
Bits, bytes and friends

Michela Ceria
University of Trento

Giancarlo Rinaldo
Affiliation not available

Massimiliano Sala
University of Trento

September 21, 2018

2

Contents

0.1 Bits standard operations and logic ii
0.2 Polynomials on bits . vii
0.3 Vectors of Bits . xiv
0.4 Multivariate polynomials on bits xix
0.5 Boolean Functions . xxv
0.6 Bytes . xxviii

0.6.1 Notations for bytes . xxxi
0.7 Vectorial Boolean functions . xxxiii
0.8 Friends . xxxiv
0.9 Some cryptographic applications xxxvii

0.9.1 DH . xxxvii
0.9.2 RSA . xxxix
0.9.3 El Gamal . xl
0.9.4 Stream ciphers . xli

0.10 Solutions and hints for exercises xlii

i

ii CONTENTS

0.1 Bits standard operations and logic

A bit (binary digit) is a unit of measure for information, introduced by C.
Shannon in 1948.
It might be seen as the minimal amount of information needed in order to
distinguish among two events occurring with the same probability.
Bits are used in Information Theory and - in general - in most of Computer
Science applications.
They are denoted with the constants 0 and 1, representing the two events with
the same probability. Their set is often denoted with {0, 1}, but we need another
notation, that is,

F2 = {0, 1}

Indeed, with this different notation we mean that we can perform operations
on bits. More precisely, we want to introduce two operations, sum and multipli-
cation, retaining some similarity with the usual operations of sum and product
for numbers. The numbers we are interested in are integers, which we collect
in a set called Z = {. . . ,−1, 0, 1, 2, . . .}, non-negative integers, which we collect
in a set called N = {0, 1, 2, . . .}, and rational numbers, which we collect in a set
called Q = {. . . , −5101 , 0,

1
2 , 3, . . .}.

Since F2 is so small, we can use the following table to show how to sum and
multiply bits.

a b a+ b a× b
0 0 0 0
0 1 1 0
1 0 1 0
1 1 0 1

Table 1: Sum and product

The first column and the second contain the values of two input variables, a
and b, representing the two bits we sum or multiply; the third and the fourth,
respectively, contain the sum and the product of a and b.

Exercise 1. Compute the following operations in F2:

• (1 + 1) + 0

• (1 + 1) + 1

• (1 + 1) · 1

• (0 + 0) + 1 + (1 + 0) · 1

Operations on bits share properties with those involving integer or rational
numbers.

0.1. BITS STANDARD OPERATIONS AND LOGIC iii

Let us start with a comparison between the sum in F2 and the sum in Z.

We can sum 2, 3 and 4 in Z and it happens that

(2 + 3) + 4 = 5 + 4 = 9 = 2 + 7 = 2 + (3 + 4),

so we can write also 9 = 2+3+4, omitting the parentheses. Actually, this holds
for any three numbers in Z.
We claim that this holds also for the sum of bits. For example

(1 + 0) + 1 = 1 + 1 = 0 = 1 + (0 + 1) = 1 + 0 + 1 .

The reader can verify our claim for any a, b, c ∈ F2.
Any time we have a set and a sum operation which satisfies the general property

∀a, b, c, (a+ b) + c = a+ (b+ c) = a+ b+ c ,

we say that the operation is associative.
Therefore, we can conclude that both the sum in Z and the sum in F2 are
associative operations.

Consider now 2, 3 ∈ Z. We know that 2 + 3 = 3 + 2 = 5 and this holds for
any pair of integers. We claim that this holds also for bits, as for example

0 + 1 = 1 + 0 = 1 .

We leave to the reader the verification of this statement for each a, b ∈ F2.
We can formalize this property by saying that both the sum in Z and the sum
in F2 are commutative operations. In a more general setting, a sum operation
on a set is called commutative if for any a, b in that set we have

a+ b = b+ a .

Exercise 2. Compute the following operations

a. 1 + 1 + 1 + 0 + 0 + 0 + 0 + 1

b. 1 + 1 + 1 + 1 + 0 + 0 + 0 + 0

May you argue the result of b. once knowing a.? If so, which properties of bits
are you using?

Now we take a close look at 0 ∈ Z. Considering any integer a, we have that
a+ 0 = 0 + a = a, as for example 3 + 0 = 0 + 3 = 3. In other words, summing a
number with zero leaves the number unchanged (and this happens only for 0).
The same happens with 0 ∈ F2, since in F2 0 + 0 = 0 and 0 + 1 = 1 + 0 = 1.
In a general setting, if we have a sum operation with a special element e such
that a + e = e + a = a for any a in the set, then we say that e is the neutral
element of the operation.
Therefore, we can say that 0 ∈ F2 is the neutral element of the sum in F2, while
0 ∈ Z is the neutral element in Z.

iv CONTENTS

Remark 1. When there is a set with a sum operation, it is usual to call 0 the
neutral element. This is unfortunate because for example the 0 in F2 and the 0
are in Z are two totally different objects. We are confident that the readers will
soon be accustomed to this abuse of notation.

Another important property of the sum in Z is that, given an element a ∈ Z,
we can always find an element b ∈ Z such that a+ b = b+ a = 0. For example,
for a = 3, we have b = −3, getting 3 + (−3) = (−3) + 3 = 0.
In the general case, when there is a set with a sum, if for any element a there is
another element b such that a + b = 0 and this element is unique, then we say
that b is the opposite of a and we write b = −a.
Opposites exist also for the sum in the set of bits, indeed

0 + 0 = 0 and 1 + 1 = 0

and so in F2:

• the opposite of 1 is 1 (and −1 = 1),

• the opposite of 0 is 0 (and −0 = 0).

Exercise 3. What is the opposite of

• (1 + 0) · 1?

• (0 + 0) · 0?

• 1 + 1 + 1 + 1 + 0 + 1 + (1 · 1)?

It is time that we introduce more formalism. We can consider any set G endowed
with an operation ∗ such that for any a, b in G the operation outputs another
element a ∗ b of G. If the operation satisfies the following stringent properties

i) ∗ is associative;

ii) ∗ is commutative;

iii) ∗ has a neutral element;

iv) each element of G has an opposite w.r.t. ∗

then G (with the operation ∗) is called an abelian group.

Remark 2. The adjective ”abelian” indicates that ii) holds, i.e. that the oper-
ation ∗ is commutative. If only i), iii) and iv) hold, G is only a group.

Our previous observations about the sum in Z and the sum in F2 lead us to
claim that both Z and F2 are abelian groups w.r.t. their sum.

Having dealt with the sum, we pass now to compare the multiplication of
integers and that of bits.
Consider again 2, 3, 4 ∈ Z. We have that

(2 · 3) · 4 = 6 · 4 = 24 = 2 · (3 · 4) = 2 · 12,

0.1. BITS STANDARD OPERATIONS AND LOGIC v

so, as it was for the sum, we can remove the parentheses and write

2 · 3 · 4 = 24.

The same holds for bits, for example

(0 · 1) · 1 = 0 · 1 = 0 = 0 · (1 · 1) = 0 · 1 = 0 · 1 · 1.

We leave to the reader the verification that this holds for each bit triplet.
This property can be formalized by saying that both the multiplication in Z and
the multiplication in F2 are associative. In formulas, we say that for any a, b, c
(which are elements of Z or of F2), we have

(a · b) · c = a · (b · c) = a · b · c .

Consider now 2, 3 ∈ Z. We know that 2 · 3 = 3 · 2 = 6 and this holds for
every pair of integers. We claim the same for bits, since for example

0 · 1 = 1 · 0 = 0 .

We leave, as an exercise to the reader, to verify this for each a, b ∈ F2.
Again, this property can be formalized by saying that both the product in Z
and the product in F2 are commutative. In formulas, we say that for any a, b
(which are elements of Z or of F2), we have

a · b = b · a.

We examine now the behaviour of 1 ∈ Z. Taken any other integer number
a, we have that a · 1 = 1 · a = a, for example 3 · 1 = 1 · 3 = 3, so multiplying a
number with 1 gives, as result, again that number.
Also the bit 1 ∈ F2, has the same behaviour, since 1 · 0 = 0 · 1 = 0 and 1 · 1 = 1.
We can formalize this statement by saying that 1 is the neutral element of the
product, both in Z and in F2.
Once we have introduced a neutral element, we might wish to go on and define
a group, as we did with the sum. Unfortunately, this cannot always be done, as
we will see from now on.

Given 2 ∈ Z, we know that we cannot find any integer b such that 2 · b =
b · 2 = 1. It is still possible to find such a number b, but we need to move to
fractions i.e. consider the set of rational numbers Q instead of Z. The set Q is
not so different from Z, in particular all the properties previously stated for Z
also hold for Q. Still, if we consider 2 ∈ Q we can easily find b = 1

2 ∈ Q, for
which 2 · 12 = 1

2 · 1 = 1.
We can easily find a similar rational for each nonzero element of Q (while we
cannot for 0).
It is of utmost interest to observe that bits behave like rational numbers rather

vi CONTENTS

than integers. Indeed, 1 · 1 = 1 in F2, but we cannot find any bit b such that
1 · b = b · 1 = 1.
We can formalize this property, saying that each nonzero element of Q (respec-
tively F2) has a multiplicative inverse, i.e.
∀a ∈ Q\{0}(resp F2 \{0}),∃a−1 ∈ Q\{0}(respectively F2 \{0}) s.t. a ·a−1 =
a−1 ·a = 1. In F2, the (multiplicative) inverse of 1 is 1 and 0 has no (multiplica-
tive) inverse (but keep in mind that the opposite of 0 exists: −0 = 0 in F2).
Finally, we show how sum and multiplication interact. Taken 2, 3, 4 ∈ Q, we
have that

2 · (3 + 4) = 2 · 7 = 14 = (2 · 3) + (2 · 4) = 6 + 8.

This holds in general for three elements of Q and we can notice the same good
property also in F2, for example:

1 · (0 + 1) = 1 · 1 = 1 = (1 · 0) + (1 · 1) = 0 + 1.

We can formalize this property, saying that, both in Q and in F2, the multipli-
cation is distributive w.r.t. the sum. In formulas

∀a, b, c ∈ Q (respectively F2) a · (b+ c) = (a · b) + (a · c) .

Exercise 4. Apply the distributive property to the following expressions:

• 1 · (1 + 0)

• 1 · (0 + 1) + 0 · (1 + 1)

A set G, endowed with two operations (sum and multiplication), denoted by
+, ·, is called field if

i) G is an abelian group w.r.t. +; let 0 be the neutral element;

ii) G \ {0} is an abelian group w.r.t. ·;

iii) · is distributive w.r.t. +.

According to the above definition, we can say that both Q and F2 are fields,
whereas Z is not a field.

The notation F2 for the set of bits (that - from now on - we will call the field
of bits), reflects this fact, since F stands for ”field” and the subscript 2 stands
for its size.

Bits can also be seen as a way to represent the logical values TRUE/FALSE.
The usual notation is 0 = FALSE and 1 = TRUE.
Once fixed this notation, we have the following well known truth tables:

We conclude this section with proposing a few exercises.

Exercise 5. What can you observe by comparing tables 1 and 2? Compare with
Table 1.

0.2. POLYNOMIALS ON BITS vii

a b a OR b a AND b a XOR b
0 0 0 0 0
0 1 1 0 1
1 0 1 0 1
1 1 1 1 0

Table 2: Logic

a NOT a
0 1
1 0

Exercise 6. Can you represent NOT by some expression? Hint: Try to com-
plete the following expression

NOT a = a

where a is in F2 = {0, 1} and using 0, 1,+, ·.

Exercise 7. Can you represent OR using some expression on bits?
Hint: consider aOR b = NOT [(NOT a) AND (NOT b)] and use the results in 6.

Exercise 8. Is Q, the set of rational numbers, an abelian group w.r.t. the sum?
Give detailed comments.

Exercise 9. Is Q an abelian group with respect to the multiplication? If so,
prove it; if not, provide a counterexample.

0.2 Polynomials on bits

In many cryptographic applications, as for example in Linear Feedback Shift
Registers (LFSRs for short), cryptographers have to deal with polynomials
whose coefficients are bits. In this section we will introduce these polynomi-
als.

Let us start with terms. A term in the variable x is a power of x, i.e. xa

for some non-negative integer a ∈ N. For example, x2 or x100, but also x = x1

and 1 = x0. With terms we can define polynomials, since a polynomial in the
variable x and coefficients in F2 (i.e. a polynomial over the field of bits) is any
expression of the form a0 + a1x + a2x

2 + ... + anx
n, where a0, ..., an ∈ F2 are

bits and xi, i = 0, ...n are terms.
For example, x + x5 and x3 + x10 + x21 are polynomials over F2, while 1

2x +
2
11x

10 − x11 is not.

viii CONTENTS

The set F2[x] contains all polynomials in the variable x whose coefficients
are bits:

F2[x] = {1, x, x+ 1, x2, x2 + x,} .
The notation is the analogue of that for real polynomials, whose set is usually
denoted by R[x].
In analogy with R[x], we can define the degree of a monomial xα ∈ F2[x] as the
positive integer α. For example, the degree of x5 is 5 and the degree of 1 is 0.
The degree of a polynomial f is the maximal degree of the monomials appearing
in f with nonzero coefficient. Since the monomials in F2[x] are only power of
x, the degree of f is actually the maximal power of x appearing in f . The
degree of the polynomial f = 0 is conventionally set to −∞. As an example,
the degree of 0 · x7 + 1 · x5 + x4 + x2 + x is 5, since the coefficient of x7 is zero
and the coefficient of x5 is 1.
Two polynomials are called equal if they have the same degree d and, for each
i = 0, ..., d, term xi has the same coefficient in both.
For example x2 + x+ 1 = 0x4 + x2 + x+ 1.
Having understood polynomials, we pass to perform operations with them.
First, we explain how to sum two polynomials.
This operation is defined exactly as that with real polynomials, but one has to
take into account that the coefficients are bits, so they have to be summed with
the “+” operation we defined for bits.
For example, if x3 + x2 and x2 + x+ 1 are in F2[x], then

(x3 + x2) + (x2 + x+ 1) = x3 + (1 + 1)x2 + x+ 1 .

Since 1 + 1 = 0 in F2, we finally get

(x3 + x2) + (x2 + x+ 1) = x3 + x+ 1 .

Exercise 10. Compute the following sums:

• (x3 + x2 + x+ 1) + (x4 + x2 + x)

• (x10 + x7 + x+ 1) + (x5 + x) + (x7 + 1)

• x+ (x8 + x5 + 1) + (x6 + x2 + x)

As with the sum, the product of two polynomials is defined as the usual
product of real polynomials, but taking into account that their coefficients are
bits. For example

(x3 + x2) · (x2 + x) = x5 + x4 + x4 + x3 = x5 + (1 + 1)x4 + x3 = x5 + x3 .

We observe that F2[x] is a group with the sum, as you can check by yourself. You
can even show that F2[x] is very close to being a field, since multiplication and
addition distribute and multiplication would give rise to a group, except that,
for example, there is no multiplicative inverse of x in F2[x]. So the only missing
property for F2[x] is the existence of multiplicative inverse for any nonzero
element, which is exactly the same situation for Z.

0.2. POLYNOMIALS ON BITS ix

Exercise 11. Find the degree of the following polynomials

• (x4 + x3 + 1) · (x3 + x2 + 1)

• (x3 + x2 + x) + (x4 + x3)

• (x2 + x+ 1) + (x2 + x)

Give your comments on the degree of f · g and f + g, with f, g ∈ F2[x].

Since we can multiply polynomials, we can also raise them to powers, with
the usual meaning

fn = f · · · f︸ ︷︷ ︸
n

Consider for example the polynomial f(x) = x + 1 ∈ F2[x] and suppose to
compute its square power (x+ 1)2. This means multiplying f by itself so

f(x)2 = f(x) ·f(x) = (x+1) ·(x+1) = x2+x+x+1 = x2+(1+1)x+1 = x2+1.

We notice that x2 + 1 = x2 + (1)2, so we can write (x+ 1)2 = x2 + (1)2.

Exercise 12. Check by examples that in general raising a polynomial in F2 to
the power 2 is the same as raising to the power 2 its monomials and summing
them.

The property shown in exercise 12 is not shared by the analogous operation
for real polynomials. Indeed, if we consider q(x) = x+ 1 ∈ R[x], we have - as it
is well-known since school - q(x)2 = (x + 1)2 = x2 + 2x + 1, which is different
from x2 + 1.

Example 1. When we learn at school how to raise the binomial x+1 to a power
α, we learn the construction of the so-called Pascal’s (or Tartaglia’s) Triangle.
We can repeat the same construction on F2[x]:
(x+ 1)0 = 1→ 1
(x+ 1)1 = x+ 1→ 1 1
(x+ 1)2 = x2 + 1→ 1 0 1
(x+ 1)3 = x3 + x2 + x+ 1→ 1 1 1 1
(x+ 1)4 = x4 + 1→ 1 0 0 0 1
and so on.
We have then constructed the Triangle:

11 11 0 11 1 1 11 0 0 0 1 (1)

Exercise 13. Compute the following powers over F2[x]

• (x2 + x)2

• (x3 + x+ 1)2

• (x+ 1)4

x CONTENTS

• (x2 + x+ 1)3

Give your comments about powers of polynomials with even exponents.

Exercise 14. Provide a link between the Pascal’s Triangle in Z[x] and the new
version of the triangle defined here.

Each polynomial f ∈ F2[x] can be seen as a function f : F2 → F2, such that

0 7→ f(0) 1 7→ f(1)

where f(i), i ∈ F2 is the bit we get by substituting x with i in f and simplifying
the obtained expression.

Example 2. If f1 = x3 + x+ 1 we get

f1(0) = 03 + 0 + 1 = 0 + 0 + 1 = 1

and
f1(1) = 13 + 1 + 1 = 1 + 1 + 1 = 1.

On the other hand, if we consider f2 = x3 + x then

f2(0) = 03 + 0 = 0

and
f2(1) = 13 + 1 = 0.

Finally, if we take f3 = x4 + 1,

f3(0) = 04 + 1 = 1

and
f3(0) = 14 + 1 = 0.

As shown by the above example, the evaluation of a polynomial p in i ∈ F2

can return 0 or 1. If it returns 0 we say that i is a root of p.
With the notation of example 2, neither 0 nor 1 are roots of f1, while both 1
and 0 are roots of f2 and only 1 is a root of f3.

Exercise 15. Compute the roots in F2 of the following polynomials in F2[x]:

• x4 + x3 + x

• x3 + x+ 1

• x6 + x5 + 1

• x4 + x3 + x2 + x.

Exercise 16. How many functions F2 → F2 exist?
To answer this question, we will follow the following steps:

0.2. POLYNOMIALS ON BITS xi

1. as we already know, given a polynomial p(x) ∈ F2[x], we can evaluate it
at the elements of F2, i.e. we can compute p(0) and p(1), which clearly
belong to F2, by mere substitution. Can you find two different polynomials
f, g ∈ F2[x] s.t. they have the same evaluations, i.e. f(0) = g(0) and
f(1) = g(1)?

2. Let us think now about the possible values we can have via evaluation.
Given f ∈ F2[x], we evaluate it at 0 and so f(0) can be either 0 or 1 and,
in the same way, f(1) can be either 0 or 1.
We summarize in the following table the values a polynomial can assume if
evaluated in F2: As an example, ifp = x2 + x, then p(0) = 0 and p(1) = 0

a p(a) q(a) r(a) s(a)
0 0 1 0 1
1 0 1 1 0

Table 3: All the possible evaluations

as in column 2 of the table; if q = x2 + x+ 1, then q(0) = q(1) = 1 as in
the third column. If r = x3, we have r(0) = 0 and r(1) = 1 as in column
four. Finally, if s = x2 + 1 we have s(0) = 1 and s(1) = 0, as in the last
column of the table.
Can you find other polynomials p′, q′, r′, s′ ∈ F2[x] of minimal degree
such that, evaluated in 0, 1 behave exactly as p, q, r and s?

3. Looking at Table 3, guess how many functions F2 → F2 exist.

There is a property for polynomials that plays a special role in cryptography.
We introduce it formally in the following definition and then we discuss it.

Definition 1. A nonzero polynomial f ∈ F2[x] of degree ≥ 1 is called reducible
if there exist q, r ∈ F2[x] of positive degree such that their product is f , i.e.

f = q r .

If no polynomials of this form exist, then f is an irreducible polynomial.

Polynomials of degree 1 are clearly irreducible.

Example 3. Consider the polynomial f = x4 + x2 + x ∈ F2[x]. Clearly f =
x(x3 + x+ 1) and so f is reducible.
We also note that f(0) = 0, so 0 is a root of f .

A famous theorem due to Ruffini ensures that a polynomial p ∈ F2[x] has a
root a ∈ F2 if and only if it can be written as p = (x+a)q for a certain q ∈ F2[x].
A special case is when f = (x + a), in this case q = 1. In all other cases, p is
then irreducible.
For low-degree polynomials we can strenthen Ruffini’s theorem in the following
theorem.

xii CONTENTS

Theorem 1. A polynomial p ∈ F2[x] of degree 2 or 3 is reducible if and only if
it has at least a root in F2.
Or, equivalently,
A polynomial p ∈ F2[x] of degree 2 or 3 is irreducible if and only if it has no
roots in F2.

Example 4. Consider the polynomial p(x) = x3 +x+ 1. Its degree is 3 and we
have p(0) = p(1) = 1 so p has no roots in F2. By Theorem 1 it is irreducible.
On the other hand q(x) = x2 + 1 has degree 2 and it holds p(0) = 1, p(1) = 0,
so 1 is a root of q(x). Indeed q(x) is reducible and it can be decomposed as
q(x) = (x+ 1)(x+ 1) = (x+ 1)2.

Exercise 17. Factorize the following polynomials in F2[x]:

• p1 = x5 + x4 + x+ 1

• p2 = x4 + x2 + 1

Hint: try all possible irreducible factors of degree 1 and 2.

Exercise 18. Find all the irreducible polynomials of degree 2 in F2[x].
Use this result to prove that f = x4 + x+ 1 is irreducible in F2[x].

In order to complete our study on polynomial operations, we have to define
one more operation: the division of polynomials.
A consequence of more advanced theory for polynomials with coefficients in a
field is the following. If we consider two polynomials f and g in F2[x], we can
find two other polynomials, say q, r, such that f = g ·q+r and deg(r) < deg(g).
The polynomial q is called quotient, whereas r is the remainder. If r = 0 then
we say that g divides f , or that we have performed an exact division between
f and g.

Example 5. Let us consider f = x2 + 1, g = x in F2[x]; we clearly have q = x
and r = 1:

x2 + 1 = x · x+ 1.

If we consider f = 1+x2, g = x+1 in F2[x], we note that x2+1 = (x+1)·(x+1),
so q = g and r = 0.

Example 6. Let us consider f = x, g = x2 + 1 in F2[x]; this case is special
since we cannot perform any division and we obviously have q = 0 and r = f .

Let us now see how to compute the quotient and the reminder; we will use
f = x2 + 1, g = x in F2[x] as a simple example.
We start reordering the monomials in f and the monomials in g in decreasing
order by degree.

f = x2 + 1, g = x

Then we put the polynomials in a table, as follows

0.2. POLYNOMIALS ON BITS xiii

x2 +0x +1 x

If in f(x) a term of degree smaller than deg(f) does not appear, we put it
in the table with coefficient zero.
Now we divide the term of maximal degree of f by that of g, getting a new
monomial m; in our particular case m = x

x2 +0x +1 x
x

Then, we multiply m · g and we insert the result in the table under f , so
that the terms of same degree are lined-up.

x2 +0x +1 x
x2 +0x +0 x

We sum the lined-up monomials (remember that the coefficients belong to F2,
so 1 + 1 = 0!!!!); the obtained sum is the partial reminder of our division.

x2 +0x +1 x
x2 +0x +0 x
0x2 +0x +1 x

If the partial remainder’s degree is greater than or equal to the degree of g,
then repeat the procedure; otherwise, stop and observe that

• the polynomial under g is the quotient q

• the partial remainder is the (final) remainder r

In our example q = x and r = 1.

Exercise 19. Perform the division between the following polynomials in F2[x]

• f = x5 + 1, g = x3 + x+ 1

• f = x3 + x2 + 1, g = x3 + 1;

• f = x4 + x, g = x+ 1;

• f = x5 + x3 + 1, g = x2 + x+ 1;

• f = x6 + x5 + x4 + x3 + x2 + x+ 1, g = x3 + x2 + 1.

Which of them are exact divisions?

xiv CONTENTS

0.3 Vectors of Bits

Usually, computers, have to work with sequences of bits, that are ”ordered
set”. These sequences, called vectors by Mathematicians, are commonly defined
arrays or strings by Computer Scientists.
Some of these strings are particularly important for applications, so they have
their own name. They are:

• nibbles: vectors of 4 bits;

• bytes: vectors of 8 bits

In general we call stream a vector whose exact size is not known a priori
Streams can be visualized as blocks of one-bit bricks:

0 1 0 1 0 1

or they can be represented between “(” and “)” with the bits separated by “,”.
That is

0 1 1

is (0, 1, 1). The set of all vectors of a fixed length n is

(F2)n.

We will use both of these representations for convenience.
The operations on F2-vectors can be extended componentwise, that is if we sum
two vectors bit by bit with respect to the position we have:

(0, 1, 1) + (1, 0, 1) = (1, 1, 0). (2)

Exercise 20. Every vector has an opposite with respect to the sum. Are you
able to find it? Try first with (0, 0, 0, 0), (0, 1, 0, 1), (1, 1, 1, 1), (1, 1, 0, 0) and then
derive a general rule.

We can also extend componentwise the idea of multiple: the multiple of
a vector b with respect to an integer a is obtained by multiplying by a each
component of b. Here is an example

3 · (1, 0, 1) = (3 · 1, 3 · 0, 3 · 1) = (1, 0, 1).

Exercise 21. Compute 5 · (1, 1, 0) and 6 · (0, 1, 0).
Can you derive a rule to compute the multiple of a vector? (see exercise ??).

Another structure useful to manage ordered sets, like vectors, is the set of
polynomials described in Section 0.2. We recall that the sum of two polynomials,
x+ 1, x2 + 1 ∈ F2[x], is

(x+ 1) + (x2 + 1) = x2 + x . (3)

0.3. VECTORS OF BITS xv

Exercise 22. Do you see any connections between (2) and (3)?

As you have seen in the previous exercise, nice and meaningful operations
on vectors can be interpreted as operations on polynomials. In the rest of the
section we give other examples.

One of the most important and fast operations for a computer (and more
precisely in its Central Processing Unit, CPU) consists in shifting to the left or
to the right of one position a vectors of bits (register). For example shifting to
the right (or to the left) we have:

(1, 1, 0, 1, 0)⇐⇒(0, 1, 1, 0, 1). (4)

The polynomials associate to (4) are

x4 + x3 + x⇐⇒x3 + x2 + 1. (5)

That is, shifting to the left a vector seems to correspond to the multiplication
of its polynomial by x, while shifting to the right seems to correspond to the
division of its polynomial by x.

Exercise 23. Suppose you want to double a vector of n bits. For example let
n = 3 and we want that (1, 0, 1) becomes (1, 0, 1, 1, 0, 1). Using the polynomial
notation for the vector and multiplying by another polynomial p you can obtain
the result expected. Who is p?

Suppose that the fourth bit (the one with “?” symbol) in a vector v,

v = (?, 1, 1, 0),

is computed by the sum of the first and the third. In languages as “C” we can
say

v[3] = v[2] + v[0];

where v[0] represents the first entry of the vector and v[2] the third one. In a
polynomial notation this “function” becomes

x3 = x2 + x0

with the exponents representing the positions of the vector entries.
Let us consider the vector (0, 1, 1) ∈ (F2)3, associated to the polynomial

f = x3+x+1 as explained above. We observe that this polynomial is irreducible.
We can construct a Linear Feedback Shift Register (LFSR) over three bits,

using f = x3 + x+ 1.
First of all, we start with an initial vector (called the initial state), for example
(1, 0, 1), inserting it in the following structure:

? −→−→ 1 0 1

xvi CONTENTS

We can associate a monomial to each position in the structure

x3 −→−→ x2 x 1

We aim to compute the mysterious bit, that is, the element we indicated
with ?. This bit is in correspondence to the monomial x3 and since we want
to use the polynomial f , we must consider the portion of f without its leading
term x3, that is, f − x3 = x+ 1.
Therefore, we interpret x+ 1 as the following operation:

• we read the bits in positions x and 1, which are 0 and 1, respectively,

• we sum these two bits, obtaining 0 + 1 = 1,

• we finally insert this new bit 1 in the place of the mysterios bit ?.

1 −→−→ 1 0 1

Now, we shift the vector to the right:

? −→−→ 1 1 0

so we have a new three-bit vector, that we call again state.
We now need to compute the new mysterious value ?, and so we proceed with
the same algorithm, by taking the two bits at positions x (i.e., 1) and 1 (i.e., 0).
We will then get 1 + 0 = 1 and so

1 −→−→ 1 1 0

which becomes, after another shift to the right, the following

? −→−→ 1 1 1

We repeat again the mysterious bit computation and we get 1 + 1 = 0, meaning

0 −→−→ 1 1 1

and the shift to the right, as follows

? −→−→ 0 1 1

and again the mysterious bit computation 1 + 1 = 0, that is,

0 −→−→ 0 1 1

and again the shift to the right, obtaining

? −→−→ 0 0 1

and again the mysterious bit computation 0 + 1 = 1 with

1 −→−→ 0 0 1

and the shift to the right

0.3. VECTORS OF BITS xvii

? −→−→ 1 0 0

and again the mysterious bit computation 0 + 0 = 0

0 −→−→ 1 0 0

and again the shift to the right

? −→−→ 0 1 0

and, finally 1 + 0 = 1 and

1 −→−→ 0 1 0

with the last shift

? −→−→ 1 0 1

We notice the following facts:

(1) After having performed the above algorithm seven times, we get again the
initial vector (1, 0, 1).

(2) While performing the above algorithm, we find all seven nonzero 3-bit
strings

Fact (1) is a property that is shared by many LFSR’s. It is enough to use
any polynomial f ∈ F2[x] of the form f = xn + . . . + 1 to construct an LFSR
producing n-bit vectors and such that any initial state is got again after a finite
number of iterations.
Fact (2) is more difficult to generalize. If we want an LFSR that can start from
any initial nonzero vector and obtain all other nonzero vectors, then we must
use very special polynomials, called primitive polynomials.

Definition 2. We call primitive any polynomial f ∈ F2[x] of degree n that,
used as feedback polynomials of a LFSR, can generate all the non-zero n-tuples
of bits,i.e. all the n-tuples but (0, 0, 0, ..., 0, 0), using as initial state any of these.

An example of primitive polynomial was that used in the previous LFSR:
x3 + x+ 1.

Example 7. We see now an example of non-primitive polynomial. Let us
consider f = x3 + 1 and we start again from (1, 0, 1), and we perform the
algorithm

1 −→−→ 1 0 1

getting

? −→−→ 1 1 0

Then

xviii CONTENTS

0 −→−→ 1 1 0

from which

? −→−→ 0 1 1

Then

1 −→−→ 0 1 1

finally getting

? −→−→ 1 0 1

Example 8. Let us consider a polynomial which is not of the form f = xn +
. . .+ 1, for example

f = x3 + x2 ,

using it to construct an LFSR. The portion of f without its leading term is only
formed by x2, and so no computation is needed to obtain the mysterious bit.
We take the following initial state

? −→−→ 0 1 1

and we take the bit in the position represented by x2, i.e. 0 as the mysterious
bit:

0 −→−→ 0 1 1

After a shift to the right, we obtain

? −→−→ 0 0 1

The mysterious bit turns out to be 0 again, so we have

0 −→−→ 0 0 1

and, after a shift to the right, we get

? −→−→ 0 0 0

From now on, we are stuck; indeed the mysterious bit will always be equal to
0 and so, after the shift to the right, we will always obtain (0, 0, 0).

We recall the notion of irreducible polynomial (Definition 1). An irreducible
polynomial cannot be written as product of two non-trivial factors. It turns
out that there is a close links between primitive polynomials and irreducible
polynomials, as shown in the following theorem.

Theorem 2. If p ∈ F2[x] is primitive then p is irreducible.

The previous theorem cannot be inverted. For example, the polynomial
x4 + x3 + x2 + x+ 1 is irreducible but it is not primitive.

Exercise 24. Verify that x4 + x3 + x2 + x+ 1 is not primitive via a LFSR.

0.4. MULTIVARIATE POLYNOMIALS ON BITS xix

0.4 Multivariate polynomials on bits

In many cryptographic applications, polynomials in only one variable are not
enough and we need to deal with polynomials in two or more variables. In this
section, we define such polynomials and we see how to sum and multiply them.

We begin with two variables, x and y.
A term or monomial in the two variables x and y is a product of powers, i.e.
xiyh, for some i, h in N.
For example, we can consider the following monomials

x2y3 (i = 2, h = 3), x4 (i = 4, h = 0), y7 (i = 0, h = 7), 1 (i = h = 0).

Be careful that for example x−4 and xy−1 are not monomials.
With monomials, we can define polynomials in the two variables x and y and
coefficients in F2 (i.e. multivariate polynomials in the field of bits) as sums of
monomials (without coefficients). For example, the following are polynomials

x2y3 + x+ x10 + y, xy + x11y2 and x3y5

(a monomial is also a polynomial).
Formally, a polynomial in the two variables x and y and coefficients in F2 is any
expression of the form

f(x, y) =
∑
i,h∈N

ai,hx
iyh

such that

• for each i, h in N, ai,h ∈ F2,

• only a finite number of coefficients is nonzero.

The set containing all polynomials in x, y with bits as coefficient is denoted by
F2[x, y].

The x-degree of a term xiyh in the two variables x, y is the value i, whereas h
is its y-degree. To be more precise

degx(xiyh) = i, degy(xiyh) = h .

The total degree (or, simply, degree) of a term xiyh in the two variables x, y is
the sum of its x-degree and its y-degree, i.e.

deg(xiyh) = i+ h .

If we consider xy5, then degx(xy5) = 1, degy(xy5) = 5, and deg(xy5) = 6.
The degree of a polynomial f ∈ F2[x, y] is the highest degree of the monomials
appearing in f with nonzero coefficient, so, if f = x3y+xy6−y2, then deg(f) =
deg(xy6) = 7, and if g = x3 + y then deg(g) = deg(x3) = 3.

xx CONTENTS

Exercise 25. In F2[x, y] what is...

• the y-degree of xy6?

• the degree of xy5 + 1?

• the degree of x7 + x4y3 + y7?

Two polynomials f, g ∈ F2[x, y] are called equal if

a term xiyj appears in f with nonzero coefficient ai,j
if and only if

xiyj appears in g with coefficient ai,j.

Then, we can see that, in F2[x, y], x3 + 0y12 = x3 = x3 + 0xy32.
Similarly to what presented in section 0.2 for univariate polynomials, the sum
and the product of polynomials in F2[x, y] are defined analogously to real poly-
nomials, but of course we must take into account that their coefficients are bits.
The following examples will clarify this point.

Example 9. In F2[x, y], let f1 = x3y+xy+1, f2 = y3+xy+1 and f3 = xy+1.
It holds

• f1 + f2 = (x3y + xy + 1) + (y3 + xy + 1) = x3y + y3 + 2xy + 2 = x3y + y3

• f3f1 = (xy + 1)(x3y + xy + 1) = x4y2 + x2y2 + x3y + 1

Exercise 26. Compute the following sums and products in F2[x, y] and find the
degree of the final result:

• (xy3 + y) + (xy3 + x2)

• (x+ y + y3)(x+ y + y3)

•
(
(x+ y)(xy3 + y)

)
+ (xy + y2 + 1)

•
(
(x+ 1)(y + y3x)

)
+
(
(xy + y2 + y + 1)(x+ 1)

)
Since we can multiply polynomials in x, y, we can raise them at a power m,

with the usual meaning: f 7→ fm.
If, for example, we take the polynomial f = x3 + y + 1 ∈ F2[x, y], we have that

f2 = (x3 + y + 1)2 = f · f = (x3 + y + 1)(x3 + y + 1) =

x6 + x3y + x3 + x3y + y2 + y + x3 + y + 1 = x6 + y2 + 1 = (x3)2 + (y)2 + (1)2.

As in the univariate case, raising a multivariate polynomial in F2[x, y] to the
power 2 is the same as raising its monomials to the power 2 and summing them.

We consider now the case of three variables, x, y and z.
A term or monomial in the three variables x, y and z is a product of powers,

0.4. MULTIVARIATE POLYNOMIALS ON BITS xxi

i.e. xiyhzl, for some i, h, l in N.
For example, we can consider the following monomials

x2y3z (i = 2, h = 3, l = 1), x4 (i = 4, h = l = 0), z9 (i = h = 0, l = 9), 1 (i = h = l = 0).

With monomials, we can define polynomials in the variables x, y and z and
coefficients in F2 as sums of monomials (without coefficients). For example, the
following are polynomials

x2y3 + x+ x10 + z, xy + z11y2, xyz + z2 + 1 and x3y5z

(a monomial is also a polynomial).
Formally, a polynomial in the three variables x, y and z and coefficients in F2

is any expression of the form

f(x, y, z) =
∑

i,h,l∈N
ai,h,lx

iyhzl

such that

• for each i, h, l in N, ai,h,l ∈ F2,

• only a finite number of coefficients is nonzero.

The set containing all polynomials in x, y, z with bits as coefficient is denoted
by F2[x, y, z].

The x-degree of a term xiyhzl in the three variables x, y, z is the value i, whereas
h is its y-degree and l its z-degree. To be more precise

degx(xiyhzl) = i, degy(xiyhzl) = h, degz(x
iyhzl) = l .

The total degree (or, simply, degree) of a term xiyhzl in the three variables
x, y, z is the sum of its x-degree, its y-degree and its z-degree, i.e.

deg(xiyhzl) = i+ h+ l .

If we consider xy5z3 then degx(xy5z3) = 1, degy(xy5z3) = 5, degz(xy
5z3) = 3,

and deg(xy5z3) = 9.
The degree of a polynomial f ∈ F2[x, y, z] is the highest degree of the monomials
appearing in f with nonzero coefficient, so, if f = x3z+xy8−z2y, then deg(f) =
deg(xy8) = 9, and if g = xz3 + xyz then deg(g) = 4.

Exercise 27. In F2[x, y, z] what is...

• the y-degree of xy6?

• the z-degree of xyz3

• the degree of xy5 + z + y4 + 1?

xxii CONTENTS

• the degree of z6 + x3y3z + z7 + y2 + x+ 1?

Two polynomials f, g ∈ F2[x, y, z] are called equal if

a term x1
iyhzl appears in f with nonzero coefficient ai,h,l

if and only if
x1
iyhzl appears in g with coefficient ai,h,l.

Then, x3 + 0y12 = x3 = x3 + 0xyz32 and xyz = 0x3 + xyz + 0y4 + 0z.

The sum and the product of polynomials in F2[x, y, z] follow the usual rules.

Example 10. In F2[x, y, z], let f = x3z + 1, g = y3 + xyz + 1 and h = xyz. It
holds

• f + g = (x3z + 1) + (y3 + xyz + 1) = x3z + y3 + xyz

• hf = (xyz)(x3y + xy + 1) = x4y2z + x2y2z + xyz

Exercise 28. Compute the following sums and products in F2[x, y, z] and find
the degree of the final result:

• (xy3z + y + z) + (xy3 + x2z)

• (x+ yz + y3)(xz + y + y3)

•
(
(xz + y)(xyz3 + y)

)
+ (xy + y2 + 1)

•
(
(x+ z + 1)(y + y3x)

)
+
(
(xy + y2z + y + 1)(xz + 1)

)
Since we can multiply polynomials in x, y, z, we can raise them at any power.

If, for example, we take the polynomial f = x3z + y + z + 1 ∈ F2[x, y, z], we
have that

f2 = (x3z + y + z + 1)2 = f · f = (x3z + y + z + 1)(x3z + y + z + 1)

x6z2 + y2 + z2 + 1 = (x3z)2 + (y)2 + (z)2 + 12.

As in the univariate case, raising a multivariate polynomial in F2[x, y, z] to the
power 2 is the same as raising to the power 2 its monomials and summing them.

Now we are ready to tackle the generic case of n variables: x1, x2, ..., xn
A term or monomial in the n variables x1, ..., xn is a product of powers of
x1, ..., xn, i.e. x1

i1 · · ·xinn for some i1, ..., in ∈ N.
For example, for three variables x1, x2, x3, it is clear that x1

3x2
8x3

6, x2x3
4 =

x1
0x2x3

4 ,x1
4 = x1

4x2
0x3

0 are all terms.
With terms, we can define polynomials in n variables x1, ..., xn and coefficients
in F2 (i.e. multivariate polynomials in the field of bits) as expressions of the
form

f(x1, ..., xn) =
∑

i1,...,in∈N
ai1,...,inx1

i1 · · ·xinn

such that

0.4. MULTIVARIATE POLYNOMIALS ON BITS xxiii

• for each i1, ..., in ∈ N, ai1,...,in ∈ F2,

• only a finite number of coefficients is nonzero.

The set containing all polynomials in n variables x1, ..., xn with coefficients in
F2 is denoted by F2[x1, ..., xn].
Note that

• x2
2x3 + x1 is a polynomial in F2[x1, x2, x3]; but it is not a polynomial in

F2[x1, x2];

• x1 − 1
2x2 is not a polynomial in F2[x1, x2];

• x1x2x3
3 + 1 is a polynomial in F2[x1, x2, x3].

When (as we have done before) we will deal with two or three variables, we may
denote them as x, y or x, y, z.
For 1 ≤ j ≤ n, the xj-degree of a term in n variables x1

i1 · · ·xinn is the value ij .
To simplify the expression we can use degj = degxj

i.e.

degxj
(x1

i1 · · ·xinn) = degj(x1
i1 · · ·xinn) = ij .

The total degree (or, simply, degree) of a term t in n variables t = x1
i1 · · ·xinn is

the sum of all degj(t)
′s for all 1 ≤ j ≤ n, i.e.

deg(x1
i1 · · ·xinn) =

n∑
j=1

degj(x1
i1 · · ·xinn) = i1 + ...+ in.

If we consider x1x3
5x4

2, then deg1(x1x3
5x4

2) = 1, deg2(x1x3
5x4

2) = 0, deg3(x1x3
5x4

2) =
5, deg4(x1x3

5x4
2) = 2 and deg(x1x3

5x4
2) = 8.

The degree of a polynomial f ∈ F2[x1, ..., xn] is the highest degree of the mono-
mials appearing in f with nonzero coefficient, so, if f = x1

3x2 +x1x2
6−x310x2,

then deg(f) = deg(x3
10x2) = 11.

Exercise 29. In F2[x1, x2x3, x4] what is...

• the 2-degree of x2
3x3?

• the 4-degree of x2
3x3?

• the degree of x2
3x3 + x2x4?

• the degree of x1
7 + x2

4x3
3 + x4

3x1?

Two polynomials f, g ∈ F2[x1, ..., xn] are called equal if

a term x1
i1 · · ·xinn appears in f with nonzero coefficient ai1...in

if and only if
x1
i1 · · ·xinn appears in g with coefficient ai1...in as well.

xxiv CONTENTS

Note that x3 + 0y12 = x3 = x3 + 0xy32 and x5x4 − x2 = x5x4 + 0x3 − x2.
The sum, the product and the powers of polynomials in F2[x1, ...xn] follow the
usual rules.
If, for example, we take the polynomial f = x3x1 + x4 + 1, we have that

f2 = (x3x1 + x4 + 1)2 = f · f = (x3x1 + x4 + 1)(x3x1 + x4 + 1)

x3
2x1

2 + x4
2 + 1 = (x3x1)2 + (x4)2 + 12.

Exercise 30. In F2[x1, x2, x3, x4, x5] compute

• (x1
12x5 + x3

3 + x4 + x2
6x3) + (x4

5 + x3
3 + x2

6x3 + x5
6x1)

• (x1
10x2

6 + x3x4x5 + x2
5x5)(x1

3x4 + x2x5 + x3
5)

• (x1 + x5)3

0.5. BOOLEAN FUNCTIONS xxv

0.5 Boolean Functions

In this section, we will introduce some functions that are very important in
information theory and in cryptography, the so-called Boolean functions.

First we consider some examples. We will need polynomials with three
variables and bits as coefficients, that we call F2[x, y, z].

Example 11. For a given vector of bits S, for example S = (x̄, ȳ, z̄) ∈ (F2)3,
we define the ”parity bit” as a new bit which takes the values 1 or 0 depending
on the number of bits in S holding value 1. If this number is odd, then the
parity bit takes the value 1, 0 otherwise. To compute the parity bit we can use
the following polynomial function p

p : (F2)3 → F2, (x̄, ȳ, z̄) 7→ x̄+ ȳ + z̄,

p ∈ F2[x, y, z], p = x+ y + z.

Exercise 31. Verify that the function p(x, y, z) returns the parity bit.

Example 12. We are interested in a function f that returns 1 if a vector of
bits is null, 0 otherwise. This is a useful Boolean function, since it recognizes
whether a vector of bits is the null vector (0, . . . , 0).
We now show how to obtain a polynomial representing this function. We ob-
served in Exercise 5 that the multiplication of bits has the same truth table of
the AND operator. In particular we have 1 if each bit is 1, 0 otherwise. This
is the opposite of what we want and so we can add 1 to have the sought-after
function (see Exercise 6). For example, if n = 3 the function becomes

f : (F2)3 → F2, (x̄, ȳ, z̄) 7→ x̄ȳz̄ + 1,

f ∈ F2[x, y, z], f = xyz + 1.

Example 13. In Exercise 5 we observed that the operator OR corresponds to
neither the sum in F2 nor the multiplication in F2. We would like to define a
Boolean function

o : (F2)2 → F2, o ∈ F2[x, y], (x, y) 7→ o(x, y),

that corresponds to the OR operator. We need the De Morgan law, which is
used in logic:

NOT(xOR y) = NOT(x) AND NOT(y)

From this we deduce that

o(x, y) = NOT(NOT(xOR y)) = NOT(NOT(x) AND NOT(y)).

Since the operator AND corresponds to multiplication, the above formula be-
comes

o(x, y) =
(
(x+ 1)(y + 1)

)
+ 1,

which is (after simplifications)

o(x, y) = xy + x+ y.

xxvi CONTENTS

Exercise 32. Find the Boolean function corresponding xOR (yOR z).

Let f : (F2)3 → F2 be a polynomial function such that f(x, y, z) = xy + yz.
Evaluating f at the 3-tuple (0, 0, 0) we get f(0, 0, 0) = 0+0 = 0, and evaluating
it in (1, 1, 1) we get f(1, 1, 1) = 1 · 1 + 1 · 1 = 1 + 1 = 0.
Note that the input of f is a 3-tuple of bits and its output is only one bit.
Let us now consider also another function g : (F2)3 → F2, g(x, y, z) = x2y+ yz.
We evaluate g at the same 3-tuples (0, 0, 0) and (1, 1, 1) and we obtain that
g(0, 0, 0) = f(0, 0, 0) = 0 and g(1, 1, 1) = f(1, 1, 1) = 0. Indeed, you can check
that f and g take the same values in all vectors of (F2)3, so that

f(x̄, ȳ, z̄) = g(x̄, ȳ, z̄), ∀(x̄, ȳ, z̄) ∈ (F2)3.

Hence, f and g are distinct as polynomials in F2[x, y, z], but they are equal
as Boolean functions, since given an input, they return the same output!

The unexpected behaviour of the above functions f and g comes from the fact
that u2 = u for any u ∈ F2. Therefore, every polynomial function from (F2)3 to
F2 can be written as a polynomial h ∈ F2[x, y, z] where 0 ≤ degx(h),degy(h),degz(h) ≤
1, for example, x3y2 + z10xy2 = xy + zxy, as a Boolean function.

Definition 3. A squarefree monomial in F2[x, y, z] is a monomial where each
variable appears with exponent at most one.

Even more generally, it is possible to prove that every function from (F2)3

to F2 can be written in a polynomial form, called the Absolute Normal Form
(ANF), where every monomial is squarefree.

Definition 4. Let f : (F2)3 → F2. The Absolute Normal Form of f is

f(x, y, z) = axyz + bxy + cxz + dzy + αx+ βy + γz + δ,

where a, b, c, d, α, β, γ, δ are in F2.

In the ANF of any f : (F2)3 → F2 there are at most:

• one monomial of degree 3 → xyz;

• three monomials of degree 2 → xy, xz, zy;

• three monomials of degree 1 → x, y, z;

• one monomial of degree 0 → 1;

where a monomial appears if and only if its corresponding coefficient is nonzero.

We show now that every function from (F2)3 to F2 can be written in ANF.
Consider the set B3 = {f : (F2)3 → F2} of all functions from (F2)3 to (F2).

0.5. BOOLEAN FUNCTIONS xxvii

Since the functions from (F2)3 to (F2) with ANF are a special kind of functions
from (F2)3 to (F2), then we have the following set inclusion

{f : (F2)3 → F2 with ANF} ⊆ {f : (F2)3 → F2} .

By Definition 4, in the ANF of a Boolean function f : (F2)3 → F2 there are
8 coefficients a, b, c, d, α, β, γ, δ ∈ F2. Each of them may hold value 0 or 1,
depending on the function f , so we have two choices for each coefficient. Thus,
we have at most 28 functions in {f : (F2)3 → F2 with ANF}. The number
of functions in B3 with ANF may be less than 28 only in the case when two
different choices on the coefficients of the ANF lead to the same function. This
case is impossible since

if f, g ∈ F2[x, y, z] are in ANF and f 6= g in F2[x, y, z], then f 6= g in B3, i.e.
there is at least a 3-tuple of bits (u, v, w) ∈ (F2)3 such that

f(u, v, w) 6= g(u, v, w)

(we do not prove this last claim, leaving it as a useful exercise to the reader).
Now, pointing out that the size of B3 is |B3| = |(F2)3| = 28, so there are as
many functions in B3 as the number of possible ANF’s, we get that

{f : (F2)3 → F2 with ANF} = B3 ,

hence every function from (F2)3 to F2 can be written in Absolute Normal Form.

Example 14. Consider the function f : (F2)3 → F2 defined by
f(0, 0, 0) = 0, f(0, 0, 1) = 0, f(0, 1, 0) = 1, f(0, 1, 1) = 1,
f(1, 0, 0) = 1, f(1, 0, 1) = 1, f(1, 1, 0) = 0, f(1, 1, 1) = 1 .
We want to derive the ANF of f . We know that it is something like

f(x, y, z) = axyz + bxy + cxz + dyz + αx+ βy + γz + δ,

for some a, b, c, d, α, β, γ, δ ∈ F2. By evaluating the ANF at (0, 0, 0) we see that
f(0, 0, 0) = δ. By definition of f , f(0, 0, 0) = 0, so we have identified δ as
δ = 0.
By evaluating the ANF at (1, 0, 0) we see that f(1, 0, 0) = α + δ = α. By
definition of f , f(1, 0, 0) = 1, so we have identified α as α = 1. Similarly
we deduce β = 1 and γ = 0. By evaluating the ANF at (1, 1, 0) we see that
f(1, 1, 0) = b + α + β + δ = b. By definition of f , f(1, 1, 0) = 0, so we have
identified b as b = 0. Similarly c = 0 and d = 0. Finally, by evaluating the ANF
at (1, 1, 1) we see that a = 1. The final result is f = xyz + x+ y.

Exercise 33. Determine the ANF of the function defined by
f(0, 0, 0) = 0, f(0, 0, 1) = 0, f(0, 1, 0) = 1, f(0, 1, 1) = 1,
f(1, 0, 0) = 1, f(1, 0, 1) = 1, f(1, 1, 0) = 1, f(1, 1, 1) = 1 .

The following function, often used in cryptography, is called the majority
function:

f : (F2)3 → F2

xxviii CONTENTS

(x̄, ȳ, z̄) 7→ x̄ȳ + x̄z̄ + ȳz̄.

This function returns value 1 if and only if at least two among the input bits
{x̄, ȳ, z̄} hold value 1. Obviously, it returns 0 otherwise, i.e. if and only if at
least two among the three input bits holds value 0.

Exercise 34. Verify the above statement, by evaluating f at all 3-tuples of bits.

Until now we have only given results and examples where a function has at
most 3 bits in input. We would like to consider the most general case, where
the number of bits in input is an arbitrary integer n ≥ 1.
To do that, we need to consider F2[x1, ..., xn] and so we can generalize definition
3 to the following

Definition 5. A squarefree monomial t in F2[x1, ..., xn] is a monomial where
each variable appears with exponent at most one, that is,

0 ≤ degx1
(t),degx2

(t), ...,degxn
(t) ≤ 1.

We can now conclude this section with the most general formulation of the
Absolute Normal Form Theorem.

Theorem 3 (Absolute Normal Form Theorem). Let n ∈ N. Any Boolean
function

f : (F2)n → (F2)

can be written as a polynomial in F2[x1, .., xn]. More precisely, f can be written
as the sum of some squarefree monomials of degree from 0 to n, i.e.

f = a0+a1x1+ ...+anxn+a1,2x1x2+ ...an−1,nxn−1xn+ ...+a1,2,...,nx1x2 · · ·xn ,

where a0, ..., a1,2,...,n ∈ F2.

Example 15. Consider the function of Example 12, returning 1 if a vector of
bits is 1 and 0 otherwise. We can see that if we consider, for example, vectors
of 4 bits, it can be represented as f = x1x2x3x4 + 1.

0.6 Bytes

The polynomials in F2[x] are infinite. However, if we bound the degree, we find
a finite set, as for example

S := {p ∈ F2[x]|deg(p) < 3} = {0, 1, x, x+ 1, x2, x2 + x, x2 + 1, x2 + x+ 1}.

This set contains 8 polynomials; indeed, f ∈ S if and only if f is of the form

f = a0 + a1x+ a2x
2, a0, a1, a2 ∈ F2

Since there are two choices for each coefficient a0, a1, a2 the polynomials are
23 = 8. If we take two polynomials f, g in S, then also f + g belongs to S,

0.6. BYTES xxix

since when we sum two polynomials, the degree cannot grow (see Exercise 11),
according to the rule in F2[x]

deg(f+g) ≤ deg(f),deg(g); deg(f+g) < deg(f),deg(g) ⇐⇒ deg(f) = deg(g).

However, if we multiply f, g, their product fg can be outside S; for example

f = x2 + 1, g = x+ 1 =⇒ (x2 + 1)(x+ 1) = x3 + x2 + x+ 1 .

We describe a way to make S ”closed with respect to multiplication”,that is,
we want to define a special operation on the polynomials in S that allows their
product to remain in S. We do that by what is called a ”polynomial relation”.
For example, we can define the following relation x3 = x + 1, or equivalently
x3 + x + 1 = 0. With this relation in mind, any time we find a monomial of
degree greater than or equal to 3 we substitute x3 with x + 1. We iterate this
substitution until we obtain a polynomial of degree strictly less than 3. For
example

x5+x = x2(x3)+x =substitution x2(x+ 1)+x = x3+x2+x =substitution x+ 1+x2+x = x2+1 .

The crucial observation here is that we can obtain the same result by dividing
the polynomial x5 + x by the polynomial g = x3 + x + 1: the remainder is x
(see Exercise 19).
Indeed, we can consider a set T , which collects the remainders of the divisions
of all polynomials in F2[x] by g. It is easy to see that T contains S, because
when we divide a polynomial f of degree less than 3 by g, the remainder is f
itself (see Example 6), so

{0, 1, x, x+ 1, x2, x2 + x, x2 + 1, x2 + x+ 1} ⊂ T

On the other hand, if we consider any polynomial f /∈ S, this has deg(f) ≥ 3
and when we divide it by g, we will get a remainder of degree strictly less than
deg(g) = 3, and so T can only contain polynomials of degree at most 2, therefore

T = S = {0, 1, x, x+ 1, x2, x2 + x, x2 + 1, x2 + x+ 1} .

We can perform this construction in general. Let g be in F2[x], with deg(g) =
n. We consider the set A of polynomials that collects all remainders of the
division by g

A = {remainders by g} .

This set is finite, because the degree of its polynomials is at most n − 1, and
again it actually contains all polynomials with degree at most n− 1

A = {0, 1, x, x+ 1, . . . , xn−1, xn−1 + 1, . . . , xn−1 + xn−2 + · · ·+ x+ 1} .

Also in this general setting, we can sum and multiply. The sum is obvious,
the multiplication may require some divisions by g before we can arrive at a
small-degree polynomial.

xxx CONTENTS

Example 16. Let us consider the polynomial g = x2 + x + 1 ∈ F2[x] and
define the set A1 = {remainders by g} . For this particular g, we have A1 =
{0, 1, x, x+ 1}. We want to show that A1 is a field. We recall the definition of
field, namely that A1 should satisfy the following properties

i) A1 is an abelian group w.r.t. the sum of polynomials;

ii) A1 \ {0} = {1, x, x + 1} is an abelian group w.r.t. the product of polyno-
mials;

iii) (f + g) · h = fh+ gh, for any f, g, h ∈ A1.

Since A1 is formed by polynomials, properties i) and iii) are obvious. As regards
ii), we need only to prove that each nonzero element in A1 has an inverse:

• 1 · 1 = 1 so 1 is the inverse of itself;

• x(x+ 1) = x2 + x =substitution (x+ 1) + x = x+ 1 + x = 1, so in A1,

1

x+ 1
= x,

1

x
= x+ 1.

The polynomial g = x2 + x+ 1 of the above example is irreducible (prove it
using Theorem 1); in the next example, we see what happens if the polynomial
we consider is reducible.

Example 17. Consider the polynomial h = x2+1. We can easily note that it is
reducible, since h = (x+1)2. Let us call A2 the set of remainders modulo h. We
see that A2 = {0, 1, x, x + 1}, which is apparently the same A1 of the previous
example. However we must distinguish A1 from A2, because the relation imposed
on A2 by h does not make it a field. We prove it by showing that x+1 ∈ A2\{0}
has no inverse. Indeed

• (x+ 1) · 1 = x+ 1 6= 1;

• (x+ 1) · x = x2 + x =substitution 1 + x 6= 1;

• (x+ 1)(x+ 1) = x2 + 1 =substitution 1 + 1 = 0 6= 1.

For cryptographic reasons we are especially interested in the case of g256 =
x8 + x4 + x3 + x2 + 1 ∈ F2[x]. We define F256 := {p ∈ F2[x] | deg(p) < 8}. As
explained above F256 is the set of the remainders of divisions by g256, i.e.

F256 = {0, 1, , x, x+ 1, . . . , x8, . . . , x8 + x7 + x6 + x5 + x4 + x3 + x2 + x+ 1} .

The following fundamental theorem explains the different behaviour of the poly-
nomials sets in the two previous examples:

Theorem 4. Let g be in F2[x]. We consider the set A of polynomials that
collects all remainders of the division by g

A = {remainders by g} .

Then A is a field if and only if p is an irreducible polynomial.

0.6. BYTES xxxi

Exercise 35. List all irreducible polynomials of degree 2 and 3, proving irre-
ducibility by showing that the remainders’ set is a field.

Thanks to Theorem 4 and the fact that g256 is irreducible, the following
corollary holds

Corollary 1. F256 is a field.

The field F256 is so important that it deserves a name: the byte field. Its
elements are called bytes. You may have met bytes already in computer science
courses and they looked different from polynomials, so in the next subsection we
will show you the connection between the representation of bytes in polynomial
form (which is that used in cryptography) and more common representations
(hex values and bit strings).

0.6.1 Notations for bytes

In Section 0.3 we have introduced nibbles and bytes, respectively, as vectors of
four bits and of eight bits.
So a nibble could be 0100 and a byte could be 00111010. We first have a spe-
cial look at nibbles, then we relate them to bytes, and finally we compare this
approach with the polynomial notation.

In computer science it is very useful to represent long strings of bits in a
compact way. For this aim, we use hexadecimal notation, i.e. the notation for
numbers in base 16. This notation system uses sixteen symbols, i.e. the usual
symbols 0-9 to represent numbers from 0 to 9 and then the letters A, B, C, D,
E, F for the numbers from ten to sixteen.
Each hexadecimal symbol represents a nibble, i.e. four bits, as shown in the
following table

Decimal Bits Polynomials Hex
0 0000 0 0
1 0001 1 1
2 0010 x 2
3 0011 x+ 1 3
4 0100 x2 4
5 0101 x2 + 1 5
6 0110 x2 + x 6
7 0111 x2 + x+ 1 7
8 1000 x3 8
9 1001 x3 + 1 9
10 1010 x3 + x A
11 1011 x3 + x+ 1 B
12 1100 x3 + x2 C
13 1101 x3 + x2 + 1 D
14 1110 x3 + x2 + x E
15 1111 x3 + x2 + x+ 1 F

xxxii CONTENTS

In order to convert from binary to hexadecimal notation we perform the follow-
ing steps:

• group the bits in nibbles from right to left;

• convert each nibble in an hexadecimal digit as in the table above.

On the other hands, to convert from hexadecimal to binary notation

• using the table above, write each hexadecimal digit as a nibble;

• juxtapose the results.

Example 18. The vector 00010101 is formed by the two nibbles 0001 0101
represented as 0x15, corresponding to the decimal 21. The vector 11100111 is
formed by the nibbles 1110 0111, with the notation 0xE7, corresponding to the
decimal 231.

Exercise 36. Find the hex representation of the following strings:

• 11110100;

• 01100010;

• 11100010.

Find the binary representation of the following hexadecimal numbers: AF , A0
and B5.

A byte is a vector of 8 bits, so it is formed by two nibbles. Then, we can
represent it with two ”hex digits”, as we have done in Example 18.
We can also represent bytes as polynomials: in particular if a7a6a5a4a3a2a1a0
is the binary vector representing a byte, we have the following representation

a7a6a5a4a3a2a1a0 → a7x
7 + a6x

6 + a5x
5 + a4x

4 + a3x
3 + a2x

2 + a1x+ a0.

Example 19. The byte 10101011, corresponding to the hex notation 0xAB, can
also be denoted by the polynomial x7 + x5 + x3 + x+ 1.

The polynomial notation for bytes is important because we can multiply
bytes by means of polynomial multiplication, which turns out to be important
for cryptographic applications. Let us see an example.

Example 20. Suppose we want to multiply 0xAB by 0x4F . Then, we first
convert these numbers from the hex notation to the binary notation:

0xAB = 10101011, 0x4F = 01001111.

From the binary notation, we can get the corresponding polynomials:

0xAB = x7 + x5 + x3 + x+ 1 0x4F = x6 + x3 + x2 + x+ 1.

0.7. VECTORIAL BOOLEAN FUNCTIONS xxxiii

Multiplying the polynomials is now an easy task; we only have to remember
that, since we are dealing with bytes we need to take the reminder by g256 =
x8 + x4 + x3 + x2 + 1. So

0xAB · 0x4F → (x7 + x5 + x3 + x+ 1)(x6 + x3 + x2 + x+ 1) =

x13 + x11 + x10 + x7 + x6 + x3 + 1 = x7 + x6 + x4 + x

The result is x7 + x6 + x4 + x = 11010010 = 0xD2.

Example 21. Suppose we want to perform the bytes multiplication 88·88, where
each byte is represented in decimal form. In its binary form, 88 is 01011000,
whereas its hex form is 0x58 and it can be represented as the polynomial f =
x6 + x4 + x3. An easy computation shows that

f2 = (x6+x4+x3)2 = x12+x8+x6 =substitution x8 + x7 + x6 + x4+x8+x6 = x7+x4 ,

whose representation in binary form is 10010000, in hex notation is 0x90 and
in decimal form is 144.

Exercise 37. Perform the following byte multiplications and write the results
in the notations: hexadecimal, binary, polynomials, decimal.

• 0xCA · 0x1C;

• 01010000 · 10100100;

• 0x4A · 0x6D

• 11 · 49

0.7 Vectorial Boolean functions

Definition 6. A vectorial Boolean function is a function

F : (F2)n → (F2)m,

with m,n ∈ N.

We can represent a vectorial Boolean function as a vector of Boolean func-
tions:

F : (F2)n → (F2)m,

(x1, ..., xn) 7→

F1(x1, ..., xn)
...

Fm(x1, ..., xn)

 ,
Example 22. The function F : (F2)3 → (F2)2, given by (x, y, z) 7→ (xy+y, y+
z) is a vectorial Boolean function.

xxxiv CONTENTS

We notice that every component of a vectorial Boolean function is a Boolean
function, so each component can be represented in its absolute normal form.

Theorem 5. Let
F : (F2)n → (F2)m, n,m ∈ N

be a vectorial Boolean function. Then F =

F1(x1, ..., xn)
...

Fm(x1, ..., xn)

 , with

Fi =
∑

S⊂{1,...,n}

a
(i)
S x

(i)
S ,

where a
(i)
S ∈ F2 and x

(i)
S =

∏
j∈S xj for every j ∈ {1, ...,m}.

Since the size of the set of all functions from a set A to a set B i.e. F = {f :
B → B} is |F| = |B||A|, then the number of all vectorial Boolean functions from
(F2)n to (F2)m is (2m)2

n

= 2m2n . We observe that the same number comes from
counting all vectors of length m with components which are Boolean functions
in x1, ..., xn.

A special case of Boolean functions arises when m = n, i.e. the domain and
the codomain of the function coincide:

F : (F2)n → (F2)n, n ∈ N

Some of these could be permutations (i.e. bijections). Since a vectorial
Boolean function is a function between two finite sets, then it is a invertible if
and only if it is injective or surjective.

Theorem 6. Let n ∈ N. If F : (F2)n → (F2)n is a permutation, then

deg(Fi) ≤ n− 1, ∀i ∈ {1, ..., n}.

0.8 Friends

There exist particular phenomena as those related with time that have a kind
of ciclicity. We focus on two examples

1. The days of the week, or if you like music, the musical notes, which are 7;

2. The hours of a day that we assume are 12, as in an analog clock.

The two clocks in the picture represent exactly these two cases. These examples
are similar in some sense. In fact we have that the first day of a week is Monday,
the 8th is Monday again. The seventeenth is Wednesday. In this case we have
2 tours around the clock and the remainder is 3. That is

17 = 2× 7 + 3.

0.8. FRIENDS xxxv

The remainder, namely 3, is the number of interest for our purpose. This is
nothing but an application of division algorithm. Focus on the second clock,
the one with 12 hours, and suppose we want to find what is the 26th hour. We
have also in this case two tours around the clock and then the remainder is 2,
that is

26 = 2× 12 + 2.

Obviously the remainder depends on how many are the hours the clock. Hence
every number has a unique representation after fixing the number of hours.
Because of this reduction we always assume that the labelling of the hours is
exactly

Zn = {0, 1, 2, . . . , n− 1}

where n is the number of the hours of the clock, and Zn is the set representing
the labelling of the hours. Over these clocks we can define a very nice arithmetic
that is called the clock arithmetic, or modular arithmetic. That is we can enrich
the set of ”hours” with addition and multiplication in a natural way. Thus we
can add or multiply the numbers in the standard way and then apply the division
with respect to the fixed hours and find the remainder observing that the result
belongs to Zn. As for the case F2 we represent the tables of the two operations
on Z7 and Z12. First of all we consider the sum.

In both clocks the sum is nothing but a rotation of the first row by one
element. For example adding 3 to each element of the first row we have a
rotation by 3 elements. in particular the 4 in the first row becomes

3 + 4 = 7 mod 7 = 0 mod 7.

Where mod represents the remainder of the division by 7. The other follows
according to this rule.

Now focus on the multiplication’s tables.
The two clocks behave in different ways. In Z7 the multiplication produce a

much random table, but, in each row we find al the elements of Z7. If we study
the table of Z12 there are some rows that are complete some other not. That is
the second clock has a pathological behavior that the first clock does not have.
For example suppose we want to solve the following equation

9x = 0 mod 12.

There are 3 numbers in the set of hours that give as a solution and these are
0, 4 and 8. That is not so nice. Now suppose we want to solve the following
equation

9x = 1 mod 12.

xxxvi CONTENTS

If you consider each multiple of 9 modulo 12 is in the set of hours {0, 3, 6, 9}
hence the equation has no solution. In this case we say that the equation do not
satisfy the ”cancellation” property. In fact in a ”standard” equation similar to
the first one we can multiply 9 by its inverse, getting rid of the 9, and obtaining
the unique solution 0. In fact by the table we observe that there are not multiple
of 9 that gives 1. That is 9 is not invertible and has not a regular behaviour.
Moreover if we have the equation

7x = 0 mod 12.

there exists the unique solution x = 0, and with respect to the equation

7x = 9 mod 12.

there is a unique solution, that is x = 3. It is not difficult to observe that the
elements that are not regular in the set Z12 are the ones that are not coprime
with 12, namely the elements in a ∈ Z12 such the greatest common divisor with
12 is not 1. They are {2, 3, 4, 6, 8, 9, 10, 12 = 0}. The remaining elements, the
ones whose greatest common divisor with 12 is 1, are invertible: {1, 5, 7, 11}.
Moreover in Z7 they are all but 0. The number of invertible elements in Zm is
a fundamental information. The function that given as input m, the number
of elements of Zm, give as output the number of invertible elements in Zm is
called Euler function, namely

φ(m) = |{a ∈ Zm and a is invertible}|.

Hence φ(7) = 6 and φ(12) = 4. In general if m is a prime number φ(m) = m−1.
But it is hard for a given number m to compute φ(m).

By observation above, we may deduce that when m is a prime number the set
Zm is a field. In fact all the non-zero elements are invertible, as in Z7. Moreover
multiplying two non-zero elements we obtain another non-zero element.

Another particular fact about these fields, is that exist elements whose pow-
ers cover all the non-zero elements of thield itself. As an example consider the
elements 3 and 5 in Z7. The powers of 3 are

3

32 ≡ 9 ≡ 2

33 ≡ 32 · 3 ≡ 2 · 3 ≡ 6

34 ≡ 33 · 3 ≡ 6 · 3 ≡ 4

35 ≡ 34 · 3 ≡ 4 · 3 ≡ 5

36 ≡ 35 · 3 ≡ 5 · 3 ≡ 1

0.9. SOME CRYPTOGRAPHIC APPLICATIONS xxxvii

u
u u u

u
uuu

�
�
��

@
@
@@

!!
!!

!!

aaaaaa

�
�
��

@
@
@@

aa
aa

aa

!!!!!!
�
�
�
�
�
�

L
L
L
L
L
L

L
L
L
L
L
L

�
�
�
�
�
�

u
u u u

u
uuu

�
��

A
AA

�
��

A
AA

HHH
���

��
�

HH
H
�
�
�
�
�@

@
@
@
@

Figure 1: C8({2, 3}) e C8({1, 4}).

The powers of 5 are

5

52 ≡ 25 ≡ 4

53 ≡ 52 · 5 ≡ 4 · 5 ≡ 6

54 ≡ 53 · 5 ≡ 6 · 5 ≡ 2

55 ≡ 54 · 5 ≡ 2 · 5 ≡ 3

56 ≡ 55 · 5 ≡ 3 · 5 ≡ 1

Exercise 38. Prove that all the elements of Z7 different from 3 and 5 are not
primitive.

0.9 Some cryptographic applications

This is not a book about cryptography, it is rather a book that helps the reader
face a course focused on cryptography, so we will not explain the general theory
of cryptography. However, after having seen some mathematical background
in the previous sections, it is possible to define rigorously a few cryptographic
systems in an easy way. We believe these systems can motivate you to start a
deeper subject of cryptography on your own.

In this section we will see:

• the Diffie-Helman key-exchange

• the Rivest-Shamir-Adleman encryption/decryption system

• the classical El Gamal encryption/decryption system

• a classical stream cipher

0.9.1 DH

The cryptographic problem solved by the Diffie-Helman key-exchange (DH) has
been a long-standing problem in all cryptographic operations since the dawn of
time.

xxxviii CONTENTS

Whenever two peers agreed on a system to encrypt their messages, sooner or
later they needed to find a way to change it, in order to prevent the enemy from
understanding it. The most efficient way to do so is to design a cryptosystem
whose exact working depends on a short string, called a cryptographic key.
Since the key is short (only 16 bytes even in modern times), it can be commu-
nicated easily. We will see an example of such a system in Section ??.
Unfortunately, if there are thousands of users of the systems (as for example the
units of an army moving into enemy territories) and the communication channel
can be heard by the enemy (radio communication being the main example in
history), it becomes very complex to send millions of keys in a secure way.

The DH system allows two peers (Alice and Bob) to agree on a key (or any
other short secret), even when communicating over an insecure channel that
can be heard by the enemy. Alice and Bob agree on a prime p and a primitive
element g of Zp. This is public information, so for example p and g could be told
on the air by the General to all units in his command and it does not matter if
the enemy hears these.
The system works as follows:

• Alice chooses secretly a positive integer a less than p and she does not
share it with anyone,

• Bob chooses secretly a positive integer b less than p and he does not share
it with anyone,

• Alice computes the exponentiation ga in Zp and she sends the result to
Bob (the enemy may intercept it)

• Bob computes the exponentiation gb in Zp and he sends the result to Alice
(the enemy may intercept it)

• Alice has received gb and so she can compute another exponentiation (gb)a

in Zp, the results being g(ab), that she keeps secret and does not share with
anyone,

• Bob has received ga and so he can compute another exponentiation (ga)b

in Zp, the results being g(ab), that he keeps secret and does not share with
anyone,

• now Alice and Bob have the same value, gab, and they start using it as a
key.

Thanks to the research in finite fields developed in the last 30 years, we observe
that, even if the enemies simultaneously collect p, g, ga and gb, then they have
a negligible probability to reconstruct gab and so the key remains hidden from
them.

The system we have described is still used today a lot, especially on the In-
ternet. We complete this subsection with some observations on the DH protocol
as it used nowadays:

0.9. SOME CRYPTOGRAPHIC APPLICATIONS xxxix

• the prime number p is huge, at least p > 22048,

• the prime number p has to be chosen with some specific algebraic proper-
ties, for example the factorization of p−1 in prime numbers should contain
one huge prime,

• there are some primes that have been standardized and are used by many
applications, as for instance those proposed by the National Institute of
Standards in the U.S.

0.9.2 RSA

The key-exchange is only one of the numerous problems that cryptographers
face in modern times.
Another interesting problem is the so-called public-key encryption, as fol-
lows:

• Alice wants to send Bob a secret, but now they are far apart and they can
communicate only in an insecure way (e.g., by standard email);

• unfortunately, they did not agree beforehand on a system that uses cryp-
tographic keys and so the DH protocol is useless.

A solution to this problem is the RSA algorithm, summarized below:

• Bob chooses secretly two distinct prime numbers, p and q, and perform
their multiplication N = pq;

• Bob chooses secretly a positive integer d smaller than N and coprime with
φ(N) = (p− 1)(q − 1);

• Bob computes the inverse e of d modulo φ(N);

• Bob sends to Alice both N and e (the enemies may intercept them);

• Alice has received N and e; she has a message m to send to Bob and so she
compute the exponentiation me in ZN , the results being the ciphertext c;

• Alice sends c to Bob (the enemies may intercept it);

• Bob has received c and so he can compute another exponentiation cd in
Zp, the results being m thanks to Theorem ??.

Thanks to the research in number theory developed so far, even if the enemies
simultaneously collect N , e and c, then they have a negligible probability to
reconstruct m and so the message remains hidden from them.

The system we have described is still used today, especially for electronic
payments. We complete this subsection with some observations on the RSA
protocol as it used nowadays:

• the prime numbers p and q are huge, at least p, q > 21024,

xl CONTENTS

• the prime numbers p, q has to be chosen with care, for example their
difference |p− q| must exceed both their square roots,

• the private exponent d must be large, at least 4
√
N ,

• the public exponent e should be at least e ≥ 65537.

0.9.3 El Gamal

We now describe another cryptographic algorithm that provides public-key en-
cryption:

• Bob chooses a prime p and a primitive element g of Zp.

• Bob chooses secretly a positive integer x smaller than p− 1.

• Bob computes the exponentiation: h = gx in Zp.

• Bob sends p, g and h to Alice (the enemies may intercept them);

• Alice has received p,g and h; she has a message m to send to Bob; she
chooses secretely a positive integer y smaller than p− 1;

• Alice computes two preliminary exponentiations in Zp : c1 = gy and
s = hy (obviously h = gxy).

• Alice encrypts her message m by computing c2 = ms; finally, she sends
c1 and c2 to Bob (the enemies may intercept them);

• Bob computes s by an exponentiation in Zp, since s = c1
x;

• Finally, Bob computes the message m by another exponentiation in Zp,
i.e. m = c2 · s−1

Thanks to the research in algebra developed so far, we observe that, even
if the enemies simultaneously collect p, g, h = gx and c1 = gy, s = hy and
c2 = ms, then they have a negligible probability to reconstruct m or x and so
the message remains hidden from them.

The system we have described is still used. We complete this subsection
with some observations on the El-Gamal protocol as it used nowadays:

• the prime number p is huge, at least p > 22048,

• the prime number p has to be chosen with some specific algebraic proper-
ties, for example the factorization of p−1 in prime numbers should contain
one huge prime,

• there are some primes that have been standardized and are used by many
applications, as for instance those proposed by the IETF.

0.9. SOME CRYPTOGRAPHIC APPLICATIONS xli

0.9.4 Stream ciphers

A stream cipher is a cryptographic algorithm that allows two peers to encrypt
and decrypt messages, once a secret key has been securely shared (as for example
with DH).

In this section we describe the easiest possible stream ciphers, which were
used only briefly at about the same time of World War II. We call this design a
”classical stream cipher”.

To build a classical stream cipher we need some LFSR’s (see Section 0.3),
say n, and a Boolean function with n inputs (and one output). We illustrate
the working with an example, which the reader will be able to generalize.
We consider three LFSR’s, with polynomials: x3 + x+ 1, x4 + x3 + x2 + x+ 1
and x2 + x+ 1.
We consider the Bf x1 ∗ x2 + x1 + x2, and we call it the combining function.
The secret key is the initial state (initial vector), which in this case must have
3 + 4 + 2 bits.

We are ready to describe encryption and decryption:

• Alice wants to encrypt seven bits m = (0100110). Alice generates one
bit from each of the three LFSR’s and uses the bits as input to the Bf;
in other words, if b1,b2 and b3 are the bits generated respectively by the
LFSR’s, then Alice computes z0 = b1 ∗ b2 + b1 + b2. The bit z1 is the first
bit of the so-called keystream;

• Alice adds z0 to the first bit of m, which is m0 = 0, and sends c0 = z0+m0;
observe the LFSR’s have changed their state and so they may now generate
another bit;

• similarly, Alice computes z1, . . . , z6, and performs the XOR c1 = z1 +
m1, . . . , c6 = z6 +m6; she will send c1, . . . , c6;

• Bob receives c0, . . . , c6;

• his LFSR’s are the same of those of Alice and have the same initial state;
also the combining function is the same; so, Bob can compute the same
bits of the keystream that Alice computed, that is, z0, . . . , z6;

• Bob computes the XOR’s c0 + z0, . . . , c6 + z6, obtaining m0, . . . ,m6, since
ci + zi = (zi +mi) + zi = (zi + zi) +mi = 0 +mi = mi.

Stream ciphers used nowadays have a structure which is much more complex,
however they still use normally LFSR’s. The initial state goes from 64 bits to
256 bits being 128 the minimum length giving acceptable security.
As examples of strea ciphers in use:

• E0, which is used in Blootooth;

• RC4, which is used on the Internet;

• A5/3, which is used in all mobile communications (GSM).

xlii CONTENTS

0.10 Solutions and hints for exercises

Exercise 1.

• (1 + 1) + 0 = (0) + 0 = 0;

• (1 + 1) + 1 = (0) + 1 = 1;

• (1 + 1) · 1 = (0) · 1 = 0;

• (0 + 0) + 1 + (1 + 0) · 1 = (0) + 1 + [(1) · 1] = 0 + 1 + 1 = 0.

Exercise 2.

a. 1+1+1+0+0+0+0+1 = (1+1)+(1+0)+(0+0)+(0+1) = 0+1+0+1 = 0

b. 1 + 1 + 1 + 1 + 0 + 0 + 0 + 0 = 1 + 1 + 1 + 0 + 0 + 0 + 0 + 1 = 0; the first equality
comes from the commutativity of the sum in F2. Thanks to this property one
sees that the expression in b. is exactly the same as in a., up to the ordering of
the summands, so the result is the same.

Exercise 3.

• (1 + 0) · 1 = 1 so the opposite is 1;

• (0 + 0) · 0 = 0 so the opposite is 0;

• 1 + 1 + 1 + 1 + 0 + 1 + (11) = 0 so the opposite is 0.

Exercise 4.

• 1 · (1 + 0) = (1 · 1) + (1 · 0) = 1 + 0 = 1

• 1 · (0 + 1) + 0 · (1 + 1) = (1 · 0) + (1 · 1) + (0 · 1) + (0 · 1) = 0 + 1 + 0 + 0 = 1

Exercise 5.
First of all, we notice that XOR behaves as the sum of bits, whereas AND behaves as
multiplication.
We cannot say the same for OR. Moreover:

• NOT ((NOT a) AND (NOT b)) = a OR b

• NOT ((NOT a) OR (NOT b)) = a AND b

• (NOT a) XOR (NOT b) and a XOR b have the same truth table.

Exercise 6.
NOT a = a + 1
Exercise 7.
a OR b = (a + 1)(b + 1) + 1
Exercise 8.
Yes, Q is an abelian group w.r.t. the sum. Indeed the sum is associative and commu-
tative, 0 ∈ Q is the neutral element and if a ∈ Q, its opposite is −a; for example, for
a = 1

2
, its opposite is − 1

2
.

Exercise 9.
Well, not exactly; Q∗ = Q \ {0} is an abelian group w.r.t. the multiplication. Indeed
the multiplication is associative and commutative, 1 ∈ Q is the neutral element and if
a ∈ Q∗, its opposite is 1

a
; for example, for a = 1

2
, its opposite is 1

1
2

= 2. The element

0 ∈ Q is not invertible.
Actually, Q is a field.
Exercise 10.

• (x3 + x2 + x + 1) + (x4 + x2 + x) = x4 + x3 + 1;

0.10. SOLUTIONS AND HINTS FOR EXERCISES xliii

• (x10 + x7 + x + 1) + (x5 + x) + (x7 + 1) = x10 + x5;

• x + (x8 + x5 + 1) + (x6 + x2 + x) = (x8 + x6 + x5 + x2 + 1)

Exercise 11

• (x4 + x3 + 1)(x3 + x2 + 1) = x7 + x5 + x4 + x2 + 1, so its degree is 7;

• (x3 + x2 + x) + (x4 + x3) = x4 + x2 + x so its degree is 4;

• (x2 + x + 1) + (x2 + x) = 1 so it has degree 0.

We can desume that deg(fg) = deg(f)+deg(g) and deg(f +g) ≤ max(deg(f), deg(g)).
Exercise 12
Consider for example f = a0 + a1x + a2x

2. We have f2 = (a0 + a1x + a2x
2) =

(a0 + a1x+ a2x
2)(a0 + a1x+ a2x

2) = a2
0 + a0a1x+ a0a2x

2 + a0a1x+ a2
1x

2 + a1a2x
3 +

a0a2x
2 + a1a2x

3 + a2
2x

4 = a2
0 + a2

1x
2 + a2

2x
4

Exercise 13

• (x2 + x)2 = x4 + x2

• (x3 + x + 1)2 = x6 + x2 + 1

• (x + 1)4 = x4 + 1

• (x2 + x + 1)3 = (x2 + x + 1)2 ∗ (x2 + x + 1) = (x4 + x2 + 1)(x2 + x + 1) =
x6 + x5 + x4 + x4 + x3 + x2 + x2 + x + 1 = x6 + x5 + x3 + x + 1

Observe that (x + 1)4 = x4 + 1, so raising a polynomial to an exponent b which is a
power of two means raising its monomials to the power b and sum the results. Notice
that this is not true for an even exponent that is not power of 2. For example

(x + 1)6 = x6 + x4 + x2 + 1 6= x6 + 1

Here there are some more steps to do, indeed, since 6 = 2 · 3, we can write (x + 1)6 =
((x + 1)3)2, then we compute (x + 1)3 = x3 + x2 + x + 1 and then we have to raise it
to the power two, so here we can raise its monomial to the power two and sum them

(x + 1)6 = ((x + 1)3)2 = (x3 + x2 + x + 1)2 = x6 + x4 + x2 + 1.

Exercise 14
Let us recall that in F2[x] we have
(x + 1)0 = 1→ 1
(x + 1)1 = x + 1→ 1 1
(x + 1)2 = x2 + 1→ 1 0 1
(x + 1)3 = x3 + x2 + x + 1→ 1 1 1 1
(x + 1)4 = x4 + 1→ 1 0 0 0 1
and so on.
So, we have the triangle:

11 11 0 11 1 1 11 0 0 0 1 (6)

Now, in Z[x]
(x + 1)0 = 1→ 1
(x + 1)1 = x + 1→ 1 1
(x + 1)2 = x2 + 2x + 1→ 1 0 1
(x + 1)3 = x3 + 3x2 + 3x + 1→ 1 3 3 1
(x + 1)4 = x4 + 4x3 + 6x2 + 4x + 1→ 1 4 6 4 1

xliv CONTENTS

and so on.
We have then the Pascal’s (Tartaglia’s!) Triangle:

11 11 2 11 3 3 11 4 6 4 1 (7)

We can notice that if in the Pascal’s Triangle we have an even number, the corre-
sponding position in the Triangle for F2 we have 0, whereas if in the Pascal’s Triangle
we have an odd number, the corresponding position in the Triangle for F2 we have 1.
See the chapter ?? for further explanations on this behaviour.
Exercise 15

• x4 + x3 + x→ 0

• x3 + x + 1→ ∅
• x6 + x5 + 1→ ∅
• x4 + x3 + x2 + x→ 0, 1

Exercise 16

1. Take the polynomials f = x + 1 and g = x2 + 1; it holds f(0) = g(0) = 1,
f(1) = g(1) = 0

2. p(x) = 0, q(x) = 1, r(x) = x, s(x) = x + 1

3. there are 4 functions from F2 to F2.

Exercise 17

• p1 = x5 + x4 + x + 1 = (x + 1)5;

• p2 = x4 + x2 + 1 = (x2 + x + 1)2.

Exercise 18 The only irreducible polynomial of F2[x] with degree 2 is x2 +x+1; now
since it does not divide f = x4 + x + 1 and f has no roots in F2, we can desume that
it is irreducible.
Exercise 19
Divisioni: solo il risultato o mettiamo proprio tutto il disegnino??
Exercise 20
(0, 0, 0, 0) + (0, 0, 0, 0) = (0, 0, 0, 0)
(0, 1, 0, 1) + (0, 1, 0, 1) = (0, 0, 0, 0)
(1, 1, 1, 1) + (1, 1, 1, 1) = (0, 0, 0, 0)
(1, 1, 0, 0) + (1, 1, 0, 0) = (0, 0, 0, 0)
The opposite of a vector of bits is itself.
Exercise 21
5 · (1, 1, 0) = (5 · 1, 5 · 1, 5 · 0) = (1, 1, 0)
6 · (0, 1, 0) = (6 · 0, 6 · 1, 6 · 0) = (0, 0, 0)
Multiplication for an odd number is the same as multiplication by 1, so it keeps the
given vector unchanged; multiplication for an even number is the same as multiplica-
tion by 0, so it annihilates the given vector. Exercise 22
The two equations give two representations of the same operation, in the sense that
we can identify a polynomial f ∈ F2[x] with the list of its coefficients, decreasingly
ordered by degree, for example

(0, 1, 1)→ 0 · x2 + 1 · x + 1 · 1.

Then the sum of polynomials can be performed as the sum of vectors.
Exercise 23

0.10. SOLUTIONS AND HINTS FOR EXERCISES xlv

Exercise
12 ≡ 1
22 ≡ 4, 23 ≡ 1
42 ≡ 2, 43 ≡ 1
62 ≡ 1.

	Bits standard operations and logic
	Polynomials on bits
	Vectors of Bits
	Multivariate polynomials on bits
	Boolean Functions
	Bytes
	Notations for bytes

	Vectorial Boolean functions
	Friends
	Some cryptographic applications
	DH
	RSA
	El Gamal
	Stream ciphers

	Solutions and hints for exercises

