excitation volume, and another characterized by a lower count rate, due to ”background 138

counts” originating from detector dark counts, afterpulsing, out-of-focus molecules and 139

sample scattering and/or impurities [20,47]. The signature of these two types of 140

processes can be observed in the inter-photon delays distribution (i.e. the waiting times 141

between two subsequent timestamps) as illustrated in figure 1(a). The ”tail” of the 142

distribution (a straight line in semi-log scale) corresponds to exponentially-distributed 143

time-delays, indicating that those counts are generated by a Poisson process. At short 144

timescales, the distribution departs from the exponential due to the contribution of the 145

higher rate process of single molecules traversing the excitation volume. To estimate the 146

background rate (i.e. the inverse of the exponential time constant), it is necessary to 147

define a time-delay threshold above which the distribution can be considered 148

exponential. Finally, a parameter estimation method needs to be specified, such as 149

Maximum Likelihood Estimation (MLE) or non-linear least squares curve fitting of the 150

time-delay histogram (both supported in FRETBursts). 151

Figure 1. Inter-photon delays fitted with and exponential function.
Experimental distributions of inter-photon delays (dots) and corresponding fits of the
exponential tail (solid lines). (Panel a) An example of inter-photon delays distribution
(red dots) and an exponential fit of the tail of the distribution (black line). (Panel b)
Inter-photon delays distribution and exponential fit for different photon streams as
obtained with dplot(d, hist bg). The dots represent the experimental histogram for
the different photon streams. The solid lines represent the corresponding exponential fit
of the tail of the distributions. The legend shows abbreviations of the photon streams
and the fitted rate background rate.

It is advisable to monitor the background as a function of time throughout the 152

measurement, in order to account for possible variations. Experimentally, we found that 153

when the background is not constant, it usually varies on time scales of tens of seconds 154

(see figure 2). FRETBursts divides the acquisition in constant-duration time windows 155

called background periods and computes the background rates for each of these windows 156

(see section 4.3). Note that FRETBursts uses these local background rates also during 157

burst search, in order to compute time-dependent burst detection thresholds and for 158

background correction of burst data (see section 4.4). 159

3.3 The Data Class 160

The Data class (link) is the fundamental data container in FRETBursts. It contains the 161

measurement data and parameters (attributes) as well as several methods for data 162

analysis (background estimation, burst search, etc...). All analysis results (bursts data, 163

estimated parameters) are also stored as Data attributes. 164

There are 3 important “burst counts” attributes which contain the number of 165

PLOS 5/27

http://fretbursts.readthedocs.org/en/latest/data_class.html

Figure 2. Background rates as a function of time. Estimated background rate
as a function of time for two µs-ALEXmeasurements. Different colors represent different
photon streams. (Panel a) A measurement performed with a sealed sample chamber
exhibiting constant a background as a function of time. (Panel b) A measurement
performed on an unsealed sample exhibiting significant background variations due to
sample evaporation and/or photo-bleaching (likely of impurities the cover-glass). These
plots are produced by the command dplot(d, timetrace bg) after estimation of
background. Each data point in these figures is computed for a 30 s time window.

Name Description
nd number of photons detected by the donor channel (during donor exci-

tation period in ALEX case)
na number of photons detected by the acceptor channel (during donor

excitation period in ALEX case)
naa number of photons detected by the acceptor channel during acceptor

excitation period (present only in ALEX measurements)

Table 3. Data attributes names and descriptions for burst photon counts in different
photon streams.

photons detected in the donor or the acceptor channel during donor or acceptor 166

excitation (table 3). The attributes in table 3 are background-corrected by default. 167

Furthermore, na is corrected for leakage and direct excitation (section 4.4.2) if the 168

relative coefficients are specified (by default they are 0). There is also a closely related 169

attribute named nda for donor photons during acceptor excitation. nda is normally 170

neglected as it only contains background. 171

Python details Many Data attributes are lists of arrays (or scalars) with the length 172

of the lists equal to the number of excitation spots. This means that in single-spot 173

measurements, an array of burst-data is accessed by specifying the index as 0, for 174

example Data.nd[0]. Data implements a shortcut syntax to access the first element of 175

a list with an underscore, so that an equivalently syntax is Data.nd_ instead of 176

Data.nd[0]. 177

3.4 Introduction to Burst Search 178

Identifying single-molecule fluorescence bursts in the stream of photons is one of the 179

most crucial steps in the analysis of freely-diffusing single-molecule FRET data. The 180

widely used “sliding window” algorithm, introduced by the Seidel group in 1998 181

([10], [12]), involves searching for m consecutive photons detected during a period 182

shorter than ∆t. In other words, bursts are regions of the photon stream where the 183

local rate (computed using m photons) is above a minimum threshold rate. Since a 184

universal criterion to choose the rate threshold and the number of photons m is, as of 185

today, lacking, it has become a common practice to manually adjust those parameters 186

for each specific measurement. 187

A more general approach consists in taking into account the background rate of the 188

specific measurements and in choosing a rate threshold that is F times larger than the 189

background rate. This approach ensures that all resulting bursts have a 190

signal-to-background ratio (SBR) larger than (F − 1) [46]. A consistent criterion for 191

choosing the threshold is particularly important when comparing different 192

measurements with different background rates, when the background significantly varies 193

PLOS 6/27

during measurements or in multi-spot measurements where each spot has a different 194

background rate. 195

A second important aspect of burst search is the choice of photon stream used to 196

perform the search. In most cases, for instance when identifying FRET sub-populations, 197

the burst search should use all photons (i.e. APBS). In some other cases, when focusing 198

on donor-only or acceptor only populations, it is better to perform the search using only 199

donor or acceptor signal. In order to handle the general case and to provide flexibility, 200

FRETBursts allows performing the burst search on arbitrary selections of photons. (see 201

section 3.1 for more information on photon stream definitions). 202

Additionally, Nir et al. [17] proposed DCBS (’dual-channel burst search’), which can 203

help mitigating artifacts due to photophysics effects such as blinking. During DCBS, a 204

search is performed in parallel on two photon streams and bursts are defined as periods 205

during which both photon streams exhibit a rate higher than the threshold, 206

implementing the equivalent of an AND logic operation. Conventionally, the term DCBS 207

refers to a burst search where the two photon streams are (1) all photons during donor 208

excitation (Ph_sel(Dex=’DAem’)) and (2) acceptor channel photons during acceptor 209

excitation (Ph_sel(Aex=’Aem’)). In FRETBursts, the user can choose arbitrary photon 210

streams as input, an in general this kind of search is called a ’AND-gate burst search’. 211

After burst search, it is necessary to select bursts, for instance by specifying a 212

minimum number of photons (or burst size). In the most basic form, this selection can 213

be performed during burst search by discarding bursts with size smaller than a 214

threshold L, as originally proposed by Eggeling et al. [10]. This method, however, 215

neglects the effect of background and γ factor on the burst size and can lead to a 216

selection bias for some channels and/or sub-populations. For this reason, we suggest 217

performing a burst size selection after background correction, taking into account the γ 218

factor, as discussed in sections 3.5 and 4.5. In special cases, users may choose to replace 219

(or combine) the burst selection based on burst size with another criterion such as burst 220

duration or brightness (see section 4.5). 221

3.5 Corrected Burst Sizes and Weights 222

The number of photons detected during a burst –the “burst size”– is computed using 223

either all photons, or photons detected during donor excitation period. To compute the 224

burst size, FRETBursts uses one of the following formulas: 225

ndex = na + γ nd (1)

nt = na + γ nd + naa (2)

where nd, na and naa are, similarly to the attributes in table 3, the 226

background-corrected burst counts in different channels and excitation periods. The 227

factor γ takes into account different fluorescence quantum yields of donor and acceptor 228

fluorophores and different photon detection efficiencies between donor and acceptor 229

detection channels [16,48]. Eq. 1 includes counts collected during donor excitation 230

periods only, while eq. 2 includes all counts. Burst sizes computed according to eq. 1 231

or 2 are called γ-corrected burst sizes. 232

The burst search algorithm yields a set of bursts whose sizes approximately follow an 233

exponential distribution. Compared to bursts with smaller sizes, bursts with large sizes 234

are less frequent, but contain more information per-burst (having higher SNR). 235

Therefore, selecting bursts by size is an important step (see section 4.5). A threshold set 236

too low may result in unresolvable sub-populations because of broadening of FRET 237

peaks and appearance of shot-noise artifacts in the FRET (and S) distribution (i.e. 238

spurious narrow peaks due to E and S being computed as the ratio of small integers). 239

PLOS 7/27

Conversely, too large a threshold may result in too low a number of bursts therefore 240

poor representation of the FRET distribution. Additionally, especially when computing 241

fractions of sub-populations (e.g. ratio of number of bursts in each sub-population), it is 242

important to use γ-corrected burst sizes as selection criterion, in order to avoid 243

under-representing some FRET sub-populations due to different quantum yields of 244

donor and acceptor dyes and/or different photon detection efficiencies of donor and 245

acceptor channels. 246

A simple way to mitigate the dependence of the FRET distribution on the burst size 247

selection threshold is weighting bursts proportionally to their size so that the bursts with 248

largest sizes will have the largest weights. Using size as weights (instead of any other 249

monotonically increasing function of size) can be justified noticing that the variance of 250

bursts PR (Ei) is inversely proportional to the burst size (see SI 7.6 for details). 251

In general, a weighting scheme is used for building efficient estimators for a 252

population parameter (e.g. Ep). But, it can also be used to build weighted histograms 253

or Kernel Density Estimation (KDE) plots which emphasize FRET subpopulations 254

peaks without excluding small size bursts. Traditionally, for optimal results when not 255

using weights, the FRET histogram is manually adjusted by finding an ad-hoc (high) 256

size-threshold which selects only bursts with the highest size (and thus lowest variance). 257

Building size-weighted FRET histograms is a simple method to balance the need of 258

reducing the peaks width with the need of including as much bursts as possible to 259

reduce statistical noise. As a practical example, by fixing the burst size threshold to a 260

low value (e.g. 10-20 photons) and using weights, is possible to build a FRET histogram 261

with well-defined FRET sub-populations peaks without the need of searching an 262

optimal burst-size threshold (SI 7.6). 263

Python details FRETBursts has the option to weight bursts using γ-corrected burst 264

sizes which optionally include acceptor excitation photons naa. A weight proportional 265

to the burst size is applied by passing the argument weights=’size’ to histogram or 266

KDE plot functions. The weights keyword can be also passed to fitting functions in 267

order to fit the weighted E or S distributions (see section 4.6). Other weighting 268

functions (for example depending quadratically on the size) are listed in the 269

fret_fit.get_weights documentation (link). However, using weights different from 270

the size is not recommended due to their less efficient use of burst information. 271

4 smFRET Burst Analysis 272

4.1 Loading the Data 273

While FRETBursts can load several data files formats, we encourage users to adopt the 274

recently introduced Photon-HDF5 file format [40]. Photon-HDF5 is an HDF5-based, 275

open format, specifically designed for freely-diffusing smFRET and other 276

timestamp-based experiments. Photon-HDF5 is a self-documented, platform- and 277

language-independent binary format, which supports compression and allows saving 278

photon data (e.g. timestamps) and measurement-specific metadata (e.g. setup and 279

sample information, authors, provenance, etc.). Moreover, Photon-HDF5 is designed for 280

long-term data preservation and aims to facilitate data sharing between different 281

software and research groups. All example data files provided with FRETBursts use the 282

Photon-HDF5 format. 283

To load data from a Photon-HDF5 file, we use the function loader.photon_hdf5 284

(link): 285

d = loader.photon_hdf5(filename) 286

PLOS 8/27

http://fretbursts.readthedocs.org/en/latest/fret_fit.html#fretbursts.fret_fit.get_weights
http://fretbursts.readthedocs.org/en/latest/loader.html#fretbursts.loader.photon_hdf5

where filename is a string containing the file path. This command loads the 287

measurement data into the variable d, a Data object (see section 3.3). 288

The same command can load data from a variety of smFRET measurements 289

supported by the Photon-HDF5 format, taking advantage of the rich metadata included 290

with each file. For instance, data generated using different excitation schemes such as 291

CW excitation or pulsed excitation, single-laser vs two alternating lasers, etc., or with 292

any number of excitation spots, are automatically recognized and interpreted 293

accordingly. 294

FRETBursts also supports loading µs-ALEXdata stored in .sm files (a custom 295

binary format used in the Weiss lab), ns-ALEX data stored in .spc files (a binary format 296

used by TCSPC Becker & Hickl acquisition hardware). Alternatively, these and other 297

formats (such as ht3, a binary format used by PicoQuant hardware) can be converted 298

into Photon-HDF5 files using phconvert, a file conversion library and utility for 299

Photon-HDF5 (link). More information on loading different file formats can be found in 300

the loader module’s documentation (link). 301

4.2 Alternation Parameters 302

For µs-ALEXand ns-ALEX data, Photon-HDF5 normally stores parameters defining 303

alternation periods corresponding to donor and acceptor laser excitation. At load time, 304

a user can plot these parameters and change them if deemed necessary. In 305

µs-ALEXmeasurements [49], CW laser lines are alternated on timescales of the order of 306

10 to 100 µs. Plotting an histogram of timestamps modulo the alternation period, it is 307

possible to identify the donor and acceptor excitation periods (see figure 3a). In 308

ns-ALEX measurements [44], pulsed lasers with equal repetition rates are delayed with 309

respect to one another with typical delays of 10 to 100 ns. In this case, forming an 310

histogram of TCSPC times (nanotimes) will allow the definition of periods of 311

fluorescence after excitation of either the donor or the acceptor (see figure 3b). In both 312

cases, the function plot_alternation_hist (link) will plot the relevant alternation 313

histogram (figure 3) using currently selected (or default) values for donor and acceptor 314

excitation periods. 315

Figure 3. Alternation histograms for µs-ALEXand ns-ALEX
measurements. Histograms used for the selection/determination of the alternation
periods for two typical smFRET-ALEX experiments. Distributions of photons detected
by donor channel are in green, and by acceptor channel in red. The light green and red
shaded areas indicate the donor and acceptor period definitions. (a)
µs-ALEXalternation histogram, i.e. histogram of timestamps modulo the alternation
period for a smFRET measurement. (b) ns-ALEX nanotime histogram for a smFRET
measurement. Both plots have been generated by the same plot function
(plot alternation hist()). Additional information on these specific measurements
can be found in the attached notebook (link).

To change the period definitions, we can type: 316

d.add(D_ON =(2100 , 3900), A_ON =(100, 1900)) 317

where D_ON and A_ON are tuples (pairs of numbers) representing the start and stop 318

values for D or A excitation periods. The previous command works for both 319

µs-ALEXand ns-ALEX measurements. After changing the parameters, a new 320

alternation plot will show the updated period definitions. 321

The alternation period definition can be applied to the data using the function 322

loader.alex_apply_period (link): 323

PLOS 9/27

http://photon-hdf5.github.io/phconvert/
http://fretbursts.readthedocs.org/en/latest/loader.html
http://fretbursts.readthedocs.org/en/latest/plots.html#fretbursts.burst_plot.plot_alternation_hist
http://nbviewer.jupyter.org/github/tritemio/fretbursts_paper/blob/master/notebooks/Figures%20-%20ALEX%20histograms.ipynb
http://fretbursts.readthedocs.org/en/latest/loader.html#fretbursts.loader.alex_apply_period

loader.alex_apply_period(d) 324

After this command, d will contain only photons inside the defined excitation 325

periods. If the user needs to update the periods definition, the data file will need to be 326

reloaded and the steps above repeated as described. 327

4.3 Background Estimation 328

The first step of smFRET analysis involves estimating background rates. For example, 329

to compute the background every 30 s, using a minimal inter-photon delay fixed 330

threshold of 2 ms for the all photon streams, the corresponding command is: 331

d.calc_bg(bg.exp_fit , time_s =30, tail_min_us =2000) 332

The first argument (bg.exp_fit) is the function used to fit the background rate for 333

each photon stream (see section 3.2). The function bg.exp_fit estimates the 334

background using a maximum likelihood estimation (MLE) of the delays distribution. 335

The second argument, time_s, is the duration of the background period (section 3.2) 336

and the third, tail_min_us, is the minimum inter-photon delay to use when fitting the 337

distribution to the specified model function. To use different thresholds for each photon 338

stream we pass a tuple (i.e. a comma-separated list of values, link) instead of a scalar. 339

The recommended approach is however automating the choice of threshold using 340

tail_min_us=’auto’ using an heuristic algorithm which is described in Background 341

estimation section of the µs-ALEXtutorial (link). Finally, it is possible to use a slower 342

but rigorous approach for finding the optimal threshold as described in SI 7.5. 343

FRETBursts provides two kinds of plots to represent the background. One shows 344

the histograms of inter-photon delays compared to the fitted exponential distribution, 345

shown in figure 1) (see section 3.2 for details on the inter-photon distribution). This 346

plot is created with the command: 347

dplot(d, hist_bg , period =0) 348

This command reflects the general form of plotting commands in FRETBursts as 349

described in SI 7.4. Here we only note that the argument period is an integer 350

specifying the background period to be plotted (When omitted, the default is 0, i.e. the 351

first period). Figure 1 allows to quickly identify pathological cases where the 352

background fitting procedure returns unreasonable values. 353

The second background-related plot represents a timetrace of background rates, as 354

shown in figure 2. This plot allows monitoring background rate variations occurring 355

during the measurement and is obtained with the command: 356

dplot(d, timetrace_bg) 357

Normally, samples should have a fairly constant background rate as a function of 358

time as in figure 2(a). However, sometimes, non-ideal experimental conditions can yield 359

a time-varying background rate, as illustrated in figure 2(b). A possible reason for the 360

observed behavior could be buffer evaporation from an open sample or poorly sealed 361

observation chamber. Alternatively, cover-glass impurities can contribute to the 362

background. These impurities tend to bleach on timescales of minutes resulting in 363

background variations during the course of the measurement. 364

Python details The estimated background rates are stored in the Data attributes 365

bg_dd, bg_ad and bg_aa, corresponding to photon streams Ph_sel(Dex=’Dem’), 366

Ph_sel(Dex=’Aem’) and Ph_sel(Aex=’Aem’) respectively. These attributes are lists of 367

arrays (one array per excitation spot). The arrays contain the estimated background 368

rates in the different time windows (background periods). Additional background fitting 369

functions (e.g. least-square fitting of inter-photon delay histogram) are available in bg 370

namespace (i.e. the background module, link). 371

PLOS 10/27

https://docs.python.org/3.5/tutorial/datastructures.html#tuples-and-sequences
http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/FRETBursts%20-%20us-ALEX%20smFRET%20burst%20analysis.ipynb#Background-estimation
http://fretbursts.readthedocs.org/en/latest/background.html

4.4 Burst Search 372

4.4.1 Burst Search in FRETBursts 373

Following background estimation, burst search is the next step of the analysis. In 374

FRETBursts, a standard burst search using a single photon stream (see section 3.4) is 375

performed by calling the Data.burst_search method (link). For example, the 376

following command: 377

d.burst_search(F=6, m=10, ph_sel=Ph_sel(’all’)) 378

performs a burst search on all photons (ph_sel=Ph_sel(’all’)), with a count rate 379

threshold equal to 6 times the local background rate (F=6), using 10 consecutive 380

photons to compute the local count rate (m=10). A different photon stream, threshold 381

(F) or number of photons m can be selected by passing different values. These 382

parameters are good general-purpose starting point for smFRET analysis but can they 383

can be adjusted if needed. 384

Note that the previous burst search does not perform any burst size selection 385

(however, by definition, the minimum bursts size is effectively m). An additional 386

parameter L can be passed to impose a minimum burst size before any correction. 387

However, it is recommended to select bursts only after background corrections are 388

applied, as discussed in the next section 4.5. 389

It might sometimes be useful to specify a fixed photon-rate threshold, instead of a 390

threshold depending on the background rate, as in the previous example. In this case, 391

instead of F , the argument min_rate_cps can be used to specify the threshold (in 392

counts-per-second). For example, a burst search with a 50 kcps threshold is performed 393

as follows: 394

d.burst_search(min_rate_cps =50e3, m=10, 395

ph_sel=Ph_sel(’all’)) 396

Finally, to perform a DCBS burst search (or in general an AND gate burst search, 397

see section 3.4) we use the function burst_search_and_gate (link), as illustrated in 398

the following example: 399

d_dcbs = bext.burst_search_and_gate(d, F=6, m=10) 400

The last command puts the burst search results in a new copy of the Data variable d 401

(in this example, the copy is called d_dcbs). Since FRETBursts shares the timestamps 402

and detectors arrays between different copies of Data objects, the memory usage is 403

minimized, even when several copies are created. 404

Python details Note that, while .burst_search() is a method of Data, 405

burst_search_and_gate is a function in the bext module taking a Data object as a 406

first argument and returning a new Data object. 407

The function burst_search_and_gate accepts optional arguments, ph_sel1 and 408

ph_sel2, whose default values correspond to the classical DCBS photon stream 409

selection (see section 3.4). These arguments can be specified to select different photon 410

streams than those used in a classical DCBS. 411

The bext module (link) collects “plugin” functions that provides additional 412

algorithms for processing Data objects. 413

4.4.2 Correction Coefficients 414

In µs-ALEX, there are 3 important correction parameters: γ-factor, donor leakage into 415

the acceptor channel and acceptor direct excitation by the donor excitation laser [16]. 416

These corrections can be applied to burst data by simply assigning values to the 417

respective Data attributes: 418

PLOS 11/27

http://fretbursts.readthedocs.org/en/latest/data_class.html#fretbursts.burstlib.Data.burst_search
http://fretbursts.readthedocs.org/en/latest/plugins.html#fretbursts.burstlib_ext.burst_search_and_gate
http://fretbursts.readthedocs.org/en/latest/plugins.html

d.gamma = 0.85 419

d.leakage = 0.15 420

d.dir_ex = 0.08 421

These attributes can be assigned either before or after the burst search. In the latter 422

case, existing burst data is automatically updated using the new correction parameters. 423

These correction factors can be used to display corrected FRET distributions. 424

However, when the goal is to fit the FRET efficiency of sub-populations, it is simpler to 425

fit the uncorrected FRET histogram (i.e. background-corrected proximity ratio) and 426

then correct the fitted FRET efficiency (see SI in [16], SI). Correcting the PR after 427

fitting (instead of correcting the data in each burst) avoids distortion of the FRET 428

distribution and keeps peaks of static FRET subpopulations closer to the ideal Binomial 429

statistics [19]. 430

FRETBursts implements the correction formulas for E and S in the functions 431

fretmath.correct_E_gamma_leak_dir and fretmath.correct_S (link). A derivation 432

of these correction formulas (using computer-assisted algebra) can be found online as an 433

interactive notebook (link). 434

4.5 Burst Selection 435

After burst search, it is common to select bursts according to different criteria. One of 436

the most common is burst size. 437

For instance, to select bursts with more than 30 photons detected during the donor 438

excitation (computed after background correction), we use following command: 439

ds = d.select_bursts(select_bursts.size , th1 =30) 440

The previous command creates a new Data variable (ds) containing the selected 441

bursts. th1 defines the lower bound for burst size, while th2 defines the upper bound 442

(when not specified, as in the previous example, the upper bound is +∞). As before, 443

the new object will share the photon data arrays with the original object (d) in order to 444

minimize the amount of used memory. 445

The first argument of select_bursts (link) is a python function implementing the 446

“selection rule” (select_bursts.size in this example); all remaining arguments (only 447

th1 in this case) are parameters of the selection rule. The select_bursts module (link) 448

contains numerous built-in selection functions (link). For example, select_bursts.ES 449

is used to select a region on the E-S ALEX histogram, select_bursts.width to select 450

bursts based on their duration. New custom criteria can be readily implemented by 451

defining a new selection function, which requires only a couple of lines of code (see the 452

select_bursts module’s source code for examples, link). 453

Finally, different criteria can be combined sequentially. For example, the following 454

commands: 455

ds = d.select_bursts(select_bursts.size , 456

th1=50, th2 =200) 457

dsw = ds.select_bursts(select_bursts.width , 458

th1 =0.5e-3, th2=3e-3) 459

apply both a burst size and a burst duration selection criterion, in which bursts have 460

sizes between 50 and 200 photons, and duration between 0.5 and 3 ms. 461

4.5.1 Burst Size Selection 462

In the previous section, we selected bursts by size, using only Dex photons (i.e. photons 463

detected in both D and A channels during D excitation, as in eq. 1). Alternatively, a 464

threshold on the burst size computed including all photons can be applied by adding 465

naa to the burst size (see eq. 2). This is achieved by passing add_naa=True to the 466

PLOS 12/27

http://fretbursts.readthedocs.org/en/latest/fretmath.html
http://nbviewer.jupyter.org/github/tritemio/notebooks/blob/master/Derivation%20of%20FRET%20and%20S%20correction%20formulas.ipynb
http://fretbursts.readthedocs.org/en/latest/data_class.html#burst-selection-methods
http://fretbursts.readthedocs.org/en/latest/burst_selection.html
http://fretbursts.readthedocs.org/en/latest/burst_selection.html#module-fretbursts.select_bursts
https://github.com/tritemio/FRETBursts/blob/master/fretbursts/select_bursts.py

selection function. When add_naa is not specified, as in the previous section, the 467

default add_naa=False is used (i.e. computed size using only Dex photons). The 468

complete selection command is: 469

ds = d.select_bursts(select_bursts.size , 470

th1=30, add_naa=True) 471

The result of this selection is plotted in figure 4. 472

Figure 4. E-S histogram showing FRET, D-only and A-only populations.
A 2-D ALEX histogram and marginal E and S histograms for a 40-bp dsDNA with D-A
distance of 17 bases (Donor dye: ATTO550, Acceptor dye: ATTO647N). Bursts are
selected with a size-threshold of 30 photons, including Aex photons. The plot is
obtained with alex jointplot(ds). The 2D E-S distribution plot (join plot) is an
histogram with hexagonal bins, which reduce the binning artifacts (compared to square
bins) and naturally resembles a scatter-plot when the burst density is low. Three
populations are visible: FRET population (middle), D-only population (top left) and
A-only population (bottom, S < 0.2). Compare with figure 5 where the FRET
population has been isolated.

Another important parameter for defining the burst size is the γ-factor, i.e. the 473

imbalance between the donor and the acceptor channel signals. As noted in section 3.5, 474

the γ-factor is used to compensate bias for the different fluorescence quantum yields of 475

the D and A fluorophores as well as the different photon-detection efficiencies of the D 476

and A channels. When γ is significantly different from 1, neglecting its effect on burst 477

size leads to over-representing (in terms of number of bursts) one FRET population 478

versus the others. 479

When the γ factor is known, a more unbiased selection of different FRET 480

populations can be achieved passing the argument gamma to the selection function: 481

ds = d.select_bursts(select_bursts.size , 482

th1=15, gamma =0.65) 483

When not specified, γ = 1 is assumed. 484

For more details on burst size selection, see the select_bursts.size 485

documentation (link). 486

Python details To compute γ-corrected burst sizes (with or without addition of naa) 487

the method Data.burst_sizes (link) is used. 488

4.5.2 Select the FRET Populations 489

In smFRET-ALEX experiments, in addition to one or more FRET populations, there 490

are always donor-only (D-only) and acceptor-only (A-only) populations. In most cases, 491

these additional populations are not of interest and need to be filtered out. 492

In principle, using the E-S representation, D-only and A-only bursts can be excluded 493

by selecting bursts within a range of S values (e.g. S=0.2-0.8). This approach, however, 494

simply truncates the burst distribution with arbitrary thresholds and is therefore not 495

recommended for quantitative assessment of FRET populations. 496

An alternative approach consists in applying two selection filters sequentially. First, 497

the A-only population is filtered out by applying a threshold on the number of photons 498

during D excitation. Second, the D-only population is filtered out by applying a 499

threshold on the number of photons during A excitation. The commands for these 500

combined selections are: 501

PLOS 13/27

http://fretbursts.readthedocs.org/en/latest/burst_selection.html#fretbursts.select_bursts.size
http://fretbursts.readthedocs.org/en/latest/data_class.html#fretbursts.burstlib.Data.burst_sizes

ds1 = d.select_bursts(select_bursts.size , th1 =15) 502

ds2 = ds1.select_bursts(select_bursts.naa , th1 =15) 503

Here, variable ds2 contains the combined burst selection. Figure 5 shows the 504

resulting pure FRET population obtained with the previous selection. 505

Figure 5. E-S histogram after filtering out D-only and A-only populations.
2-D ALEX histogram after selection of FRET population using the composition of two
burst selection filters: (1) selection of bursts with counts in Dex stream larger than 15;
(2) selection of bursts with counts in AexAem stream larger than 15. Compare to
figure 4 where all burst populations (FRET, D-only and A-only) are reported.

4.6 Population Analysis 506

Typically, after bursts selection, E or S histograms are fitted to a model. FRETBursts 507

mfit module allows fitting histograms of bursts quantities (i.e. E or S) with arbitrary 508

models. In this context, a model is an object specifying a function, the parameters 509

varied during the fit and optional constraints for these parameters. This concept of 510

model is taken from lmfit [50], the underlying library used by FRETBursts to perform 511

the fits. 512

Models can be created from arbitrary functions. By default, FRETBursts allows 513

using predefined models such as 1 to 3 Gaussian peaks or 2-Gaussian connected by a 514

“bridge”. Built-in models are created by calling a corresponding factory function (names 515

starting with mfit.factory_) which initializes the parameters with values and 516

constraints suitable for E and S histograms fits. (see Factory Functions documentation, 517

link). 518

As an example, we fit the E histogram of bursts in the ds variable with two 519

Gaussian peaks with the following command: 520

bext.bursts_fitter(ds , ’E’, binwidth =0.03, 521

model=mfit.factory_two_gaussians ()) 522

Changing ’E’ with ’S’ will fit the S histogram instead. The binwidth argument 523

specifies the histogram bin width and the model argument defines which model shall be 524

used for fitting. 525

All fitting results (including best fit values, uncertainties, etc...), are stored in the 526

E_fitter (or S_fitter) attributes of the Data variable (named ds here). To print a 527

comprehensive summary of the fit results, including uncertainties, reduced χ2 and 528

correlation between parameters, the we use the following command: 529

fit_res = ds.E_fitter.fit_res [0] 530

print(fit_res.fit_report ()) 531

Finally, to plot the fitted model together with the FRET histogram, as shown in 532

figure 6, we pass the parameter show_model=True to the hist_fret function as follows 533

(see section 7.4 for an introduction to plotting in FRETBursts): 534

dplot(ds, hist_fret , show_model=True) 535

Figure 6. FRET histogram fitted with two Gaussians. Example of a FRET
histogram fitted with a 2-Gaussian model. The plot is generated by performing the fit
with the command dplot(ds, hist fret, show model=True).

PLOS 14/27

http://fretbursts.readthedocs.org/en/latest/mfit.html#model-factory-functions

For more examples on fitting bursts data and plotting results, refer to the fitting 536

section of the µs-ALEXnotebook (link), the Fitting Framework section of the 537

documentation (link) as well as the documentation for bursts_fitter function (link). 538

Python details Models returned by FRETBursts’s factory functions 539

(mfit.factory_*) are lmfit.Model objects (link). Custom models can be created by 540

calling lmfit.Model directly. When an lmfit.Model is fitted, it returns a 541

ModelResults object (link), which contains all information related to the fit (model, 542

data, parameters with best values and uncertainties) and useful methods to operate on 543

fit results. FRETBursts puts a ModelResults object of each excitation spot in the list 544

ds.E_fitter.fit_res. For instance, to obtain the reduced χ2 value of the E 545

histogram fit in a single-spot measurement d, we use the following command: 546

d.E_fitter.fit_res [0]. redchi 547

Other useful attributes are aic and bic which contain the Akaike information 548

criterion (AIC) and the Bayes Information criterion (BIC). AIC and BIC allow 549

comparing different models and selecting the most appropriate for the data at hand. 550

Example of definition and modification of fit models are provided in the 551

aforementioned µs-ALEXnotebook. Users can also refer to the comprehensive lmfit’s 552

documentation (link). 553

5 Implementing Burst Variance Analysis 554

In this section, we describe how to implement burst variance analysis (BVA) as 555

described in [23]. FRETBursts provides well-tested, general-purpose functions for 556

timestamps and burst data manipulation and therefore simplifies implementing custom 557

burst analysis algorithms such as BVA. 558

5.1 BVA Overview 559

Single-molecule FRET histograms show more information than just mean FRET 560

efficiencies. While in general the presence of several peaks clearly indicates the existence 561

of multiple subpopulations, a single peak cannot a priori be associated with a single 562

population defined by a unique FRET efficiency without further analysis (such as, for 563

instance, shot-noise analysis [17,18]). 564

The FRET histogram of a single FRET population has a minimum width set by 565

shot noise (i.e. the width is caused by the statistics of discrete photon-detection events). 566

FRET distributions broader than the shot noise limit, can be ascribed to either a static 567

mixture of species with slightly different FRET efficiencies, or to a specie undergoing 568

dynamic transitions (e.g. interconversion between multiple states, diffusion in a 569

continuum of conformations, binding-unbinding events, etc.). When the single peak of a 570

FRET distribution is wider than predicted from shot-noise, it is not possible to 571

discriminate between the static and dynamic case without further analysis. The BVA 572

method has been developed to address this issue, namely identifying the presence of 573

dynamics in FRET distributions [23], and has been successfully applied to identify 574

biomolecular processes with dynamics on the millisecond time-scale [23,51]. 575

The basic idea behind BVA is to subdivide bursts into contiguous burst chunks 576

(sub-bursts) comprising a fixed number n of photons, and to compare the empirical 577

variance of acceptor counts across all sub-bursts in a burst with the theoretical 578

shot-noise-limited variance, as expected from a binomial distribution. An empirical 579

variance of sub-bursts larger than the shot-noise limited value indicates the presence of 580

dynamics. Since the estimation of the sub-bursts variance is affected by uncertainty, 581

PLOS 15/27

http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/FRETBursts%20-%20us-ALEX%20smFRET%20burst%20analysis.ipynb#FRET-fit:-in-depth-example
http://fretbursts.readthedocs.org/en/latest/fit.html
http://fretbursts.readthedocs.org/en/latest/plugins.html#fretbursts.burstlib_ext.bursts_fitter
https://lmfit.github.io/lmfit-py/model.html
https://lmfit.github.io/lmfit-py/model.html#the-modelresult-class
http://lmfit.github.io/lmfit-py/

BVA analysis provides and indication of an higher or lower probability of observing 582

dynamics. 583

In a FRET (sub-)population originating from a single static FRET efficiency, the 584

sub-bursts acceptor counts na can be modeled as a binomial-distributed random 585

variable Na ∼ B(n,Ep), where n is the number of photons in each sub-burst and Ep is 586

the estimated population proximity-ratio. Note that we can use the PR because, 587

regardless of the molecular FRET efficiency, the detected counts are partitioned 588

between donor and acceptor channels according to a binomial distribution with success 589

probability equal to the PR. The only approximation done here is neglecting the 590

presence of background (a reasonable approximation since the backgrounds counts are 591

in general a very small fraction of the total counts). We refer the interested reader 592

to [23] for further discussion. 593

If Na follows a binomial distribution, the random variable Esub = Na/n, has a 594

standard deviation reported in eq. 3. 595

Std(Esub) =

(
Ep (1− Ep)

n

)1/2

(3)

BVA analysis consists of four steps: 1) dividing bursts into consecutive sub-bursts 596

containing a constant number of consecutive photons n, 2) computing the PR of each 597

sub-burst, 3) calculating the empirical standard deviation (sE) of sub-bursts PR in each 598

burst, and 4) comparing sE to the expected standard deviation of a shot-noise-limited 599

distribution (eq. 3). If, as in figure 7, the observed FRET efficiency distribution 600

originates from a static mixture of sub-populations (of different non-interconverting 601

molecules) characterized by distinct FRET efficiencies, sE of each burst is only affected 602

by shot-noise and will follow the expected standard deviation curve based on eq. 3. 603

Conversely, if the observed distribution originates from biomolecules belonging to a 604

single specie, which interconverts between different FRET sub-populations (over times 605

comparable to the diffusion time), as in figure 8, sE of each burst will be larger than the 606

expected shot-noise-limited standard deviation, and will be located above the shot-noise 607

standard deviation curve (right panel of figure 8). 608

Figure 7. BVA distribution for a static mixture sample. The left panel shows
the E-S histogram for a mixture of single stranded DNA (20dT) and double stranded
DNA (20dT-20dA) molecules in 200 mM MgCl2. The right panel shows the
corresponding BVA plot. Since both 20dT and 20dT-20dA are stable and have no
dynamics, the BVA plots shows sE peaks lying on the static standard deviation curve
(red curve).

Figure 8. BVA distribution for a hairpin sample undergoing dynamics. The
left panel shows the E-S histogram for a single stranded DNA sample (A31-TA, see
in [52]), designed to form a transient hairpin in 400mM NaCl. The right panel shows
the corresponding BVA plot. Since the transition between hairpin and open structure
causes a significant change in FRET efficiency, sE lies largely above the static standard
deviation curve (red curve).

5.2 BVA Implementation 609

The following paragraphs describe the low-level details involved in implementing the 610

BVA using FRETBursts. The main goal is to illustrate a real-world example of accessing 611

PLOS 16/27

and manipulating timestamps and burst data. For a ready-to-use BVA implementation 612

users can refer to the corresponding notebook included with FRETBursts (link). 613

Python details For BVA implementation, two photon streams are needed: 614

all-photons during donor excitation (Dex) and acceptor photons during donor excitation 615

(DexAem). These photon stream selections are obtained by computing boolean masks 616

as follows (see section 7.3): 617

Dex_mask = ds.get_ph_mask(ph_sel=Ph_sel(Dex=’DAem’)) 618

DexAem_mask = ds.get_ph_mask(ph_sel=Ph_sel(Dex=’Aem’)) 619

DexAem_mask_d = AemDex_mask[Dex_mask] 620

Here, the first two variables (Dex_mask and DexAem_mask) select photon from the 621

all-photons timestamps array, while DexAem_mask_d, selects A-emitted photons from 622

the array of photons emitted during D-excitation. As shown below, the latter is needed 623

to count acceptor photons in burst chunks. 624

Next, we need to express bursts start-stop data as indexes of the D-excitation photon 625

stream (by default burst start-stop indexes refer to all-photons timestamps array): 626

ph_d = ds_FRET.get_ph_times(ph_sel=Ph_sel(Dex=’DAem’)) 627

bursts = ds_FRET.mburst [0] 628

bursts_d = bursts.recompute_index_reduce(ph_d) 629

Here, ph_d contains the Dex timestamps, bursts the original burst data and 630

bursts_d the burst data with start-stop indexes relative to ph_d. 631

Finally, with the previous variables at hand, the BVA algorithm can be easily 632

implemented by computing the sE quantity for each burst: 633

n = 7 634

E_sub_std = [] 635

for burst in bursts_d: 636

E_sub = [] 637

startlist = range(burst.istart , burst.istop + 2 - n, n) 638

stoplist = [i + n for i in startlist] 639

for start , stop in zip(startlist , stoplist): 640

A_D = DexAem_mask_d[start:stop].sum() 641

E = A_D / n 642

E_sub.append(E) 643

E_sub_std.append(np.std(E_sub)) 644

Here, n is the BVA parameter defining the number of photons in each burst chunk. 645

The outer loop iterates through bursts, while the inner loop iterates through sub-bursts. 646

The variables startlist and stoplist are the list of start-stop indexes for all 647

sub-bursts in current burst. In the inner loop, A_D and E contain the number of 648

acceptor photons and FRET efficiency for the current sub-burst. Finally, for each burst, 649

the standard deviation of E is appended to the list E_sub_std. 650

By plotting the 2D distribution of sE (i.e. E_sub_std) versus the average 651

(uncorrected) E we obtain the BVA plots of figure 7 and 8. 652

6 Conclusions 653

FRETBursts is an open source and openly developed (see SI 7.2) implementation of 654

established smFRET burst analysis methods made available to the single-molecule 655

community. It implements several novel concepts which improve the analysis results, 656

such as time-dependent background estimation, background-dependent burst search 657

threshold, burst weighting and γ-corrected burst size selection. More importantly, 658

FRETBursts provides a library of thoroughly-tested functions for timestamps and burst 659

manipulation, making it an ideal platform for developing and comparing new analytical 660

techniques. 661

PLOS 17/27

http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/Example%20-%20Burst%20Variance%20Analysis.ipynb

We envision FRETBursts both as a state-of-the-art burst analysis software as well as 662

a platform for development and assessment of novel algorithms. To underpin this 663

envisioned role, FRETBursts is developed following modern software engineering 664

practices, such as DRY principle (link) to reduce duplication and KISS principle (link) 665

to reduce over-engineering. Furthermore, to minimize the number software 666

errors [36,53], we employ defensive programming [39] which includes code readability, 667

unit and regression testing and continuous integration [28]. Finally, being open source, 668

any scientist can inspect the source code, fix errors, adapt it to her own needs. 669

We believe that, in the single-molecule community, standard open source software 670

implementations, such as FRETBursts, can enhance reliability and reproducibility of 671

analysis and promote a faster adoption of novel methods, while reducing the duplication 672

of efforts among different groups. 673

Acknowledgments 674

We thank Dr. Eyal Nir and Dr. Toma Tomov for support in the implementation of the 675

2CDE method. This work was supported by National Institutes of Health (NIH) grant 676

R01-GM95904 and R01-GM069709. Dr. Weiss discloses equity in Nesher Technologies 677

and intellectual property used in the research reported here. The work at UCLA was 678

conducted in Dr. Weiss’s Laboratory. 679

7 Supporting Information 680

7.1 Notebook Workflow 681

FRETBursts has been developed with the goal of facilitating computational 682

reproducibility of the performed data analysis [25]. For this reason, the preferential way 683

of using FRETBursts is by executing one of the tutorials which are in the form of 684

Jupyter notebooks [35]. Jupyter (formerly IPython) notebooks are web-based 685

documents which contain both code and rich text (including equations, hyperlinks, 686

figures, etc...). FRETBursts tutorials are notebooks which can be re-executed, modified 687

or used to process new data files with minimal modifications. The “notebook 688

workflow” [35] not only facilitates the description of the analysis (by integrating the 689

code in a rich document) but also greatly enhance its reproducibility by storing an 690

execution trail that includes software versions, input files, parameters, commands and 691

all the analysis results (text, figures, tables, etc.). 692

The Jupyter Notebook environment streamlines FRETBursts execution (compared 693

to a traditional script and terminal based approach) and allows FRETBursts to be used 694

even without prior python knowledge. The user only needs to get familiar with the 695

notebook graphical environment, in order to be able to navigate and run the notebooks. 696

A list of all FRETBursts notebooks can be found in the FRETBursts_notebooks 697

repository on GitHub (link). Finally, we provide a service to run FRETBursts online, 698

without requiring any software installation (link). 699

7.2 Development and Contributions 700

Errors are an inevitable reality in any reasonably complex software [36,53]. It is 701

therefore critical to implement countermeasures to minimize the probability of 702

introducing bugs and their potential impact [37,39]. We strove to follow modern 703

software development best-practices, which are summarized below. 704

FRETBursts (and the entire python ecosystem it depends on) is open source and the 705

source code is fully available for any scientist to study, review and modify. The open 706

PLOS 18/27

http://en.wikipedia.org/wiki/Don%27t_repeat_yourself
http://en.wikipedia.org/wiki/KISS_principle
https://github.com/tritemio/FRETBursts_notebooks
https://github.com/tritemio/FRETBursts_notebooks#run-online

source nature of FRETBursts and of the python ecosystem, not only makes it a more 707

transparent, reviewable platform for scientific data analysis, but also allows to leverage 708

state-of-the-art online services such as GitHub (link) for hosting, issues tracking and 709

code reviews, TravisCI (link) and AppVeyor (link) for continuous integration (i.e. 710

automated test suite execution on multiple platforms after each commit) and 711

ReadTheDocs.org for automatic documentation building and hosting. All these services 712

would be extremely costly, if available at all, for a proprietary software or platform [54]. 713

We highly value source code readability, a property which can reduce the number of 714

bugs by facilitating understanding and verifying the code. For this purpose, 715

FRETBursts code-base is well commented (with comments representing over 35% of the 716

source code), follows the PEP8 python code style rules (link), and has docstrings in 717

napoleon format (link). 718

Reference documentation is built with Sphinx (sphinx-doc.org) and all API 719

documents are automatically generated from docstrings. On each commit, 720

documentation is automatically built and deployed on ReadTheDocs.org. 721

Unit tests cover most of the core algorithms, ensuring consistency and minimizing 722

the probability of introducing bugs. The continuous integration services, execute the 723

full test suite on each commit on multiple platforms, immediately reporting errors. As a 724

rule, whenever a bug is discovered, the fix also includes a new test to ensure that the 725

same bug does not happen in the future. In addition to the unit tests, we include a 726

regression-test notebook (link) to easily compares numerical results between two 727

versions of FRETBursts. Additionally, the tutorials themselves are executed before each 728

release as an additional test layer to ensure that no errors or regressions are introduced. 729

FRETBursts is openly developed using the GitHub platform. The authors encourage 730

users to use GitHub issues for questions, discussions and bug reports, and to submit 731

patches through GitHub pull requests. Contributors of any level of expertise are 732

welcome in the projects and publicly acknowledged. Contributions can be as simple as 733

pointing out deficiencies in the documentation but can also be bug reports or 734

corrections to the documentation or code. Users willing to implement new features are 735

encouraged to open an Issue on GitHub and to submit a Pull Request. The open source 736

nature of FRETBursts guarantees that contributions will become available to the entire 737

single-molecule community. 738

7.3 Timestamps and Burst Data 739

Beyond providing prepackaged functions for established methods, FRETBursts also 740

provides the infrastructure for exploring new analysis approaches. Users can easily get 741

timestamps (or selection masks) for any photon stream. Core burst data (start and stop 742

times, indexes and derived quantities for each burst) are stored in Bursts objects (link). 743

This object provides a simple and well-tested interface (100 % unit-test coverage) to 744

access and manipulate burst data. Bursts are created from a sequence of start/stop 745

times and indexes, while all other fields are automatically computed. Bursts’s methods 746

allow to recompute indexes relative to a different photon selection or recompute start 747

and stop times relative to a new timestamps array. Additional methods perform fusion 748

of nearby bursts or combination of two set of bursts (time intersection or union). This 749

functionality is used for example to implement the DCBS. In conclusion, Bursts 750

efficiently implements all the common operations performed with burst data, providing 751

and easy-to-use interface and well tested algorithms. Leveraging Bursts methods, users 752

can implement new types of analysis without wasting time implementing (and 753

debugging) standard manipulation routines. Examples of working directly with 754

timestamps, masks (i.e. photon selections) and burst data are provided in one of the 755

FRETBursts notebooks (link). Section 5 provides a complete example on using 756

FRETBursts to implement custom burst analysis techniques. 757

PLOS 19/27

http://https://github.com
https://travis-ci.org
http://www.appveyor.com/
https://readthedocs.org/
https://www.python.org/dev/peps/pep-0008/
http://sphinxcontrib-napoleon.readthedocs.org/
http://sphinx-doc.org/
https://readthedocs.org/
https://github.com/tritemio/FRETBursts/blob/master/notebooks/dev/tests/FRETBursts%20-%20Regression%20tests.ipynb
http://fretbursts.readthedocs.org/en/latest/burstsearch.html
http://nbviewer.jupyter.org/github/tritemio/FRETBursts_notebooks/blob/master/notebooks/Example%20-%20Working%20with%20timestamps%20and%20bursts.ipynb

Python details Timestamps are stored in the Data attribute ph_times_m, which is a 758

list or arrays, one array per excitation spot. In single-spot measurements the full 759

timestamps array is accessed as Data.ph_times_m[0]. To get timestamps of arbitrary 760

photon streams, users can call Data.get_ph_times (link). Photon streams are selected 761

from the full (all-photons) timestamps array using boolean masks, which can be 762

obtained calling Data.get_ph_mask (link). All burst data (e.g. start-stop times and 763

indexes, burst duration, etc.) are stored in Bursts objects. For uniformity, the bursts 764

start-stop indexes are always referring to the all-photons timestamps array, regardless of 765

the photon stream used for burst search. Bursts objects internally store only start and 766

stop times and indexes. The other Bursts attributes (duration, photon counts, etc.) are 767

computed on-the-fly when requested (using class properties), thus minimizing the object 768

state. Bursts support iteration with performances similar to iterating through rows of 769

2D row-major numpy arrays. 770

7.4 Plotting Data 771

FRETBursts uses matplotlib [55] and seaborn [56] to provide a wide range of built-in 772

plot functions (link) for Data objects. The plot syntax is the same for both single and 773

multi-spot measurements. The majority of plot commands are called through the 774

wrapper function dplot, for example to plot a timetrace of the photon data, type: 775

dplot(d, timetrace) 776

The function dplot is the generic plot function, which creates figure and handles 777

details common to all the plotting functions (for instance, the title). d is the Data 778

variable and timetrace is the actual plot function, which operates on a single channel. 779

In multispot measurements, dplot creates one subplot for each spot and calls 780

timetrace for each channel. 781

All built-in plot functions which can be passed to dplot are defined in the 782

burst_plot module (link). 783

Python details When FRETBursts is imported, all plot functions are also imported. 784

To facilitate finding the plot functions through auto-completion, their names start with 785

a standard prefix indicating the plot type. The prefixes are: timetrace for binned 786

timetraces of photon data, ratetrace for rates of photons as a function of time (non 787

binnned), hist for functions plotting histograms and scatter for scatter plots. 788

Additional plots can be easily created directly with matplotlib. 789

By default, in order to speed-up batch processing, FRETBursts notebooks display 790

plots as static images using the inline matplotlib backend. User can switch to 791

interactive figures inside the browser by activating the interactive backend with the 792

command %matplotlib notebook. Another option is displaying figures in a new 793

standalone window using a desktop graphical library such as QT4. In this case, the 794

command to be used is %matplotlib qt. 795

A few plot functions, such as timetrace and hist2d_alex, have interactive features 796

which require the QT4 backend. As an example, after switching to the QT4 backend the 797

following command: 798

dplot(d, timetrace , scroll=True , bursts=True) 799

will open a new window with a timetrace plot with overlay of bursts, and an horizontal 800

scroll-bar for quick ”scrolling” throughout time. The user can click on a burst to have 801

the corresponding burst info be printed in the notebook. Similarly, calling the 802

hist2d_alex function with the QT4 backend allows selecting an area on the E-S 803

histogram using the mouse. 804

dplot(ds, hist2d_alex , gui_sel=True) 805

PLOS 20/27

http://fretbursts.readthedocs.org/en/latest/data_class.html?highlight=get_ph_times#fretbursts.burstlib.Data.get_ph_times
http://fretbursts.readthedocs.org/en/latest/data_class.html?highlight=get_ph_mask#fretbursts.burstlib.Data.get_ph_mask
http://fretbursts.readthedocs.org/en/latest/plots.html
http://fretbursts.readthedocs.org/en/latest/plots.html

The values which identify the region are printed in the notebook and can be passed 806

to the function select_bursts.ES to select bursts inside that region (see section 4.5). 807

7.5 Background Estimation With Optimal Threshold 808

The functions used to fit the background (i.e. bg.exp_fit and other functions in bg 809

module) provide also a goodness-of-fit estimator computed from the empirical 810

distribution function (EDF) [57,58]. The “distance” between the EDF and the 811

theoretical (i.e. exponential) cumulative distribution represents and indicator of the 812

quality of fit. Two different distance metrics can be returned by the background fitting 813

functions. The first is the Kolgomorov-Smirnov statistics, which uses the maximum of 814

the difference between the EDF and the theoretical distribution. The second is the 815

Cramér von Mises statistics corresponding to the integral of the squared residuals (see 816

the code for more details, link). 817

In principle, the optimal inter-photon delay threshold will minimize the error metric. 818

This approach is implemented by the function calc_bg_brute (link) which performs a 819

brute-force search in order to find the optimal threshold. This optimization is not 820

necessary under typical experimental conditions, because the estimated rates normally 821

change only a by a few per-cent compared to the heuristic threshold selection used by 822

default. 823

7.6 Burst Weights 824

7.6.1 Theory 825

Freely-diffusing molecules across a Gaussian excitation volume give rise to a burst size 826

distribution that is exponentially distributed. In a static FRET population, burst 827

counts in the acceptor channel can be modeled as a binomial random variable (RV) with 828

success probability equal to the population PR and number of trials equal to the burst 829

size nd + na. Similarly, the PR of each burst Ei (i being the burst index) is simply a 830

binomial divided by the number of trials, with variance reported in eq. 4. 831

Var(Ei) =
Ep (1− Ep)

nti
(4)

Bursts with higher counts, provide more accurate estimations of the population PR, 832

since their PR variance is smaller (eq. 4). Therefore, in estimating the population PR 833

we need to ”focus” on bigger bursts. Traditionally, this is accomplished by merely 834

discarding bursts below a size-threshold. In the following paragraphs we demonstrate 835

how, by proper weighting bursts, is possible to obtains optimal estimates of PR which 836

takes into account the information of the entire burst population. 837

According to the Cramer-Rao lower bound (eq. 5), the Fisher information I(θ) sets 838

a lower bound on the variance of any statistics p̂ of a RV θ. 839

Var (p̂) ≥ 1

I(θ)
(5)

When the statistics p̂ is an unbiased estimator of a distribution parameter and the 840

equality holds in eq. 5, the estimator is a minimum-variance unbiased (MVUB) 841

estimator and it is said to be efficient (meaning that it does an optimal use the 842

information contained in the sample to estimate the parameter). 843

A population of N bursts can be modeled by a set of N binomial variables with same 844

success probability Ep and varying number of successes equal to the burst size. An 845

estimator for Ep can be constructed noticing that the sum of binomial RV with same 846

success probability is still a binomial (with number of trials equal to the sum of the 847

PLOS 21/27

https://github.com/tritemio/FRETBursts/blob/master/fretbursts/background.py#L43
http://fretbursts.readthedocs.org/en/latest/plugins.html#fretbursts.burstlib_ext.calc_bg_brute

number of trials). Taking the sum of acceptor counts over all bursts divided by the total 848

number of photons as in eq. 6, we obtain an estimator Ê of the proportion of successes. 849

Ê =

∑
i nai∑
i nti

(6)

The variance of Ê (eq. 7) is equal to the inverse of the Fisher information I(Ê) and 850

therefore Ê is a MVUB estimator for Ep. 851

Var(Ê) =
Ep(1− Ep)∑

i nti
=

1

I(Ê)
(7)

We can finally verify that Ê is equal to the weighted average of the bursts PR Ei 852

(eq. 9), with weights proportional to the burst size (eq. 8). 853

wi =
nti∑
i nti

(8)

Êw =
1

N

∑
i

wiEi =
1

N

∑
i nti

nai

nti∑
i nti

= Ê (9)

Since Ê is the MVUB estimator, any other estimator of Ep (in particular the 854

unweighted mean of Ei) will have a larger variance. 855

We can extend these consideration of optimal weights for the PR estimator to the 856

FRET distribution plot (histograms or KDEs). Building an unweighted histogram (and 857

fitting the peak) is analogous to estimating the Ep with an unweighted average. 858

Conversely, building the FRET histogram using the burst size as weights is equivalent 859

to using the MVUB estimator for Ep. 860

7.6.2 Weighted FRET estimator 861

Here we report a simple verification of the results of previous section, namely that a 862

weighted mean of Ei is the estimator with minimal variance of Ep. For this purpose, we 863

generated a static FRET population of 100 bursts by simply extracting burst-sizes from 864

an exponential distribution (λ = 10) and acceptor counts from a binomial distribution 865

(Ep = 0.2). By repeatedly fitting the population parameter Ep using a size-weighted 866

and unweighted average, we verified that the former has systematically lower variance of 867

the latter as predicted by the theory (in the current example the unweighted estimator 868

has 28.6 % higher variance). Note that this result holds for any arbitrary distribution of 869

burst sizes. The full simulation including exponential and gamma-distributed burst sizes 870

is reported in the accompanying Jupyter notebook (link). 871

7.6.3 Weighted FRET histogram 872

The effect of weighting the FRET histogram is here illustrated with a simulation of a 873

mixture of two static FRET populations and then with experimental data. 874

We performed a realistic simulation of a static mixture of two FRET populations 875

starting from 3-D Brownian motion diffusion of N particles excited by a numerically 876

computed (non-Gaussian) PSF. Input parameters of the simulation include diffusion 877

coefficient, particle brightness, the two FRET efficiencies, as well as detectors DCR. 878

The simulation is performed with the open source software PyBroMo [41] which creates 879

smFRET data files (i.e. timestamps and detectors arrays) in Photon-HDF5 format [40]. 880

The simulated data file is processed with FRETBursts performing burst search, and 881

only a minimal burst size selection of with threshold of 10 photons. The resulting 882

PLOS 22/27

http://nbviewer.jupyter.org/github/tritemio/fretbursts_paper/blob/master/notebooks/Figures%20-%20Burst%20Weights.ipynb

weighted and unweighted FRET histograms are reported in figure 9. We notice that the 883

use of the weights results in better definition of FRET peaks. 884

As a final comparison, we report the weighted and unweighted FRET histogram of 885

an experimental FRET population from measurement of a di-labeled dsDNA sample. 886

Figure 10 show a comparison of a FRET histogram obtained from the same burst with 887

and without weights. The burst selection is obtained applying a burst size threshold of 888

10 counts (after background correction), in order to filter the extreme low-end of the 889

burst size distribution. 890

The use of size-weighted FRET histograms is a simple way to obtain a 891

representation of FRET distribution that maintains high power of resolving FRET 892

peaks while including the full burst population and thus reducing statistical noise. 893

As a final remark, note that when increasing the size-threshold for burst selection 894

the difference between weighted and unweighted FRET histograms tends to zero 895

because the relative difference in burst weights in the selected burst becomes smaller 896

(i.e. tends to 1, meaning equal weights). 897

Figure 9. Comparison of unweighted and size-weighted FRET histograms for a
simulated mixtures of static FRET populations. In both cases bursts are selected with a
size threshold of 10 photons (after background correction).

Figure 10. Comparison of unweighted and size-weighted FRET histograms for a
smFRET measurement of a static FRET sample (di-labeled dsDNA). In both cases
bursts are selected with a size threshold of 10 photons (after background correction).

References

1. Weiss S. Fluorescence Spectroscopy of Single Biomolecules. Science.
1999;283(5408):1676–1683. doi:10.1126/science.283.5408.1676.

2. Hohlbein J, Craggs TD, Cordes T. Alternating-laser excitation: single-molecule
FRET and beyond. Chem Soc Rev. 2014;43(4):1156–1171.
doi:10.1039/c3cs60233h.

3. Lerner E, Orevi T, Ben Ishay E, Amir D, Haas E. Kinetics of fast changing
intramolecular distance distributions obtained by combined analysis of FRET
efficiency kinetics and time-resolved FRET equilibrium measurements.
Biophysical journal. 2014;106(3):667–76. doi:10.1016/j.bpj.2013.11.4500.

4. Rahamim G, Chemerovski-Glikman M, Rahimipour S, Amir D, Haas E.
Resolution of Two Sub-Populations of Conformers and Their Individual
Dynamics by Time Resolved Ensemble Level FRET Measurements. PloS one.
2015;10(12):e0143732. doi:10.1371/journal.pone.0143732.

5. Selvin PR. The renaissance of fluorescence resonance energy transfer. Nat Struct
Biol. 2000;7(9):730–734. doi:10.1038/78948.

6. Roy R, Hohng S, Ha T. A practical guide to single-molecule FRET. Nature
Methods. 2008;5(6):507–516. doi:10.1038/nmeth.1208.

7. Schuler B, Eaton WA. Protein folding studied by single-molecule FRET. Current
Opinion in Structural Biology. 2008;18(1):16–26. doi:10.1016/j.sbi.2007.12.003.

PLOS 23/27

8. Sisamakis E, Valeri A, Kalinin S, Rothwell PJ, Seidel CAM. Accurate
Single-Molecule FRET Studies Using Multiparameter Fluorescence Detection. In:
Methods in Enzymology. Elsevier BV; 2010. p. 455–514. Available from:
http://dx.doi.org/10.1016/S0076-6879(10)75018-7.

9. Haran G. How when and why proteins collapse: the relation to folding. Current
Opinion in Structural Biology. 2012;22(1):14–20. doi:10.1016/j.sbi.2011.10.005.

10. Eggeling C, Fries JR, Brand L, Gunther R, Seidel CAM. Monitoring
conformational dynamics of a single molecule by selective fluorescence
spectroscopy. Proceedings of the National Academy of Sciences.
1998;95(4):1556–1561. doi:10.1073/pnas.95.4.1556.

11. Dahan M, Deniz AA, Ha T, Chemla DS, Schultz PG, Weiss S. Ratiometric
measurement and identification of single diffusing molecules. Chemical Physics.
1999;247(1):85–106. doi:10.1016/s0301-0104(99)00132-9.

12. Fries JR, Brand L, Eggeling C, Köllner M, Seidel CAM. Quantitative
Identification of Different Single Molecules by Selective Time-Resolved Confocal
Fluorescence Spectroscopy. J Phys Chem A. 1998;102(33):6601–6613.
doi:10.1021/jp980965t.

13. Eggeling C, Berger S, Brand L, Fries JR, Schaffer J, Volkmer A, et al. Data
registration and selective single-molecule analysis using multi-parameter
fluorescence detection. Journal of Biotechnology. 2001;86(3):163–180.
doi:10.1016/s0168-1656(00)00412-0.

14. Zhang K, Yang H. Photon-by-Photon Determination of Emission Bursts from
Diffusing Single Chromophores. J Phys Chem B. 2005;109(46):21930–21937.
doi:10.1021/jp0546047.

15. Gopich I, Szabo A. Theory of photon statistics in single-molecule Förster
resonance energy transfer. J Chem Phys. 2005;122(1):014707.
doi:10.1063/1.1812746.

16. Lee NK, Kapanidis AN, Wang Y, Michalet X, Mukhopadhyay J, Ebright RH,
et al. Accurate FRET Measurements within Single Diffusing Biomolecules Using
Alternating-Laser Excitation. Biophysical Journal. 2005;88(4):2939–2953.
doi:10.1529/biophysj.104.054114.

17. Nir E, Michalet X, Hamadani KM, Laurence TA, Neuhauser D, Kovchegov Y,
et al. Shot-Noise Limited Single-Molecule FRET Histograms: Comparison
between Theory and Experiments †. J Phys Chem B. 2006;110(44):22103–22124.
doi:10.1021/jp063483n.

18. Antonik M, Felekyan S, Gaiduk A, Seidel CAM. Separating structural
heterogeneities from stochastic variations in fluorescence resonance energy
transfer distributions via photon distribution analysis. Journal of Physical
Chemistry B. 2006;110(13):6970–6978. doi:10.1021/jp057257+.

19. Gopich IV, Szabo A. Single-Molecule FRET with Diffusion and Conformational
Dynamics. J Phys Chem B. 2007;111(44):12925–12932. doi:10.1021/jp075255e.

20. Gopich IV. Concentration Effects in “Single-Molecule” Spectroscopy †. J Phys
Chem B. 2008;112(19):6214–6220. doi:10.1021/jp0764182.

21. Camley BA, Brown FLH, Lipman EA. Förster transfer outside the
weak-excitation limit. J Chem Phys. 2009;131(10):104509. doi:10.1063/1.3230974.

PLOS 24/27

http://dx.doi.org/10.1016/S0076-6879(10)75018-7

22. Santoso Y, Torella JP, Kapanidis AN. Characterizing Single-Molecule FRET
Dynamics with Probability Distribution Analysis. ChemPhysChem.
2010;11(10):2209–2219. doi:10.1002/cphc.201000129.

23. Torella JP, Holden SJ, Santoso Y, Hohlbein J, Kapanidis AN. Identifying
Molecular Dynamics in Single-Molecule FRET Experiments with Burst Variance
Analysis. Biophysical Journal. 2011;100(6):1568–1577.
doi:10.1016/j.bpj.2011.01.066.

24. Tomov TE, Tsukanov R, Masoud R, Liber M, Plavner N, Nir E. Disentangling
Subpopulations in Single-Molecule FRET and ALEX Experiments with Photon
Distribution Analysis. Biophysical Journal. 2012;102(5):1163–1173.
doi:10.1016/j.bpj.2011.11.4025.

25. Buckheit JB, Donoho DL. WaveLab and Reproducible Research. In: Wavelets
and Statistics. Springer Science + Business Media; 1995. p. 55–81. Available
from: http://dx.doi.org/10.1007/978-1-4612-2544-7_5.

26. Ince DC, Hatton L, Graham-Cumming J. The case for open computer programs.
Nature. 2012;482(7386):485–488. doi:10.1038/nature10836.

27. Vihinen M. No more hidden solutions in bioinformatics. Nature.
2015;521(7552):261–261. doi:10.1038/521261a.

28. Eglen S, Marwick B, Halchenko Y, Hanke M, Sufi S, Gleeson P, et al. Towards
standard practices for sharing computer code and programs in neuroscience; 2016.
Available from: http://dx.doi.org/10.1101/045104.

29. McKinney SA, Joo C, Ha T. Analysis of Single-Molecule FRET Trajectories
Using Hidden Markov Modeling. Biophysical Journal. 2006;91(5):1941–1951.
doi:10.1529/biophysj.106.082487.

30. Bronson JE, Fei J, Hofman JM, Gonzalez RL, Wiggins CH. Learning Rates and
States from Biophysical Time Series: A Bayesian Approach to Model Selection
and Single-Molecule FRET Data. Biophysical Journal. 2009;97(12):3196–3205.
doi:10.1016/j.bpj.2009.09.031.

31. Greenfeld M, Pavlichin DS, Mabuchi H, Herschlag D. Single Molecule Analysis
Research Tool (SMART): An Integrated Approach for Analyzing Single Molecule
Data. PLoS ONE. 2012;7(2):e30024. doi:10.1371/journal.pone.0030024.

32. König SLB, Hadzic M, Fiorini E, Börner R, Kowerko D, Blanckenhorn WU, et al.
BOBA FRET: Bootstrap-Based Analysis of Single-Molecule FRET Data. PLoS
ONE. 2013;8(12):e84157. doi:10.1371/journal.pone.0084157.

33. van de Meent JW, Bronson JE, Wiggins CH, Gonzalez RL. Empirical Bayes
Methods Enable Advanced Population-Level Analyses of Single-Molecule FRET
Experiments. Biophysical Journal. 2014;106(6):1327–1337.
doi:10.1016/j.bpj.2013.12.055.

34. Murphy RR, Jackson SE, Klenerman D. pyFRET: A Python Library for Single
Molecule Fluorescence Data Analysis. ArXiv. 2014;.

35. Shen H. Interactive notebooks: Sharing the code. Nature.
2014;515(7525):151–152. doi:10.1038/515151a.

36. Soergel DAW. Rampant software errors may undermine scientific results.
F1000Research. 2015;doi:10.12688/f1000research.5930.2.

PLOS 25/27

http://dx.doi.org/10.1007/978-1-4612-2544-7_5
http://dx.doi.org/10.1101/045104

37. Wilson G, Aruliah DA, Brown CT, Hong NPC, Davis M, Guy RT, et al. Best
Practices for Scientific Computing. PLoS Biology. 2014;12(1):e1001745.
doi:10.1371/journal.pbio.1001745.

38. Blischak JD, Davenport ER, Wilson G. A Quick Introduction to Version Control
with Git and GitHub. PLOS Computational Biology. 2016;12(1):e1004668.
doi:10.1371/journal.pcbi.1004668.

39. Prlić A, Procter JB. Ten Simple Rules for the Open Development of Scientific
Software. PLoS Computational Biology. 2012;8(12):e1002802.
doi:10.1371/journal.pcbi.1002802.

40. Ingargiola A, Laurence T, Boutelle R, Weiss S, Michalet X. Photon-HDF5: An
Open File Format for Timestamp-Based Single-Molecule Fluorescence
Experiments. Biophysical Journal. 2016;110(1):26–33.
doi:10.1016/j.bpj.2015.11.013.

41. Ingargiola A, Laurence T, Boutelle R, Weiss S, Michalet X. Photon-HDF5: open
data format and computational tools for timestamp-based single-molecule
experiments. In: Enderlein J, Gregor I, Gryczynski ZK, Erdmann R, Koberling F,
editors. Single Molecule Spectroscopy and Superresolution Imaging IX. SPIE-Intl
Soc Optical Eng; 2016.Available from:
http://dx.doi.org/10.1117/12.2212085.

42. Ingargiola A, Panzeri F, Sarkhosh N, Gulinatti A, Rech I, Ghioni M, et al. 8-spot
smFRET analysis using two 8-pixel SPAD arrays. In: Enderlein J, Gregor I,
Gryczynski ZK, Erdmann R, Koberling F, editors. Single Molecule Spectroscopy
and Superresolution Imaging VI. SPIE; 2013.Available from:
http://dx.doi.org/10.1117/12.2003704.

43. Kapanidis AN, Laurence TA, Lee NK, Margeat E, Kong X, Weiss S.
Alternating-Laser Excitation of Single Molecules. Acc Chem Res.
2005;38(7):523–533. doi:10.1021/ar0401348.

44. Laurence TA, Kong X, Jäger M, Weiss S. Probing structural heterogeneities and
fluctuations of nucleic acids and denatured proteins. PNAS.
2005;102(48):17348–17353. doi:10.1073/pnas.0508584102.

45. Müller BK, Zaychikov E, Bräuchle C, Lamb DC. Pulsed Interleaved Excitation.
Biophysical Journal. 2005;89(5):3508–3522. doi:10.1529/biophysj.105.064766.

46. Michalet X, Colyer RA, Scalia G, Ingargiola A, Lin R, Millaud JE, et al.
Development of new photon-counting detectors for single-molecule fluorescence
microscopy. Philosophical Transactions of the Royal Society B: Biological
Sciences. 2012;368(1611):20120035–20120035. doi:10.1098/rstb.2012.0035.

47. Edman L, Mets U, Rigler R. Conformational transitions monitored for single
molecules in solution. Proceedings of the National Academy of Sciences.
1996;93(13):6710–6715. doi:10.1073/pnas.93.13.6710.

48. Deniz AA, Dahan M, Grunwell JR, Ha T, Faulhaber AE, Chemla DS, et al.
Single-pair fluorescence resonance energy transfer on freely diffusing molecules:
Observation of Forster distance dependence and subpopulations. Proceedings of
the National Academy of Sciences. 1999;96(7):3670–3675.
doi:10.1073/pnas.96.7.3670.

PLOS 26/27

http://dx.doi.org/10.1117/12.2212085
http://dx.doi.org/10.1117/12.2003704

49. Kapanidis AN, Lee NK, Laurence TA, Doose S, Margeat E, Weiss S.
Fluorescence-aided molecule sorting: Analysis of structure and interactions by
alternating-laser excitation of single molecules. Proceedings of the National
Academy of Sciences. 2004;101(24):8936–8941. doi:10.1073/pnas.0401690101.

50. Newville M, Stensitzki T, Allen DB, Ingargiola A. LMFIT: Non-Linear
Least-Square Minimization and Curve-Fitting for Python¶; 2014. Available from:
http://dx.doi.org/10.5281/zenodo.11813.

51. Robb NC, Cordes T, Hwang LC, Gryte K, Duchi D, Craggs TD, et al. The
Transcription Bubble of the RNA Polymerase–Promoter Open Complex Exhibits
Conformational Heterogeneity and Millisecond-Scale Dynamics: Implications for
Transcription Start-Site Selection. Journal of Molecular Biology.
2013;425(5):875–885. doi:10.1016/j.jmb.2012.12.015.

52. Tsukanov R, Tomov TE, Masoud R, Drory H, Plavner N, Liber M, et al.
Detailed Study of DNA Hairpin Dynamics Using Single-Molecule Fluorescence
Assisted by DNA Origami. The Journal of Physical Chemistry B.
2013;117(40):11932–11942. doi:10.1021/jp4059214.

53. Merali Z. Computational science: ...Error. Nature. 2010;467(7317):775–777.
doi:10.1038/467775a.

54. Freeman J. Open source tools for large-scale neuroscience. Current Opinion in
Neurobiology. 2015;32:156–163. doi:10.1016/j.conb.2015.04.002.

55. Droettboom M, Hunter J, Caswell TA, Firing E, Nielsen JH, Elson P, et al..
matplotlib: matplotlib v1.5.1; 2016. Available from:
http://dx.doi.org/10.5281/zenodo.44579.

56. Waskom M, Botvinnik O, Hobson P, Warmenhoven J, Cole JB, Halchenko Y,
et al.. seaborn: v0.6.0 (June 2015); 2015. Available from:
http://dx.doi.org/10.5281/zenodo.19108.

57. Stephens MA. EDF Statistics for Goodness of Fit and Some Comparisons.
Journal of the American Statistical Association. 1974;69(347):730.
doi:10.2307/2286009.

58. Parr WC, Schucany WR. Minimum Distance and Robust Estimation. Journal of
the American Statistical Association. 1980;75(371):616. doi:10.2307/2287658.

PLOS 27/27

http://dx.doi.org/10.5281/zenodo.11813
http://dx.doi.org/10.5281/zenodo.44579
http://dx.doi.org/10.5281/zenodo.19108

	Introduction
	Open Science and Reproducibility
	Paper Overview

	FRETBursts Overview
	Technical Features
	Software Availability

	Architecture and Concepts
	Photon Streams
	Background Definitions
	The Data Class
	Introduction to Burst Search
	Corrected Burst Sizes and Weights

	smFRET Burst Analysis
	Loading the Data
	Alternation Parameters
	Background Estimation
	Burst Search
	Burst Search in FRETBursts
	Correction Coefficients

	Burst Selection
	Burst Size Selection
	Select the FRET Populations

	Population Analysis

	Implementing Burst Variance Analysis
	BVA Overview
	BVA Implementation

	Conclusions
	Supporting Information
	Notebook Workflow
	Development and Contributions
	Timestamps and Burst Data
	Plotting Data
	Background Estimation With Optimal Threshold
	Burst Weights
	Theory
	Weighted FRET estimator
	Weighted FRET histogram

