\(F_{hydro}=-\left(\frac{dE_{hydro}}{dd}\right)=\frac{\left(-2\gamma\left(a-a_0\right)\exp\left(-\frac{d}{D_{hydro}}\right)\right)}{D_{hydro}}\)
considering the interfacial tension \(\gamma=\frac{50mJ}{m^2}\), the exposed area \(a_0=50\ A^2\), the hydrophobic decay length \(D_{hydro}=10\ A\), and \(a\left(d\right)=\left(a_0\left(1-\exp\left(-\frac{d}{D_{hydro}}\right)\right)^{-\frac{1}{2}}\right)\) it is possible to find, for a distance between 1 and 10 A, that the energies vary \(E_{hydro}=14.7-0.7\ \frac{kcal}{mol}\) and the forces between \(F_{hydro}=4.8-102\ pN\).
These intensities are strong enough to perturb the threedim structure of the b2m