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Key points

• Total Least Squares (TLS) is widely used in climatological applications
such as optimal fingerprinting

• Little is known about consistency and bias when variances are not equal
and variables are correlated

• Monte Carl analysis reveals TLS may suffer extreme bias problems in
applications that resemble optimal fingerprinting

Abstract

Total Least Squares (TLS) or orthogonal regression is used to remedy attenu-
ation bias in optimal fingerprinting regressions. Consistency properties in mul-
tivariate applications require strong assumptions about unobservable variance
ratios. Monte Carlo analysis is used herein to examine coefficient biases when
the explanatory variables are correlated and have heterogeneous error variances.
Ordinary Least Squares (OLS) exhibits the expected attenuation bias patterns
which vanish as the noise variances on the explanatory variable disappear. TLS
is generally more biased than OLS except under homogeneous noise variances.
When the explanatory variables are negatively correlated TLS imparts a large
upward bias which gets worse as the noise variance on the explanatory variable
gets smaller. In general without specific diagnostic information TLS should not
be considered an improvement on OLS and can yield extremely biased coeffi-
cients.

Plain Language Summary

Total Least Squares (TLS) or orthogonal regression is a regression technique
widely used when explanatory variables are noisy, such as climate signal detec-
tion regressions, in order to remedy the downward bias associated with Ordinary
Least Squares (OLS). The theory behind TLS was developed for univariate mod-
els but in multivariate applications like signal detection little is known about
bias except in the special case when the noise variances on all variables are
assumed to be equal. Monte Carlo analysis is used herein to study coefficient
biases when the explanatory variables are correlated and the model variables
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have error variances that may differ. The bias pattern of OLS generally goes as
expected, it tends to be relatively small and it vanishes as the noise variance on
the explanatory variable goes to zero. TLS behaves in a very erratic way and
unexpectedly tends to exhibit large biases that get worse as the noise variance
on the explanatory variable goes to zero. When the explanatory variables are
negatively correlated, as is the case with the sample climate signals examined
herein, TLS imparts an upward bias. Valid interpretation of TLS coefficients
requires specific diagnostic information otherwise they may be misleading.

Key words: Total Least Squares; Orthogonal Regression; Optimal Fingerprint-
ing.

1. Introduction

When the explanatory variable in a univariate regression model is measured with
error (denoted Errors-in-Variables or EIV) the ordinary least squares (OLS)
slope coefficient is biased downwards, a phenomenon called attenuation bias
(Wooldridge 2020). Orthogonal regression provides a correction in the univari-
ate regression case as long as the regression model is correctly specified (Carroll
and Ruppert 1996). The estimation technique is referred to as Total Least
Squares (TLS) in the multivariate case (Gleser 1981, Markovsky and Van Huf-
fel 2007). Since Allen and Stott (2003) TLS has been widely-used in climatology
for the purpose of “optimal fingerprinting” regression, which forms the basis of
causal attribution claims for observed climate changes, as well as estimating the
magnitude of the “carbon budget”, or cumulative carbon dioxide emission limits
consistent with climate warming targets (Gillett et al. 2013). Claims about the
validity of TLS coefficient estimates, especially consistency and unbiasedness,
typically require strong assumptions about unobservable error terms. As noted
in Carroll and Ruppert (1996) in a univariate orthogonal regression there are
more parameters to estimate than sufficient statistics available in the sample
which requires imposing an assumption on the ratio of the unknown error vari-
ances. The need for a normalizing assumption carries over to the multivariate
case. Gleser (1981) provides a thorough treatment of the consistency properties
of TLS under the assumption that the error variances in all variables (depen-
dent and explanatory) are equal and homoscedastic. If this assumption does
not hold, he emphasizes (p. 43) that no strongly consistent estimator exists.
Consequently little is known about bias in multivariate TLS applications with
unknown noise variances.

The purpose of this study is to explore coefficient bias properties for a full range
of correlation levels among explanatory variables using a Monte Carlo analysis.
A two-variable EIV model is presented in which the regressors are allowed to
be correlated and the ratio of the variances on dependent and independent
variables is allowed to vary. The bias pattern in OLS follows the expected
downward pattern when the true slope coefficient is positive but when the true
coefficient is zero the bias follows the sign of the correlation between explanatory
variables. In the TLS case biases are generally quite large and tend to be
positive, especially when the explanatory variables are negatively correlated.
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Implications for interpreting results from optimal fingerprinting are discussed.

2. Monte Carlo Simulation

In what follows a bold-face letter (e.g. X) denotes a vector or matrix, a variable
with a single numerical subscript (e.g. 𝑥1) denotes a column of a matrix and a
lower-case variable (e.g. 𝑥𝑖,𝑗) with two subscripts i,j refer to the i,j-th element
of the corresponding matrix. We are interested in estimating a linear model in
which a dependent variable y is regressed on explanatory variables 𝑥1, 𝑥2 where
the sample size is N. The model is thus

y = Xb + e [1]

where e is a homoscedastic random variable with 𝐸 (e|X) = 0. Assume we can-
not observe X directly, instead we observe W = X + U with elements 𝑤𝑖,𝑗 where
U is an 𝑁 ×2 matrix of column-wise zero-mean error terms. The OLS estimator
b̂OLS= (WTW)−1 WTy is a biased and inconsistent estimator of b (Davidson
and MacKinnon 2004, p. 313). TLS regression coefficients are found using the
method of Markovsky and Van Huffel (2007). If the singular value decomposi-
tion of the 𝑁 × 3 matrix [W y] is denoted VΣH and the final column of H is
denoted ℎ3 then the TLS estimate b̂TLS is:

b̂TLS= [− ℎ1,3
ℎ3,3

, − ℎ2,3
ℎ3,3

]
𝑇

[2]

The Gauss-Markov theorem implies that if e in equation [1] satisfies the classical
assumptions (Koop 2008), which include the absence of randomness in W, b̂OLS
is the most efficient estimator of b. When W is random TLS is supposed to
trade off efficiency for a reduction in bias, but as we will see bias in most cases
increases.

We use 𝑁 = 200. In optimal fingerprinting applications the sample sizes are
typically much smaller than this (Allen and Tett 2003, Jones et al. 2016) so it is
a conservative parameter selection. The first simulated x variable is constructed
as a uniform random draw 𝑥1𝑖 = 𝑣1𝑖 where 𝑖 = 1, … , 𝑁 and 𝑣1𝑖 are draws from a
uniform distribution with bounds ±

√
12/2 in order to yield an expected variance

of 1. The second x variable is defined using 𝑥2𝑖 = 𝑣2𝑖 +𝑐𝑥1𝑖 where c is a constant
that induces correlation between the x’s and will vary between -0.9 and +0.9.
The covariance between 𝑥1 and 𝑥2 is 𝐸(𝑥1𝑣2) + 𝑐𝜎2

𝑥1 where 𝜎2
𝑥1 is the variance

of 𝑥1.

Define three error vectors 𝑢𝑗 ∼ 𝑁(0, 1), 𝑗 = (1, 2, 𝑦), representing inde-
pendent zero-mean Gaussian noise terms associated with, respectively, the two
explanatory variables and the dependent variable, having respective associated
variances 𝜎2

𝑥1, 𝜎2
𝑥2 and 𝜎2

𝑦. We observe the noise-contaminated explanatory vari-
ables 𝑤𝑗 = 𝑥𝑗 + 𝑢𝑗𝑠 (𝑗 = 1, 2) where s is a parameter we will use to scale the
variance of 𝑢𝑗 relative to that of 𝑥𝑗. All variables are zero-centered then we
construct pseudo-observations 𝑦𝑖 using:

𝑦𝑖 = 𝛽𝑥1𝑖 + 𝑥2𝑖 + 𝑢iy [3]
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using an assumed true value of 𝛽 which will be, in turn, 0.0 or 1.0. Note that
equation [3] implies there is no omitted variables bias or model error (in the
sense of Fuller 1987 and Carroll and Ruppert 1996) the presence of which is
known to cause TLS to overcorrect attenuation bias.

Estimation is done by applying both OLS and TLS to the regression model

𝑦𝑖 = 𝛽𝑤𝑖1 + 𝛼𝑤𝑖2 + 𝑒𝑖 [4]

yielding, respectively, ̂𝛽OLS and ̂𝛽TLS. The constant term is omitted. We will
ignore ̂𝛼 and confine the discussion to the values of ̂𝛽. The simulations were run
for 19 values of c running sequentially from -0.9 to 0.9 in steps of 0.1, 10 values
of s running from 0.0 to 1.8 in steps of 0.2 and, within each parameter pair, 500
repetitions were run to obtain the mean values of ̂𝛽OLS and ̂𝛽TLS. The values of
c span the range from highly anticorrelated to highly correlated. The values of
s determine the ratio of the variance of the error term on the x’s relative to that
on y. When 𝑠 = 0 the x’s are measured without error and OLS can be expected
to be unbiased. When 𝑠 = 1 the variances are equal which corresponds to the
cases in Gleser (1981) and elsewhere in which TLS is unbiased. When 𝑠 > 1
the explanatory variables are noisier than the dependent variable. In practice,
while a researcher can estimate the correlation 𝑟𝑤 of 𝑤1 and 𝑤2 and thereby
infer the likely value of c, without a measurement of the variances it will be
unknown which value of s best describes the regression being run.

All simulations were done using R version 4.0.2 (R Core Team 2020). The code
file that generates all results shown herein is in the Supplementary Information
file accompanying this paper.

3. Results

3.1 True value of 𝛽 = 0
The results for 𝛽 = 0 are shown in Figure 1 and Tables 1—3. Table 1 reports
the mean estimated values of ̂𝛽OLS and Table 2 reports the same for ̂𝛽TLS. Since
true 𝛽 = 0 the table entries are all estimates of coefficient bias. Table 3 reports
the correlations between 𝑤1 and 𝑤2, denoted 𝑟𝑤, associated with each pair of c
and s coefficients.

The lines in Figure 1 are colour-coded based on the value of s. Red indicates
𝑠 = 1, implying the noise variance on the x’s matches that on y. The range
from gray to black corresponds to s going towards zero, which corresponds to
the explanatory variable error terms disappearing. 𝑠 > 1 is coded with the
coloured lines with blue representing the maximum value of 1.8. Starting with
OLS results (right panel) we see that when the signals are negatively correlated,
corresponding with 𝑐 < 0, the coefficient bias is uniformly negative, and vice
versa. Note that the standard EIV attenuation bias is multiplicative so when
true 𝛽 = 0 OLS is unbiased in the univariate case. Here we see that OLS is
also unbiased in the multivariate case but only when the x’s are uncorrelated.
(OLS is also unbiased when 𝑠 = 0 but this is the trivial case because the x’s are
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non-random.) When the x’s are positively correlated OLS is positively biased.
Regardless of the sign of c Table 1 shows that the magnitude of the bias is
maximized when the noise ratio s is about 0.6-0.8 which in the diagram is
near the red line. It shrinks as 𝑠 → 0 (black line) as expected since the noise
component of the x’s disappears.

The TLS results in the left panel look very different in several respects. Only
when the x’s are uncorrelated (𝑐 = 0) is TLS unbiased. When the x’s are nega-
tively correlated the coefficient bias is generally positive and can be extremely
large. Moreover it gets worse rather than better as s approaches 0 (the line
shading goes from gray to black). Likewise when 𝑐 > 0 the bias is generally
negative although unstable and gets larger as 𝑠 → 0. When 𝑠 = 1 (red line) the
bias stays near zero when c falls in the range [0, 0.5] (see Table 2) which, from
Table 3, can be seen to correspond to values of 𝑟𝑤 in the range [0, 0.3]. Outside
of that interval the bias is unpredictable. Note, however, that the entire shape
of the red line was unstable upon repetitions with different random number
seeds so the profile shown is not consistently observed. When 𝑠 > 1 as it gets
larger the bias pattern begins to resemble that for OLS but as shown in Tables
1 and 2 it is uniformly larger in magnitude.

3.2 True value of 𝛽 = 1
Since 𝛽 no longer equals 0 OLS can be expected to exhibit attenuation bias.
The results are shown in Figure 2 and Tables S1 and S2 in the supplement.
The correlation values from Table 3 are nearly identical and are not repeated.
Looking at the right panel in Figure 2, When 𝑠 = 0 OLS is, of course, unbiased,
but as s gets larger the downward bias grows, and also gets worse as c declines.
In all cases the coefficient estimates remain between 0 and 1.

Looking at the left panel the TLS results are pretty dismal. When 𝑠 = 1 and
c lies within [−0.4, 0.2] the bias is relatively small, although again the shape
of the red line can change dramatically upon repetition. As s goes to zero the
bias quickly becomes large and positive for 𝑐 < 0 and of indeterminate sign for
𝑐 > 0. When 𝑠 > 1 the bias pattern is more stable and is uniformly negative,
resembling the OLS pattern but with smaller magnitudes for most values of c.

For both cases examined herein, it is unreasonable to assume in practice that c
will be zero but there is an argument for assuming 𝑠 = 1. It can be shown (Gleser
1981) that if 𝑠 ≠ 1 but its value is known the model [1] can be transformed into
another form in which the noise variances are equalized and the biases would
therefore correspond to those shown in red in Figures 1 and 2. The desired
slope coefficients can be recovered using an inverse operation. However, if s is
unknown this remedy is unavailable.

3.3 Application: Optimal Fingerprinting

TLS is widely-used as part of the optimal fingerprinting or signal detection
methodology (Allen and Tett 2003, DelSole et al. 2019). The dependent vari-
able is a measurement of a climate pattern to be explained, such as a vector of
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observed temperature trends in spatial gridcells over the Earth’s surface. The
explanatory variables are climate model-generated analogues or “signals” for
the same time interval with the model run under different assumptions such as
anthropogenic greenhouse gas (GHG) forcing only and natural (NAT) forcing
only. A pre-whitening operator is applied to remove heteroskedasticity associ-
ated with spatial patterns of natural climate variability, which we assume has
been done herein. If the regression coefficient associated with a signal is signifi-
cantly greater than zero the signal is said to have been “detected” and if it is not
significantly different from unity the result is said to have passed a model con-
sistency test. Consequently the estimation of coefficients in the [0, 1] interval is
deemed to be of considerable scientific interest in attributing observed climate
change to GHGs. Use of two explanatory patterns in a fingerprinting regression,
such as GHG and NAT, is typical, although some authors have attempted to
identify three signals at a time (e.g. Jones et al 2016).

The rationale for assuming EIV is that the GHG and NAT signals are gener-
ated by climate models that have internal representations of large-scale weather
systems and any run of such a model will have sampling noise, in the sense that
the same model re-run with nearly identical initial conditions would generate
slightly different results. Consequently while the model output is observed with-
out error, it is a potentially noisy observation of the “true” underlying signal.

Correlations between model-generated climate signals are not typically discussed
or reported in optimal fingerprinting applications. Neither the magnitude of the
error variance on the signals from a single climate model run nor its relative
magnitude (s) to 𝜎2

𝑦 can be estimated directly so there is no assurance that
𝑠 = 1. Moreover it is common in optimal fingerprinting applications to use
multiple climate models and compare results from individual models to those
using the ensemble average signals so even if it were the case that 𝑠 = 1 for
all individual model regressions, it would shrink towards zero for the ensemble
average.

We obtained forcing patterns (anthropogenic GHG and natural) from nine cli-
mate models archived as part of the Fifth Coupled Model Intercomparison
Project (CMIP5) archive and were taken as-is from the Koninklijk Nederlands
Meteorologisch Instituut Climate Data Explorer site (van Oldenborg, 2016).
The signals were defined as linear temperature trends over the 1950-2005 in-
terval by grid cell associated with each forcing pattern, and for each model the
correlation between the GHG and natural forcing signal patterns were computed.
All nine correlations were negative with magnitudes ranging from about -0.2 to
-0.9. This approximately corresponds with the upper left quadrant of the left
panel of Figure 1 although not all combinations of s and c are compatible with
these values of 𝑟𝑤. Figure 3 redraws this section with the appropriate trun-
cations and all values mapped against corresponding 𝑟𝑤 values. In the region
−0.4 < 𝑟𝑤 < −0.2 when 𝑠 = 1 (red line) the bias values are positive, they be-
come negative if s increases and positive if s decreases. For 𝑟𝑤 < −0.4 the bias
is negative if 𝑠 = 1, it becomes very erratic if 𝑠 = 0.8 and is uniformly positive

6



and generally >1 if 𝑠 < 0.8.

As a specific example suppose true 𝛽 = 0 and 𝑟𝑤 = −0.4. Table 3 indicates
that s must therefore be less than 1.2. If 𝑠 = 1 then c must be about -0.8 which
according to Table 2 is associated with a bias of about -0.2. If 𝑠 = 0.8 then c
must be about -0.6 and the bias is about +1.2. If 𝑠 = 0.6 then c must be about
-0.4 and the bias is about +1.3. If 𝑠 = 0.2 then 𝑐 ≅ 0.25 and the bias equals
about +1.0. These are the values indicated in Figure 3 for 𝑟𝑤 = −0.4.

It is often supposed that ensemble averaging allows a climate signal to emerge
more strongly from background noise. The results in Jones et al. (2016) illus-
trate this: TLS-based fingerprinting coefficients from 15 individual climate mod-
els are very unstable and do not, as a group, yield a clear conclusion about the
detectability of GHG’s on the climate, whereas averaging the model-generated
signals yields a GHG coefficient close to 1.0, supporting an inference of causal
detection. However the problem revealed by the present analysis is that when
model-generated signals are averaged together, since 𝜎2

𝑦 remains constant 𝑠 → 0
and the bias pattern converges towards the black lines shown in Figures 1—3.
A signal coefficient near 1.0 when s is known to be close to zero is consistent
with a true 𝛽 = 0.

For the purpose of diagnosing likely bias in TLS regressions It is useful to
compute 𝑟𝑤 and to compare TLS and OLS coefficient values. If 𝑟𝑤 < 0 and
the TLS and OLS coefficient estimates are both negative it is likely the case
that true 𝛽 = 0 and 𝑠 ≥ 1 in which case OLS is the preferred estimator since its
downward bias is smaller. If ̂𝛽TLS > 0 and ̂𝛽OLS < 0 it is still likely that true
𝛽 = 0, 𝑠 < 1 and TLS exhibits a potentially large upward bias, implying OLS
is again the preferred estimator. If both coefficients are between 0 and 1 for
individual model signals while for the ensemble average the OLS coefficient → 1
from below while the TLS coefficient exceeds 1 and potentially becomes large,
this indicates the likely true value of 𝛽 > 0 and while TLS is probably valid for
individual model estimate, OLS would be better for the ensemble mean.

Although OLS turns out often to be preferred when compared to TLS, in gen-
eral the researcher should consider using an Instrumental Variables estimator
since it provides a consistent estimator in the presence of EIV (Davidson and
MacKinnon 2004).

4. Conclusion

A Monte Carlo analysis allowing explanatory variables to be correlated and vari-
ances to differ shows serious potential problems with TLS as compared to OLS.
OLS exhibits the expected attenuation bias but TLS coefficients are typically
biased even more and exhibit extreme instability depending on the correlation
of the explanatory variables. If the explanatory variables are negatively corre-
lated TLS has the particularly undesirable property that as the EIV problem
declines (the noise variance on the x variables → 0) the positive bias gets larger.
Practitioners of TLS should always report the correlation of the explanatory
variables and use a comparison with OLS to assess the nature of any bias that
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may be present with TLS. In the absence of such diagnostics an apparently pos-
itive slope coefficient in a TLS regression is not particularly meaningful since it
can easily arise even when the true value of the coefficient is zero.
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TABLES

Noise scaling (s) on x’s
c 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-0.9 -0.007 -0.110 -0.231 -0.295 -0.293 -0.270 -0.245 -0.216 -0.187 -0.173
-0.8 -0.010 -0.098 -0.227 -0.273 -0.274 -0.259 -0.225 -0.200 -0.175 -0.156
-0.7 0.007 -0.078 -0.203 -0.251 -0.252 -0.235 -0.210 -0.179 -0.161 -0.138
-0.6 0.007 -0.076 -0.174 -0.223 -0.224 -0.208 -0.187 -0.161 -0.143 -0.122
-0.5 0.000 -0.057 -0.156 -0.196 -0.196 -0.186 -0.158 -0.138 -0.122 -0.105
-0.4 -0.006 -0.049 -0.134 -0.163 -0.163 -0.151 -0.133 -0.117 -0.098 -0.084
-0.3 0.000 -0.042 -0.101 -0.130 -0.125 -0.113 -0.104 -0.086 -0.076 -0.065
-0.2 0.000 -0.027 -0.061 -0.086 -0.088 -0.077 -0.069 -0.060 -0.048 -0.043
-0.1 0.001 -0.011 -0.034 -0.041 -0.043 -0.043 -0.036 -0.034 -0.025 -0.020
0 0.001 0.003 -0.001 0.000 0.001 0.002 -0.002 0.001 0.000 0.002
0.1 -0.003 0.014 0.032 0.047 0.044 0.037 0.035 0.033 0.025 0.021
0.2 0.002 0.035 0.062 0.087 0.087 0.079 0.068 0.059 0.050 0.044
0.3 0.001 0.040 0.098 0.124 0.126 0.118 0.104 0.086 0.073 0.067
0.4 -0.009 0.050 0.127 0.169 0.166 0.153 0.134 0.114 0.099 0.084
0.5 -0.002 0.062 0.156 0.198 0.200 0.185 0.164 0.142 0.118 0.101
0.6 -0.012 0.069 0.175 0.223 0.225 0.206 0.186 0.161 0.143 0.122
0.7 -0.006 0.086 0.208 0.255 0.252 0.233 0.211 0.181 0.163 0.139
0.8 0.005 0.103 0.221 0.276 0.269 0.257 0.232 0.203 0.174 0.155
0.9 0.001 0.107 0.235 0.286 0.299 0.268 0.248 0.217 0.193 0.166

Table 1: Estimated value of 𝛽OLS when true 𝛽 = 0.
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Noise scaling (s) on x’s
c 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-0.9 7.933 7.282 6.682 396.725 3.759 -1.407 -0.192 -0.297 -0.256 -0.239
-0.8 5.680 5.666 6.220 1.339 -2.383 -0.211 -0.247 -0.269 -0.245 -0.217
-0.7 4.375 4.220 3.764 3.394 4.238 0.165 -0.214 -0.241 -0.226 -0.190
-0.6 3.393 3.207 3.035 2.500 1.153 0.065 -0.208 -0.224 -0.200 -0.168
-0.5 2.592 2.496 2.215 1.970 -3.352 0.385 -0.180 -0.191 -0.172 -0.144
-0.4 1.952 1.827 1.602 1.308 0.695 0.036 -0.153 -0.166 -0.137 -0.115
-0.3 1.350 1.276 1.111 0.829 6.235 0.085 -0.120 -0.121 -0.107 -0.089
-0.2 0.833 0.828 0.713 0.510 0.253 -0.019 -0.085 -0.086 -0.068 -0.059
-0.1 0.402 0.392 0.344 0.246 0.136 0.015 -0.042 -0.050 -0.036 -0.027
0 0.004 -0.001 -0.001 -0.006 0.010 0.004 -0.004 0.002 0.000 0.002
0.1 -0.421 -0.397 -0.355 -0.241 -0.126 -0.005 0.037 0.049 0.034 0.028
0.2 -0.858 -0.813 -0.729 -0.529 -0.276 -0.009 0.080 0.082 0.071 0.059
0.3 -1.321 -1.290 -1.139 -0.777 -0.495 -0.007 0.140 0.119 0.104 0.092
0.4 -1.880 -1.853 -1.678 -1.280 -0.659 -0.062 0.159 0.163 0.140 0.115
0.5 -2.580 -2.442 -2.233 -1.632 -0.668 0.063 0.187 0.200 0.165 0.137
0.6 -3.304 -3.283 -3.010 -1.798 -1.577 -0.067 0.204 0.220 0.202 0.166
0.7 -4.319 -4.323 -5.892 -3.102 -1.747 -0.064 0.219 0.247 0.231 0.191
0.8 -5.734 -6.358 -6.587 -4.462 -2.496 4.852 0.263 0.276 0.241 0.213
0.9 -7.422 -7.883 -6.781 -4.934 -1.446 1.432 0.293 0.285 0.269 0.226

Table 2: Estimated value of 𝛽TLS when true 𝛽 = 0.

Noise scaling (s) on x’s
c 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
-0.9 -0.87 -0.84 -0.76 -0.65 -0.54 -0.45 -0.36 -0.30 -0.25 -0.21
-0.8 -0.85 -0.82 -0.73 -0.61 -0.50 -0.41 -0.34 -0.28 -0.23 -0.19
-0.7 -0.81 -0.78 -0.69 -0.57 -0.46 -0.38 -0.31 -0.25 -0.21 -0.17
-0.6 -0.77 -0.73 -0.63 -0.52 -0.41 -0.34 -0.27 -0.22 -0.18 -0.15
-0.5 -0.71 -0.67 -0.57 -0.47 -0.36 -0.29 -0.23 -0.18 -0.15 -0.12
-0.4 -0.62 -0.58 -0.49 -0.39 -0.31 -0.23 -0.18 -0.15 -0.12 -0.10
-0.3 -0.51 -0.48 -0.39 -0.30 -0.24 -0.19 -0.14 -0.12 -0.09 -0.07
-0.2 -0.37 -0.34 -0.28 -0.21 -0.16 -0.12 -0.09 -0.08 -0.06 -0.05
-0.1 -0.19 -0.18 -0.14 -0.10 -0.08 -0.07 -0.05 -0.04 -0.03 -0.02
0 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
0.1 0.20 0.18 0.14 0.11 0.08 0.06 0.06 0.04 0.03 0.03
0.2 0.37 0.34 0.28 0.21 0.16 0.12 0.10 0.08 0.07 0.05
0.3 0.51 0.48 0.40 0.30 0.24 0.18 0.14 0.11 0.09 0.07
0.4 0.62 0.59 0.50 0.39 0.31 0.24 0.18 0.15 0.12 0.10
0.5 0.71 0.67 0.57 0.46 0.37 0.29 0.24 0.19 0.15 0.13
0.6 0.77 0.73 0.64 0.52 0.42 0.33 0.27 0.22 0.18 0.15
0.7 0.81 0.78 0.69 0.57 0.47 0.37 0.30 0.24 0.20 0.17
0.8 0.85 0.82 0.73 0.61 0.51 0.41 0.34 0.28 0.22 0.19
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Noise scaling (s) on x’s
0.9 0.87 0.84 0.76 0.65 0.54 0.45 0.36 0.31 0.25 0.21

Table 3: Correlations between 𝑤1 and 𝑤2 for indicated values of s and c.

FIGURES

Figure 1. Mean estimated values of ̂𝛽 using TLS (left) or OLS (right) when
the true value of 𝛽 = 0.
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Figure 2. Mean estimated values of ̂𝛽 using TLS (left) or OLS (right) when
the true value of 𝛽 = 1.
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Figure 3. Bias of TLS estimator in region (−0.9 < 𝑟𝑤 < −0.2) when true
𝛽 = 0.

13


