POSTPRINT authorea.com/8354
Main Data History
Export
Show Index Toggle 3 comments
  •  Quick Edit
  • Compressed Sensing for the Fast Computation of Matrices: Application to Molecular Vibrations

    Abstract

    This article presents a new method to compute matrices from numerical simulations based on the ideas of sparse sampling and compressed sensing. The method is useful for problems where the determination of the entries of a matrix constitutes the computational bottleneck. We apply this new method to an important problem in computational chemistry: the determination of molecular vibrations from electronic structure calculations, where our results show that the overall scaling of the procedure can be improved in some cases. Moreover, our method provides a general framework for bootstrapping cheap low-accuracy calculations in order to reduce the required number of expensive high-accuracy calculations, resulting in a significant 3\(\times\) speed-up in actual calculations.

    Introduction

    Matrices are one of the most fundamental objects in the mathematical description of nature, and as such they are ubiquitous in every area of science. For example, they arise naturally in linear response theory as the first term in a multidimensional Taylor series, encoding the response of each component of the system to each component of the stimulus. Hence, in many scientific applications, matrices contain the essential information about the system being studied.

    Despite their ubiquity, the calculation of matrices often requires considerable computational effort. Returning to the linear response theory example, it might be necessary to individually calculate the response of every component of the system to every component of the stimulus and, depending on the area of application, each individual computation may itself be quite expensive. The overall expense stems from the fact that evaluating a matrix of dimension \(N\times M\) requires, in principle, the individual evaluation of \(N\times M\) elements. But this does not always have to be the case.

    For example, if we know a priori the eigenvectors of a \(N\times N\) diagonalizable matrix, then we can obtain the full matrix by only calculating the \(N\) diagonal elements. Similarly, a sparse matrix, which contains many zero elements, can be evaluated by calculating only the non-zero elements, if we know in advance where such elements are located. In this article, we present a general approach that can produce a considerable reduction in the cost of constructing a matrix in many scientific applications by substantially reducing the number of elements that need to be calculated.

    The key numerical procedure of our approach is a method to cheaply recover sparse matrices with a cost that is essentially proportional to the number of non-zero elements. The matrix reconstruction procedure is based on the increasingly popular compressed sensing approach (Candes 2006, Donoho 2006, Candes 2008), a state-of-the-art signal processing technique developed to minimize the amount of data that needs to be measured to reconstruct a sparse signal.

    The use of compressed sensing and sparse sampling methods for scientific development has been dominated by experimental applications (Hu 2009, Doneva 2010, Gross 2010, Kazimierczuk 2011, Holland 2011, Shabani 2011, Zhu 2012, Sanders 2012, Song 2012, August 2013, Xu 2013). However compressed sensing is also becoming a tool for theoretical applications (Andrade 2012, Almeida 2012, Schaeffer 2013, Nelson 2013, Markovich 2014). In particular, in previous work we have shown that compressed sensing can also be used to reduce the amount of computation in numerical simulations (Andrade 2012).

    In this article, we apply compressed sensing to the problem of computing matrices. This method has two key properties. First, the cost of the procedure is quasi-linear with the size of the number of non-zero elements in the matrix, without the need to know a priori the location of the non-zero elements. Second, the rescontruction is exact. Furthermore, the utility of the method extends beyond the computation of a priori sparse matrices. In particular, the method suggests a new computing paradigm in which one develops methods to find a basis in which the matrix is known or suspected to be sparse, based on the characteristics and prior knowledge of the matrix, and then afterwards attempts to recover the matrix at lower computational cost.

    To demonstrate the power of our approach, we apply these ideas to an important problem in quantum chemistry: the determination of the vibrational modes of molecules from electronic structure methods. These methods require the calculation of the matrix of the second derivatives of the energy with respect to the nuclear displacements, known as the force-constant or Hessian matrix. This matrix is routinely obtained in numerical simulations by chemists and physicists, but it is relatively expensive to compute when accurate quantum mechanical methods are used. Our application shows that we can exploit the sparsity of the matrix to make important improvements in the efficiency of this calculation. At the same time, our method provides a general framework for bootstrapping cheap low-accuracy calculations to reduce the required number of expensive high-accuracy calculations, something which previously was not possible to do in general.

    We begin by discussing how compressed sensing makes it practical to take a new approach for the calculation of matrices based on finding strategies to make the matrix sparse. Next, we introduce the mathematical foundations of the method of compressed sensing and apply them to the problem of sparse matrix reconstruction. This is the numerical tool that forms the foundation of our approach. Finally, we illustrate these new ideas by applying them to the problem of obtaining molecular vibrations from quantum mechanical simulations.