REFERENCES
Adrian, E. D., & Matthews, B. H. C. (1934). The berger rhythm:
potential changes from the occipital lobes in man. Brain ,57 , 355–385.
Başar, E., Başar-Eroglu, C., Karakaş, S., & Schürmann, M. (2001).
Gamma, alpha, delta, and theta oscillations govern cognitive processes.International Journal of Psychophysiology , 39 (2–3),
241–248. https://doi.org/10.1016/S0167-8760(00)00145-8
Buergers, S., & Noppeney, U. (2022). The role of alpha oscillations in
temporal binding within and across the senses. Nature Human
Behaviour , 6 (5), 732–742.
https://doi.org/10.1038/s41562-022-01294-x
Busch, N. A., Dubois, J., & VanRullen, R. (2009). The phase of ongoing
EEG oscillations predicts visual perception. Journal of
Neuroscience , 29 (24), 7869–7876.
https://doi.org/10.1523/JNEUROSCI.0113-09.2009
Champely, S. (2020). pwr: Basic Functions for Power Analysis (Version
1.3-0) [R package]. https://CRAN.R-project.org/package=pwr
Clayton, M. S., Yeung, N., & Cohen Kadosh, R. (2018). The many
characters of visual alpha oscillations. European Journal of
Neuroscience , 48 (7), 2498–2508.
https://doi.org/10.1111/ejn.13747
Cohen, M. X. (2014). Fluctuations in oscillation frequency control spike
timing and coordinate neural networks. Journal of Neuroscience ,34 (27), 8988–8998.
https://doi.org/10.1523/JNEUROSCI.0261-14.2014
Ergenoglu, T., Demiralp, T., Bayraktaroglu, Z., Ergen, M., Beydagi, H.,
& Uresin, Y. (2004). Alpha rhythm of the EEG modulates visual detection
performance in humans. Cognitive Brain Research , 20 (3),
376–383. https://doi.org/10.1016/j.cogbrainres.2004.03.009
Frossard J. & Renaud, O. (2021). Permutation Tests for Regression,
ANOVA, and Comparison of Signals: The permuco Package. Journal of
Statistical Software, 99(15 ), 1-32.
https://doi.org/10.18637/jss.v099.i15
Haarlem, C. S., O’Connell, R. G., Mitchell, K. J. & Jackson, A. L. (in
press). The speed of sight: individual variation in critical flicker
fusion thresholds. PLoS One .
Hanslmayr, S., Klimesch, W., Sauseng, P., Gruber, W., Doppelmayr, M.,
Freunberger, R., & Pecherstorfer, T. (2005). Visual discrimination
performance is related to decreased alpha amplitude but increased phase
locking. Neuroscience Letters , 375 (1), 64–68.
https://doi.org/10.1016/j.neulet.2004.10.092
Harris, A. M. (2023). Phase resets undermine measures of phase-dependent
perception. Trends in Cognitive Sciences , 27 (3), 224–226.
https://doi.org/10.1016/j.tics.2022.12.008
Herzog, M. H., Kammer, T., & Scharnowski, F. (2016). Time Slices: What
Is the Duration of a Percept? PLoS Biology , 14 (4).
https://doi.org/10.1371/journal.pbio.1002433
Kayser, J., & Tenke, C. E. (2006). Principal components analysis of
Laplacian waveforms as a generic method for identifying ERP generator
patterns: I. Evaluation with auditory oddball tasks. Clinical
Neurophysiology , 117 (2), 348–368.
https://doi.org/10.1016/j.clinph.2005.08.034
Kayser, J., & Tenke, C. E. (2015). On the benefits of using surface
Laplacian (Current Source Density) methodology in electrophysiology.International Journal of Psychophysiology , 97 (3),
171–173. https://doi.org/10.1016/j.ijpsycho.2015.06.001
Keil, J., & Senkowski, D. (2018). Neural Oscillations Orchestrate
Multisensory Processing. Neuroscientist , 24 (6), 609–626.
https://doi.org/10.1177/1073858418755352
Keitel, C., Ruzzoli, M., Dugué, L., Busch, N. A., & Benwell, C. S. Y.
(2022). Rhythms in cognition: The evidence revisited. European
Journal of Neuroscience , 55 (11–12), 2991–3009.
https://doi.org/10.1111/ejn.15740
Klimesch, W. (2012). Alpha-band oscillations, attention, and controlled
access to stored information. Trends in Cognitive Sciences ,16 (12), 606–617. https://doi.org/10.1016/j.tics.2012.10.007
Mathewson, K. E., Gratton, G., Fabiani, M., Beck, D. M., & Ro, T.
(2009). To see or not to see: Prestimulus α phase predicts visual
awareness. Journal of Neuroscience , 29 (9), 2725–2732.
https://doi.org/10.1523/JNEUROSCI.3963-08.2009
Michail, G., Toran Jenner, L., & Keil, J. (2022). Prestimulus alpha
power but not phase influences visual discrimination of long-duration
visual stimuli. European Journal of Neuroscience ,55 (11–12), 3141–3153. https://doi.org/10.1111/ejn.15169
Morrow, A., & Samaha, J. (2022). No evidence for a single oscillator
underlying discrete visual percepts. European Journal of
Neuroscience , 55 (11–12), 3054–3066.
https://doi.org/10.1111/ejn.15362
Nelli, S., Itthipuripat, S., Srinivasan, R., & Serences, J. T. (2017).
Fluctuations in instantaneous frequency predict alpha amplitude during
visual perception. Nature Communications , 8 (1).
https://doi.org/10.1038/s41467-017-02176-x
Norcia, A. M., Appelbaum, L. G., Ales, J. M., Cottereaur, B. R., &
Rossion, B. (2015). The steady state VEP in research. Journal of
Vision , 15 (6), 1–46. https://doi.org/10.1167/15.6.4.doi
Oostenveld, R., & Praamstra, P. (2001). The five percent electrode
system for high-resolution EEG and ERP measurements. Clinical
Neurophysiology , 112 (4), 713–719.
https://doi.org/10.1016/S1388-2457(00)00527-7
Pfurtscheller, G., Stancák, A., & Neuper, C. (1996). Event-related
synchronization (ERS) in the alpha band - An electrophysiological
correlate of cortical idling: A review. International Journal of
Psychophysiology , 24 (1–2), 39–46.
https://doi.org/10.1016/S0167-8760(96)00066-9
Posit team (2023). RStudio: Integrated Development Environment for
R (Version 2023.3.0.386). Posit Software, PBC, Boston, MA.
http://www.posit.co/
Prins, N. & Kingdom, F. A. A. (2018). Applying the Model-Comparison
Approach to Test Specific Research Hypotheses in Psychophysical Research
Using the Palamedes Toolbox. Frontiers in psychology, 9:1250 .
https://doi.org/10.3389/fpsyg.2018.01250
R Core Team (2022). R: A language and environment for statistical
computing (Version 4.2.1). R Foundation for Statistical Computing,
Vienna, Austria. https://www.R-project.org/.
Regan, D. (1966). Some characteristics of average steady-state and
transient responses evoked by modulated light.Electroencephalography and Clinical Neurophysiology ,20 (3), 238–248. https://doi.org/10.1016/0013-4694(66)90088-5
Ruzzoli, M., Torralba, M., Morís Fernández, L., & Soto-Faraco, S.
(2019). The relevance of alpha phase in human perception. Cortex ,120 , 249–268. https://doi.org/10.1016/j.cortex.2019.05.012
Samaha, J., & Postle, B. R. (2015). The Speed of Alpha-Band
Oscillations Predicts the Temporal Resolution of Visual Perception.Current Biology , 25 (22), 1–6.
https://doi.org/10.1016/j.cub.2015.10.007
Schroeder, C. E., & Lakatos, P. (2009). Low-frequency neuronal
oscillations as instruments of sensory selection. Trends in
Neurosciences , 32 (1), 9–18.
https://doi.org/10.1016/j.tins.2008.09.012
The MathWorks Inc. (2022). Statistics and Machine Learning Toolbox
Documentation, Natick, Massachusetts: The MathWorks Inc.
https://www.mathworks.com/help/stats/index.html
VanRullen, R., & Koch, C. (2003). Is perception discrete or continuous?Trends in Cognitive Sciences , 7 (5), 207–213.
https://doi.org/10.1016/S1364-6613(03)00095-0
Voeten, C. C. (2022). permutes: Permutation Tests for Time Series
Data (Version 2.6) [R package].
https://CRAN.R-project.org/package=permutes
Ward, L. M. (2003). Synchronous neural oscillations and cognitive
processes. Trends in Cognitive Sciences , 7 (12), 553–559.
https://doi.org/10.1016/j.tics.2003.10.012