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1 Abstract

We propose a research program to investigate the role of time in non-relativistic
quantum mechanics. Although our proposal is of general relevance, we will
specialize our applications to the field of quantum chemistry. We will begin by
discussing the meaning of a ”chemical event” and the importance of constructing
time operators to understand the nature of chemical events. We formulate a
novel set of non-linear eigenvalue equations, which can be solved numerically
to construct time operators for different many-body Hamiltonians. Next, we
discuss quantum clocks and the conditions an ideal clock must satisfy. We
introduce the adiabatic time approximation (ATA), which provides a rigorous
criterion for time to be regarded as a parameter rather than an operator. Finally,
we discuss the effects of decoherence on quantum clocks, within the framework
of the theory of open quantum systems.

2 Project Summary

Since the early days of quantum theory, time has played a special role. While
the spatial location of quantum objects can be easily manipulated, time appears
to continuously and uncontrollably move forward. Therefore, the special role of
time in quantum mechanics is often taken for granted, particularly in the field
of quantum chemistry.

In our proposed research, we reexamine the meaning of time in quantum
mechanics and question whether it truly deserves a special role. We look at the
conditions under which time must be treated as a dynamical variable like space,
and when it can in fact be treated as a special parameter. This naturally leads
us to investigate the nature of ”quantum clocks,” which are devices used to keep
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track of time. This research is significant, because it will raise and answer new
questions about the meaning of time, which are not often addressed in current
research.

3 Proposed Research

3.1 Introduction

The wave function of a quantum system describes the probability amplitude
for different events to occur at points in space-time. However, the traditional
formulation of quantum theory treats space and time on a completely different
footing. In non-relativistic quantum mechanics, and chemistry in particular,
it is often taken for granted that time is a continuous parameter and not a
dynamical variable. If we think of space on the other hand, we know that
position is treated as a dynamical variable represented by an operator.

The unequal treatment of space and time in quantum mechanics has many
ramifications, particularly when we begin to ask questions about when and where
a particular event occurs. The implications of this have been explored exten-
sively in the quantum gravity literature and in fields related to the foundations
of quantum mechanics. However, the unequal treatment of space and time in
the microscopic realms of quantum chemistry and condensed matter physics has
hardly been explored to date.

I propose a FQXI-supported research program that will explore the meaning
of time in chemical systems. My group will explore questions such as: What
is a chemical event? How can we define a clock to measure when a chemical
event occurs? What are the conditions under which it is valid to treat time as
a parameter and not a dynamical variable? Can the role of time in chemistry
teach us about the meaning of time in other fields such as quantum gravity? To
better understand these questions, we will explore three broad areas of research,
outlined in the sections below.

3.2 Time Operators in Chemistry and the Meaning of
”Chemical Events”

Time-dependent processes in chemistry are ubiquitous. Chemical reactions oc-
cur as molecules collide with one another, exchanging kinetic and potential
energy as chemical bonds are formed and broken. Similarly, in photochemical
processes photons are absorbed and emitted as energy is channeled into differ-
ent degrees of freedom (electronic, rotational and vibrational). For instance, the
formation of a chemical bond or photodissociation of a molecule can be regarded
as a chemical event and it is natural to ask not only where this event occurs,
but also when. In order to address this question, time must be regarded as an
observable quantity, i.e. a dynamical variable represented by an operator and
not a parameter.
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Mathematically, the problem of constructing time operators is formulated as
follows: Given a Hamiltonian Ĥ, its associated time operator t̂, is constructed
by imposing the canonical commutation relation:[

t̂, Ĥ
]
|ψn〉 = i~|ψn〉, (1)

over a certain domain of the Hilbert space spanned by the states {|ψn〉}. Note
that eq. 3.2 is a non-linear eigenvalue problem, as one must find both the oper-
ator t̂ and the eigenvectors {|ψn〉}. Solving eq. 3.2 for single particle quantum
systems is often a fairly straight forward task. For example, consider the Hamil-
tonian:

Ĥ =
p̂2

2m
− qEx̂, (2)

which describes a particle of charge q in one-dimension subjected to a constant
electric field E. By solving eq 3.2, one finds that the time operator is:

t̂ = − p̂

qE
, (3)

and the states {|ψn〉} span the entire Hilbert space. The eigenstates of t̂ describe
states that arrive at the origin (x = 0) at a definite time. Thus the event defined
by the time operator for the linear potential is arrival at the origin.

Solving eq. 3.2 for many-body systems is far less trivial. We must take into
account correlations between different particles as well as Fermonic or Bosonic
statistics. We propose to extend the above analysis to construct time opera-
tors for chemical systems and study the chemical events they describe.
As a starting point, one might begin with the full Hamiltonian operator of non-
relativistic electrons and nuclei, interacting with the quantized electromagnetic
field:

Ĥ = Ĥel + Ĥn + Ĥem + Ĥel−n + Ĥel−em + Ĥn−em, (4)

where the first three terms represent free electrons, nuclei and photons, while
the last three are their respective interactions. We can construct a time op-
erator by solving the non-linear eigenvalue problem posed in eq. 3.2. Unlike
the single particle case, which can be solved exactly, solving the non-linear
eigenvalue problem in eq. 3.2 must be done numerically for the Hamiltonian in
eq. 3.2. Non-linear eigenvalue problems are common in computational chem-
istry and many highly efficient numerical algorithms exist. My group has vast
computational resources, as well as the domain expertise available to accomplish
this task. We will numerically construct time operators for a variety
of chemical systems and investigate their spectra to answer ques-
tions about chemical events such as: When does a molecule absorb
or emit a phonton? When does the absorbed energy fully dissipate
into nuclear vibrational energy? How long does it take for a chemical
reaction between two molecules to occur?

The task of constructing a time operator for the full Hamiltonian in eq. 3.2
will be computationally demanding. Approximate and model Hamiltonians are
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often used to simply quantum many-body calculations. Each model Hamilto-
nian gives rise to a corresponding model time operator through the solution to
eq. 3.2. Another area of research will be to construct and classify time
operators for different model Hamiltonians of varying degrees of com-
plexity. For example, in chemistry it is often possible to make approximations
to simplify eq. 3.2. By invoking the Born-Oppenheimer approximation (BO),
one can treat the nuclei classically as well as the electromagnetic field and arrive
at the electronic Hamiltonian:

Ĥ =

∫
d3rΨ+(r)

[
− ~2

2m
∇2 + vext(r, t)

]
Ψ(r)+

∫
d3r

∫
d3r′Ψ+(r′)Ψ+(r)

[
e2

|r− r′|

]
Ψ(r)Ψ(r′),

(5)
where Ψ+(r) and Ψ(r) are field operators, respectively creating and destroying

an electron at position r. The external potential, vext(r, t), is the potential exter-
nal to the electrons, which incorporates the nuclear Coulomb potential and the
interaction between electrons and the electromagnetic field. The Hamiltonian in
eq. 3.2 is often used as the starting point in chemistry and many-body physics.
Therefore much of our research will focus on constructing time operators for
this Hamiltonian with different external potentials, vext(r, t).

In addition, it is often insightful to make further approximations and con-
struct model Hamiltonians with discrete Hilbert spaces. One widely used ex-
ample is the Hubbard model Hamiltonian:

Ĥ =
∑
i,j,σ

[Tij + vext,i,j ] ĉ
+
i,σ ĉj,σ +

∑
i

Uiĉ
+
i,↑ĉj,↑ĉ

+
i,↓ĉj,↓, (6)

where ĉ+i,σ and ĉi,σ respectively create and destroy and electron with spin σ =↑, ↓
on the ith site. Another example is the Heisenberg Hamiltonian:

Ĥ =
∑
i,j

JijŜi · Ŝj +
∑
i

Bi(t) · Ŝi, (7)

which exclusively treats the spin degrees of freedom Ŝi, on the ith site in the
presence of a local magnetic field Bi(t). Studying and classifying the time
operators for these different Hamiltonians will be an important component of
our research.

3.3 Quantum Clocks and the Adiabatic Time Approxima-
tion

In chemistry, the Newtonian concept of time as a continuous parameter is so
deeply ingrained, that one almost never questions how time is actually measured.
It is tacitly assumed that time can be measured with respect to some degree
of freedom (a clock), with perfect accuracy and minimal disturbance to the
system. However, if we begin to investigate when chemical events occur or
how long they take, we must use a clock that probes the system and therefore
disturbs it to some extent. For instance, if we want to know when two molecules
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have reacted, we might use a beam of photons as a probe, which will inherently
influence the dynamics of the reaction through electron-photon scattering. We
are interested in understanding how different degrees of freedom can
be used as clocks to measure the time and duration of chemical events
and how they influence those events.

As a first step, it helps to consider two limiting cases. At one extreme,
we might use a degree of freedom, which is entirely classical and isolated from
the chemical event, such as a clock on the wall of the laboratory. We may
measure this clock as accurately as we wish with absolutely no influence over
the chemical system. However, measuring this clock provides absolutely no
information about events occurring within the system. Consequently, the time
measured by a clock on the laboratory wall is simply a parameter, identical
to the parametric time appearing in the time-dependent Schrodinger equation.
At the other extreme, we might use the quantum system itself as a clock. In
this case, time becomes a quantum observable represented by the operator t̂
satisfying the canonical commutation relation with the system Hamiltonian Ĥs.
As a result, the uncertainty in t̂, ∆t and the uncertainty in Ĥs, ∆E must always
satisfy the Heisenberg uncertainty relation:

∆t∆E ≥ ~
2
. (8)

This implies that if we use the system itself as a clock, we must completely
sacrifice knowledge of the energy of the system (∆E = ∞) in order to make
a precise measurement of the time of an event (∆t = 0). Unfortunately, if we
have no knowledge of the energy of the system, we can’t actually say whether
or not a chemical event has occurred. Clearly, an ideal clock for chemical events
must lie somewhere between these two extremes, i.e. it is neither the clock on
the laboratory wall nor the system itself, but rather some external apparatus
that is coupled to the system.

Understanding the conditions on an ideal clock to measure when
chemical events occur and how long they take is the subject of our
future investigation. To date, my research group has made important first
steps in this direction. We have succeeded in deducing the conditions under
which the time measured on a clock coupled to the system of interest can be
regarded as a parameter, rather than a dynamical variable. It turns out that
these conditions are very similar to the Born-Oppenheimer approximation, used
to separate the time scales for electronic and nuclear motion.

To make the discussion mathematically precise, we partition into the system,
the clock and the remainder of the universe, external to the system and the clock.
The universe is taken to be essentially classical, evolving with a time parameter
tu. The clock and system have respective Hamiltonians denoted Ĥc(ĉ), Ĥs(ŝ)
and time operators denoted t̂c(ĉ) and t̂s(ŝ). ŝ and ĉ denote a complete set of
operators acting in the system and clock Hilbert spaces, such as the momentum,
position and/or spin degrees of freedom. The full Hamiltonian of the system
and clock is:

Ĥs−c(tu) = Ĥs + Ĥc + V̂ (ŝ, ĉ, tu), (9)
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where V̂ is the interaction between the system and the clock, which we allow to
depend on the parametric time of the universe tu, for complete generality. The
time operator for the clock, t̂c, is a hermitian operator and admits a complete
spectrum of eigenstates satisfying the eigenvalue equation:

t̂c|tc〉 = tc|tc〉. (10)

The question we will ask is the following: Under what conditions are the values
of tc identical to tu from the point of view of the system? Once a suitable clock
satisfying these conditions has been found, we are free to set tc = tu and use
the states of the clock to measure parametric time in place of the time of the
universe.

We now proceed to deduce these conditions. An arbitrary initial state of the
system and clock, |Ψs−c(tu = 0)〉, admits a decomposition into eigenstates of
the clock’s time operator according to:

|Ψs−c(tu = 0)〉 =
∑
tc

a(tu, tc)|ψs(tu = 0, tc)〉 ⊗ |tc〉. (11)

By placing the clock in an appropriate position, we can prepare the initial state:

|Ψs−c(tu = 0)〉 = |ψs(tu = 0, tc)〉 ⊗ |tc〉, (12)

in which the clock is in a definite eigenstate of the time operator. The combined
clock-system wave function evolves according to the time-dependent Schrodinger
equation:

i~
d

dtu
|Ψs−c(tu)〉 = Ĥs−c(tu)|Ψs−c(tu)〉, (13)

with the parametric time of the universe. The solution to eq. 3.3 is:

|Ψs−c(tu)〉 = T Exp
[∫ tu

0

dt′uĤs−c(t
′
u)

]
|Ψs−c(0)〉 = T Exp

[∫ tu

0

dt′u(Ĥs + Ĥc + V̂ (ŝ, ĉ, t′u))

]
|ψs(tu = 0, tc)〉⊗|tc〉,

(14)
where T denotes the time ordering operator. Using the Baker-Campbell-Hausdorff
formula, we can replace the above expression by the tensor product expression:

|Ψs−c(tu)〉 ≈
[
T Exp

[∫ tu

0

dt′u

[
Ĥs + V̂ (ŝ, c, t′u)

]]
|ψs(tu = 0, tc)〉

]
⊗
[
e−iĤctu |tc〉

]
,

(15)

under the condition tu||[Ĥc,
∫ tu
0
dt′uV̂ (ŝ, c, t′u)]|| � 1. Since ||

∫ tu
0
dt′uV̂ (ŝ, c, t′u)|| ≤

||V̂ (ŝ, c, tu)||tu, we can write this condition as:

t2u||[Ĥc, V̂ (ŝ, c, tu)]|| � 1. (16)

Due to the canonical commutation relation, [t̂c, Ĥc] = i~, the Hamiltonian
generates translations on the time states according to:

e−iĤctu |tc〉 = |tc + tu〉, (17)
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which allows us to write eq. 3.3 as:

|Ψs−c(tu)〉 ≈
[
T Exp

[∫ tu

0

dt′u

[
Ĥs + V̂ (ŝ, c, t′u)

]]
|ψs(tu = 0, tc)〉

]
⊗ |tc + tu〉.

(18)
By choosing tc = 0, we arrive at the important result that if the condition in
eq. 3.3 is satisfied,

|Ψs−c(tu)〉 ≈
[
T Exp

[∫ tu

0

dt′u

[
Ĥs + V̂ (ŝ, c, t′u)

]]
|ψs(tu = 0)〉

]
⊗|tu〉 ≡ |ψs(tu)〉⊗|tu〉.

(19)
As a result of eq. 3.3, the clock degree of freedom is simply a parameter with

regard to the wave function of the system, which we refer to as the adiabatic
time approximation (ATA). The ATA is analogous to the Born-Oppenheimer
approximation, in which the nuclear degrees of freedom are regarded as param-
eters with respect to the electronic wave function. Investigating this analogy
fully will be the subject of future research.

3.4 Time Operators for Open Quantum Systems

Most of the literature on time operators has focused on isolated quantum sys-
tems, evolving according to the time-dependent Schrodinger equation. However,
many quantum systems are not isolated but instead undergo relaxation and de-
coherence due to interaction with an external environment. Such systems are no
longer described by a wave function, but instead by a statistical density matrix
ρ̂(t), evolving according to a quantum master equation:

i~
d

dt
ρ̂(t) = [Ĥs, ρ̂(t)] +D [ρ̂(t)] , (20)

where the first term on the right hand side describes unitary evolution of the
system and the second term gives rise to relaxation and decoherence due to the
environment. We are interested in how the environment affects the time and
duration of events occurring within the system. To answer this question, we
will solve eq. 3.4 to obtain ρ̂(t) for different systems. We can then investigate
quantities such as the expectation value of the system time operator:

〈t̂s〉 = Tr
[
t̂sρ̂(t)

]
, (21)

and the two-time correlation function:

〈t̂s(t)t̂s(t′)〉 = Tr
[
t̂s(t)t̂s(t

′)ρ̂(0)
]
, (22)

where the Heisenberg operator t̂s(t) satisfies:

− i~ d
dt
t̂s(t) = [Ĥs, t̂s(t)] +D

[
t̂s(t)

]
. (23)

Another approach will be to use non-hermitian Hamiltonians to represent open
quantum systems. Non-Hermitian Hamiltonians are widely used in the atomic
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and molecular physics literature, to describe the resonant decay of excited states.
In this formalism, the system Hamiltonian Ĥs is replaced by the non-Hermitian
Hamiltonian:

Ĥ ′s = Ĥs + iV̂ , (24)

where V̂ is a Hermitian operator describing coupling of the system to the envi-
ronment. Clearly, in order to maintain the canonical commutation relation, we
must find a non-Hermitian time operator

t̂′s = t̂s + iT̂ , (25)

where T̂ is a Hermitian operator describing the effects of the environment on the
time of processes within the system. The exact meaning of this non-hermitian
time operator is a new direction we will explore in my group.

Lastly, we are interested in understanding the related question of how de-
coherence effects clock degrees of freedom used to measure events. It is well
appreciated that decoherence is responsible for the quantum-classical transition
as one moves from microscopic to macroscopic scales. This means that decoher-
ence is also responsible for the difference between macroscopic (classical) clocks
and atomic-scale (quantum) clocks. We will investigate how different types of
environmental noise affect different clocks and how the quantum-classical tran-
sition is manifest.

3.5 Context Within My Present Research Program

A large segment of my group works at the intersection of quantum chemistry
with quantum computation and information theory as well as open quantum
systems. Our research addresses how quantum systems can be used to simulate
other quantum systems (the field of quantum simualtion) and the effects of
decoherence. We have also worked in fields related to chemical dynamics and
time-dependent processes in chemistry, as well as spectroscopy. A unifying
theme of all this research is that it involves understanding how quantum many-
body systems evolve in time.

Working in time-dependent quantum mechanics has led my group to ask the
deep questions about the fundamental nature of time outlined in this proposal.
I have a large interdisciplinary group with diverse backgrounds in physics and
chemistry, well equipped to address both the computational and conceptual
aspects of the proposed work. However, we do not yet have funding available
to work exclusively on the fundamental role of time. The FQXI grant will be
essential in enabling us to devote proper resources to answer these fundamental
questions.

3.6 Communicating Results to a Wider Audience

The work outlined in this proposal is of broad interest to many scientific com-
munities, ranging from applied chemists to theoretical physicists. The work is
also of high impact as it addresses problems that have remained unanswered
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since the early days of quantum theory. As a result, we believe that the results
of our work will be suitable for journals such as Science and Nature, which are
read by a large and diverse readership. Also, because the proposed work is of
interest to chemists and physicists alike, we intend to present it at conferences
involving many different scientific communities.

I have been involved in developing online course material though the Har-
vardX platform, with open-access to non-experts and lay people throughout the
world. The results of our proposed research are sufficiently fundamental that
they can be presented as part of my introductory online quantum mechanics
course.
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