Figure
Legends
Figure 1. Total biomass (a) and Ectomycorrhizal (ECM)
colonization (b), are significantly affected by the rarity level of
plant host across all soil conditions in a common garden environment
(Wooliver et al. 2018). Dark septate endophyte (DSE) colonization does
not vary by the rarity level of plant host (c). Rarity level 1
represents the rarest species.
Figure 2. Total biomass (a) and Ectomycorrhizal (ECM)
colonization (b) of rare and common eucalypts are significantly affected
by Nitrogen (N) treatment (low vs. high) and rarity level. Plants
conditioned in high N have higher total biomass, but significantly lower
ECM colonization than counterparts conditioned in low N across all
rarity levels. The negative relationship between total biomass and ECM
colonization is however, most prevalently displayed in the rarest
species compared to common species.
Figure 3. Total biomass (a) and Ectomycorrhizal (ECM)
colonization (b) of rare and common eucalypts are significantly affected
by the phylogenetic origin of conditioned soil treatments (soil origin)
in which they are growing. Dark septate endophyte (DSE) colonization (c)
does not vary by the phylogenetic origin of conditioned soil.
Conspecific soil inoculum is conditioned by the same species, similar
lineage soil inoculum is conditioned by phylogenetically similar
species, and opposite lineage soil inoculum is conditioned by
phylogenetically dissimilar species on the Tasmanian Eucalyptusphylogeny (Wooliver et al. 2018). Rarity level 1 represents the rarest
species.
Figure 4. Belowground feedbacks in Ectomycorrhizal (ECM)
colonization drive aboveground feedbacks in plant biomass. The total
biomass of rare species display strongly negative plant-soil feedbacks,
while the ECM colonization of rare species display strongly positive
plant-soil feedbacks. The strength of these feedbacks are further
affected by the phylogenetic origin of soil inoculum and rarity level of
plant host. Conspecific to same lineage treatments represent differences
in plant biomass and ECM colonization between plants conditioned by
their own soil versus plants conditioned by phylogenetically similar
species’ soil. Conspecific to opposite lineage treatments represent
differences in plant biomass and ECM colonization between plants
conditioned by their own soil versus plants conditioned by
phylogenetically dissimilar species’ soil. Rarity level 1 represents the
rarest species.
Figure 5 . The correlation between total biomass and
Ectomycorrhizal (ECM) colonization are dependent on plant host rarity
and the phylogenetic relatedness of conditioned soil (soil origin). As
ECM colonization increases, total biomass significantly decreases across
rarity levels in phylogenetically distant soil, such that the rarest
species display lower biomass but higher ECM colonization than common
species.
References
Ames, G.M., Wall, W.A., Hohmann, M.G., Wright, J.P. (2017). Trait space
of rare plants in a fire-dependent ecosystem. Conserv. Biol. ,
31(4): 903-911. doi: 10.1111/cobi.12867.
Anacker, B.L., Klironomos, J.N., Maherali, H., Reinhart, K.O., Strauss,
S.Y. (2014). Phylogenetic conservatism in plant-soil feedback and its
implications for plant abundance. Ecol. Lett ., 17(12): 1613-1621.
doi: 10.1111/ele.12378.
Bever, J.D. (2003). Soil community feedback and the coexistence of
competitors: conceptual frameworks and empirical tests. New
Phytol. , 157(3): 465-473. doi: 10.1046/j.1469-8137.2003.00714.x.
Bothe, H., Turnau, K., Regvar, M. (2010). The potential role of
arbuscular mycorrhizal fungi in protecting endangered plants and
habitats. Mycorrhiza , 21: 445-457. doi:
10.1007.s00572-010-0332-4.
Boyd, J.N., Anderson, J.T., Brzyski, C., Cruse-Sanders, J. (2022).
Eco-evolutionary causes and consequences of rarity in plants: a
meta-analysis. New Phytol. , 235(3): 1272-1286. doi:
10.1111/nph.18172.
Boyd, J.N., Odell, J., Cruse-Sanders, J., Rogers, W., Anderson, J.T.,
Baskauf, C., Brzyski, J. (2022). Phenotypic plasticity and genetic
diversity elucidate rarity and vulnerability of an endangered riparian
plant. Ecosphere , 13(14), e3996. doi: 10.1002/ecs2.3996.
Bragion, E.F.A., Coelho, G.A.O., de Siqueira, F.F., Uriarte, M., van den
Berg, E. (2018). Sharp differentiation on the performance of plant
functional groups across natural edges. J. Plant Ecol. , 12(1):
186-198. doi: 10.1093/jpe/rty009.
Caruso, C.M., Maherali, H., Martin, R.A. (2020). A meta-analysis of
natural selection on plant functional traits. Int. J. Plant Sci. ,
181(1). doi: 10.1086/706199.
Chappell, C.R., Dhami, M.K., Bitter, M.C., Czech, L., Paredes, S.H.,
Barrie, F.B., Calderón, Y., Eritano, K., Golden, L.A., Hekmat-Scafe, D.,
Hsu, V., Kieschnick, C., Malladi, S., Rush, N., Fukami, T. (2022).
Wide-ranging consequences of priority effects governed by an overarching
factor. eLife , 11: e79647. doi: 10.7554/eLife.79647.
Chung, Y.A., Miller, T.E.X., Rudgers, J.A. (2015). Fungal symbionts
maintain a rare plant population but demographic advantage drives the
dominance of a common host. J. Ecol. , 103(4): 967-977. doi:
10.1111/1365-2745.12406.
Cole, C.T. (2003). Genetic variation in rare and common plants.Annu. Rev. Ecol. Evol. Syst. , 34: 213-237. doi:
10.1146/annurev.ecolsys.34.030102.151717.
Cortois, R., Schröder-Georgi, T., Weigelt, A., van der Putten, W.H., De
Deyn, G.B. (2016). Plant-soil feedbacks: the role of plant functional
group and plant traits. J. Ecol. , 104(6): 1608-1617. doi:
10.1111/1365-2745.12643.
Cosentino, F., Seamark, E.C.J., Van Cakenberghe, V., Maiorano, L.
(2023). Not only climate: The importance of biotic interactions in
shaping species distributions at macro scales. Ecol. Evol. ,
13(3): e9855. doi: 10.1002/ece3.9855.
Cornwell, W.K. & Ackerly, D.D. (2010). A link between plant traits and
abundance: evidence from coastal California woody plants. J.
Ecol. , 98(4): 814-821. doi: 10.1111/j.1365-2745.2010.01662.x.
Crawford, K.M., Bauer, J.T., Comita, L.S., Eppinga, M.B., Johnson, D.J.,
Mangan, S.A., Queenborough, S.A., Strand, A.E., Suding, K.N.,
Umbanhowar, J., Bever, J.D. (2019). When and where plant-soil feedbacks
may promote plant co-existence: a meta-analysis. Ecol. Lett. ,
22(8): 1274-1284. doi: 10.1111/ele.13278.
Dee, L.E., Cowles, J., Isbell, F., Pau, S., Gaines, S.D., Reich, P.B.
(2019). When do ecosystem services depend on rare species? Trends
Ecol. Evol. , 34(8): 746-758. doi: 10.1016/j.tree.2019/03/010.
Enquist, B.J., Feng, X., Boyle, B., Maitner, B., Newman, E.A.,
Jørgensen, P.M., Roehrdanz, P.R., Thiers, B.M., Burger, J.R., Corlett,
R.T., Couvreur, T.L.P., Dauby, G., Donoghue, J.C., Foden, W., Lovett,
J.C., Marquet, P.A., Merow, C., Midgley, G., Morueta-Holme, N., Neves,
D.M., Oliveira-Filho, A.T., Kraft, N.J.B., Park, D.S., Peet, R.K.,
Pillet, M., Serra-Diaz, J.M., Sandel, B., Schildhauer, M., Šímová, I.,
Violle, C., Wieringa, J.J., Wiser, S.K., Hannah, L., Svenning, J.C.,
McGill, B.J. (2019). The commonness of rarity across land plants.Sci. Adv. , 5(11), eaaz0414. doi: 10.1126/sciadv.aaz0414.
Fitzpatrick, C.R., Gehant, L., Kotanen, P.M., Johnson, M.T.J. (2017).
Phylogenetic relatedness, phenotypic similarity and plant-soil
feedbacks. J.Ecol. , 105(3): 786-800. doi:
10.1111/1365-2745.12709.
Fitzpatrick, C.R., Copeland, J., Wang, P.W., Guttman, D.S., Kotanen,
P.M., Johnson, M.T.J. (2018). Assembly and ecological function of the
root microbiome across angiosperm plant species. Proc. Natl. Acad.
Sci. U.S.A. , 115(6): 1157-1165. doi: 10.1073/pnas.1717617115.
Flores-Tolentino, M., García-Valdés, R., Saénz-Romero, C., Ávila-Díaz,
I., Paz, H., Lopez-Toledo, L. (2020). Distribution and conservation of
species is mismatched if biotic interactions are ignored: the case of
the orchid Laelia speciosa . Sci. Rep. , 10: 9542. doi:
10.1038/s41598-020-63638-9.
Friesen, M.L., Porter, S.S., Stark, S.C., von Wettberg, E.J., Sachs,
J.L., Martinez-Romero, E. (2011). Microbially mediated plant functional
traits. Annu. Rev. Ecol. Evol. Syst. , 42: 23-46. doi:
10.1146/annurev-ecolsys-102710-145039.
Hanisch, M., Schweiger, O., Cord, A.F., Volk, M., Knapp, S. (2020).
Plant functional traits shape multiple ecosystem services, their
trade-offs and synergies in grasslands. J. Appl. Ecol. , 57(8):
1535-1550. doi: 10.1111/1365-2664.13644.
Hannula, S.E., Heinen, R., Huberty, M., Steinauer, K., De Long, J.R.,
Jongen, R., Bezemer, T.M. (2021). Persistence of plant-mediated
microbial soil legacy effects in soil and inside roots. Nat.
Commun. , 12: 5686. doi: 10.1038/s41467-021-25971-z.
Hassan, K., Dastogeer, K.M.G., Carrillo, Y., Nielsen, U.N. (2022).
Climate change-driven shifts in plant-soil feedbacks: a meta-analysis.Ecol. Process. , 11: 64. doi: 10.1186/s13717-022-00410-z.
He, C., Wang, W., Hou, J. (2019). Characterization of dark septate
endophytic fungi and improve the performance of liquorice under organic
residue treatment. Front. Microbiol. , 10:1364. doi:
10.3389/fmicb.2019.01364.
Heinen, R., van der Sluijs, M., Biere, A., Harvey, J.A., Bezemer, M.
(2018). Plant community composition but not plant traits determine the
outcome of soil legacy effects on plants and insects. J. Ecol. ,
106(3): 1217-1229. doi: 10.1111/1365-2745.12907.
Heinen, R., Biere, A., Bezemer, T.M. (2020). Plant traits shape soil
legacy effects on individual plant-insect interactions. Oikos ,
129(2): 261-273. doi: 10.1111/oik.06812.
Hoeksema, J.D., Chaudhary, V.B., Gehring, C.A., Johnson, N.C., Karst,
J., Koide, R.T., Pringle, A., Zabinski, C., Bever, J.D., Moore, J.C.,
Wilson, G.W.T., Klironomos, J.N., Umbanhowar, J. (2010). A meta-analysis
of context-dependency in plant response to inoculation with mycorrhizal
fungi. Ecol. Lett. , 13(3): 394-407. doi:
10.1111/j/1461-0248.2009.01430.x.
Holdaway, R.J., Richardson, S.J., Dickie, I.A., Peltzer, D.A., Coomes,
D.A. (2011). Species-and community-level patterns in fine root traits
along a 120,000-year soil chronosequence in temperate rain forest.J. Ecol. , 99(4): 954-963. doi: 10.1111/j.1365-2745.2011.01821.x.
Irl, S.D.H., Schweiger, A.H., Medina, F.M., Fernández-Palacios, J.M.,
Harter, D.E.V., Jentsch, A., Provenzale, A., Steinbauer, M.J.,
Beierkuhnlein, C. (2017). An island view of endemic rarity -
Environmental drivers and consequences for nature conservation.Divers. Distrib. , 23(10): 1132-1142. doi: 10.1111/ddi.12605.
Johnson, N.C. (1993). Can fertilization of soil select less mutualistic
mycorrhizae? Ecol. Appl. , 3(4): 749-757. doi: 10.2307/1942106.
Johnson, N.C., Rowland, D.L., Corkidi, L., Allen, E.B. (2008). Plant
winners and losers during grassland N-eutrophication differ in biomass
allocation and mycorrhizas. Ecology, 89(10): 2868-2878. doi:
10.1890/07-1394.1.
Johnson, N.C., Wilson, G.W.T., Bowker, M.A., Miller, R.M. (2010).
Resource limitation is a driver of local adaptation in mycorrhizal
symbioses. Proc. Natl. Acad. Sci. U.S.A. , 107(5): 2093-2098. doi:
10.1073/pnas.0906710107.
Jiang, Y., Wang, Z., Chu, C., Kembel, S.W., He, F. (2022). Phylogenetic
dependence of plant-soil feedback promotes rare species in a subtropical
forest. J. Ecol. , 110(6): 1237-1246. doi:
10.1111/1365-2745.13879.
Kałuka, I.L. & Jagodziński, A.M. (2017). Ectomycorrhizal fungi: A major
player in early succession. In: Varma, A., Prasad, R., Tuteja, N. (eds)
Mycorrhiza – Function, Diversity, State of the Art. Springer, Cham.
doi: 10.1007/978-3-319-53064-2_10.
Kazarina, A., Sarkar, S., Thapa, S., Heeren, L., Kamke, A., Ward, K.,
Hartung, E., Ran, Q., Galliart, M., Jumpponen, A., Johnson, L., Lee,
S.T.M. (2023). Home-field advantage affects the local adaptive
interaction between Andropogon gerardii ecotypes and
root-associated bacterial communities. Microbiol. Spectr. , 11(5).
doi: 10.1128/spectrum.00208-23.
Ke, P.J., Miki, T., Ding, T.S. (2015). The soil microbial community
predicts the importance of plant traits in plant-soil feedback.New Phytol. , 206(1): 329-341. doi: 10.1111/nph.13215.
Kempel, A., Rindisbacher, A., Fischer, M., Allan, E. (2018). Plant soil
feedback strength in relation to large-scale plant rarity and
phylogenetic relatedness. Ecology , 99(3): 597-606. doi:
10.1002/ecy.2145.
Kempel A, Vincent H, Prati D, Fischer M. (2020). Context dependency of
biotic interactions and its relation to plant rarity. Divers.
Distrib. , 26(6): 758-68. doi: 10.1111/ddi.13050.
Klironomos, J.N. (2002). Feedback with soil biota contributes to plant
rarity and invasiveness in communities. Nature , 417(6884): 67-70.
doi: 10.1038/417067a.
Kohl, K.D. (2020). Ecological and evolutionary mechanisms of underlying
patterns of phylosymbiosis in host-associated microbial communities.Philos. Trans. R. Soc. B. , 375(1798). doi:
10.1098/rstb.2019.0251.
Kulmatiski, A., Beard, K.H., Stevens, J.R., Cobbold, S.M. (2008).
Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. ,
11(9): 980-992. doi: 10.1111/j.1461-0248.2008.01209.x.
Kulmatiski, A. & Beard, K.H. (2011). Long-term plant growth legacies
overwhelm short-term plant growth effects on soil microbial community
structure. Soil Biol. Biochem. , 43(4): 823-830. doi:
10.1016/j.soilbio.2010.12.018.
Kunin, W.E. and Gaston, K.J. (1997). The biology of rarity: causes and
consequences of rare-common differences. Springer Dordrecht. doi:
10.1007/978-94-011-5874-9.
Kuťáková, E., Herben, T., Münzbergová, Z. (2018). Heterospecific
plant-soil feedback and its relationship to plant traits, species
relatedness, and co-occurrence in natural communities. Oecologia ,
187: 679-688. doi: 10.1007/s00442-018-4145-z.
Lachaise, T., Bergmann, J., Rilling, M.C., van Kleunen, M. (2021).
Below-and aboveground traits explain local abundance, and regional,
continental and global occurrence frequencies of grassland plants.Oikos , 130(1): 110-120. doi: 10.1111/oik.07874.
Lavorel, S., Grigulis, K., Lamarque, P., Colace, M.P., Garden, D.,
Girel, J., Pellet, G., Douzet, R. (2011). Using plant functional traits
to understand the landscape distribution of multiple ecosystem services.J. Ecol. , 99(1): 135-147. doi: 10.1111/j.1365-2745.2010.01753.x.
Li, K., Veen, G.F., ten Hooven, F.C., Harvey, J.A., van der Putten, W.
(2023). Soil legacy effects of plants and drought on aboveground insects
in native and range expanding plant communities. Ecol. Lett. ,
26(1): 37-52. doi: 10.1111/ele.14129.
Lu, W., Bi, X., Zheng, Y. (2023). Soil legacy effects on biomass
allocation depend on native plant diversity in the invaded community.Sci. Prog. , 106(1): 368504221150060. doi:
10.1177/00368504221150060.
Maron, J.L., Smith, A.L., Ortega, Y.K., Pearson, D.E., Callaway, R.M.
(2016). Negative plant-soil feedbacks increase with plant abundance, and
are unchanged by competition. Ecology , 97(8): 2055-2063. doi:
10.1002/ecy.1431.
McKinney, M.L. (1997). How do rare species avoid extinction? A
paleontological view. In: Kunin, W.E. & Gaston, K.J. (eds) The biology
of rarity. Population and community biology series, 17. Springer,
Dordrecht. doi: 10.1007/978-94-011-5874-9_7.
McMahen, K., Guichon, S.H.A., Anglin, C.D., Lavkulich, L.M., Grayston,
S.J., Simard, S.W. (2022). Soil microbial legacies influence plant
survival and growth in mine reclamation. Ecol. Evol. , 12(11):
e9473. doi: 10.1002/ece3.9473.
Munson, S.M. & Sher, A.A. (2015). Long-term shifts in the phenology of
rare and endemic Rocky Mountain plants. Am. J. Bot. , 102(8):
1268-1276. doi: 10.3732/ajb.1500156.
Münzbergová, Z. & Šurinová, M. (2015). The importance of species
phylogenetic relationships and species traits for the intensity of
plant-soil feedback. Ecosphere , 6(11): 1-16. doi:
10.1890/ES15-00206.
Nytko AG, Senior JK, Wooliver RC, O’Reilly-Wapstra J, Schweitzer JA,
Bailey JK. An evolutionary case for rarity. [Preprint]. (2023). In
review at Ecol. Evol. , doi: 10.21203/rs.3.rs-3369472/v1.
Nytko, A.G., Senior, J.K., O’Reilly-Wapstra, J., Schweitzer, J.A.,
Bailey, J.K. [Preprint]. (2023). Evolution of rarity and phylogeny
determine above-and belowground biomass in plant-plant interactions. In
review at PLOS One , doi: 10.1101/2023.11.10.566621.
Peay, K.G., Belisle, M., Fukami, T. (2012). Phylogenetic relatedness
predicts priority effects in nectar yeast communities. Proc. Biol.
Sci. , 279(1729): 1749-758. doi: 10.1098/rspb.2011.1230.
Poorter, H., Jagodzinski, A.M., Ruiz-Peinado, R., Kuyah, S., Luo, Y.,
Oleksyn, J., Usoltsev, V.A., Buckley, T.N., Reich, P.B., Sack, L.
(2015). How does biomass distribution change with size and differ among
species? An analysis for 1200 plant species from five continents.New Phytol. , 208(3): 736-749. doi: 10.1111/nph.13571.
Poot, P. & Lambers, H. (2003). Are trade-offs in allocation pattern and
root morphology related to species abundance? A congeneric comparison
between rare and common species in the south-western Australian flora.J. Ecol. , 91(1): 58-67. doi: 10.1046/j.1365-2745.2003.00738.x.
Pywell, R.F., Bullock, J.M., Roy, D.B., Warman, L., Walker, K.J.,
Rothery, P. (2003). Plant traits as predictors of performance in
ecological restoration. J. Appl. Ecol. , 40(1): 65-77. doi:
10.1046/j.1365-2664.2003.00762.x.
Qin, F. & Yu, S. (2021). Compatible mycorrhizal types contribute to a
better design for mixed Eucalyptus plantations. Front.Plant
Sci. , 12: 616726. doi: 10.3389/fpls.616726.
Qu, Q., Xu, H., Liu, G., Xue, S. (2023). Soil legacy effects and
plant-soil feedback contribution to secondary succession processes.Soil Ecol. Lett. , 5: 220131. doi: 10.1007/s42832-022-0131-9.
Reijenga, B.R., Murrell, D.J., Pigot, A.L. (2021). Priority effects and
the macroevolutionary dynamics of biodiversity. Ecol. Lett. ,
24(7): 1455-1466. doi: 10.1111/ele.13766.
Reinhart, K.O., Bauer, J.T., McCarthy-Neumann, S., MacDougall, A.S.,
Hierro, J.L., Chiuffo, M.C., Mangan, S.A., Heinze, J., Bergmann, J.,
Joshi, J., Duncan, R.P., Diez, J.M., Kardol, P., Rutten, G., Fischer,
M., van der Putten, W.H., Bezemer, T.M., Klironomos, J. (2021).
Globally, plant-soil feedbacks are weak predictors of plant abundance.Ecol. Evol. , 11(4): 1756-1768. doi: 10.1002/ece3.7167.
Reininger, V. & Sieber, T.N. (2012). Mycorrhiza reduces adverse effects
of dark septate endophytes (DSE) on growth of conifers. PLOS One ,
7(8): e42865. doi: 10.1371.journal.pone.0042865.
Schmid, M.W., van Moorsel, S.J., Hahl, T., De Luca, E., De Deyn, G.B.,
Wagg, C., Niklaus, P.A., Schmid, B. (2021). Effects of plant community
history, soil legacy and plant diversity on soil microbial communities.J. Ecol. , 109(8): 3007-3023. doi: 10.1111/1365-2745.13714.
Segnitz, R.M., Russo, S.E., Davies, S.J., Peay, K.G. (2020).
Ectomycorrhizal fungi drive patterns of plant-soil feedbacks in a
regionally dominant tropical plant family. Ecology , 101(8):
e03083. doi: 10.1002/ecy.3083.
Senior, J.K., Potts, B.M., O’Reilly-Wapstra, J.M., Bissett, A.,
Wooliver, R.C., Bailey, J.K., Glen, M., Schweitzer, J.A. (2018).
Phylogenetic trait conservatism predicts patterns of plant-soil
feedback. Ecosphere , 9(10), e02409. doi: 10.1002/ecs2.2409.
Soudzilovskaia, N.J., van Bodegom, P.M., Terrer, C., van’t Zelfde, M.,
McCallum, I., McCormack, M.L., Fisher, J.B., Brundrett, M.C., César de
Sá, N., Tedersoo, L. (2019). Global mycorrhizal plant distribution
linked to terrestrial carbon stocks. Nat. Commun. , 10, 5077. doi:
10.1038/s41467-019-13019-2.
Tedersoo, L. & Bahram, M. (2019). Mycorrhizal types differ in
ecophysiology and alter plant nutrition and soil processes. Biol.
Rev. Camb. Philos. Soc. , 94(5): 1857-1880. doi: 10.1111/brv.12538.
Treseder, K.K. (2004). A meta-analysis of mycorrhizal responses to
nitrogen, phosphorous, and atmospheric CO2 in field
studies. New. Phytol. , 164(2): 347-355. doi:
10.1111/j.1469-8137.2004.01159.x.
van de Voorde, T.F.J., van der Putten, W.H., Bezemer, M. (2011). Intra-
and interspecific plant-soil interactions, soil legacies and priority
effects during old-field succession. J. Ecol. , 99(4): 945-953.
doi: 10.1111/j.1365-2745.2011.01815.x.
van der Putten, W.H., Bardgett, R.D., Bever, J.D., Bezemer, M., Casper,
B.B., Fukami, T., Kardol, P., Klironomos, J.N., Kulmatiski, A.,
Schweitzer, J.A., Suding, K.N., van de Voorde, T.F.J., Wardle, D.A.
(2013). Plant-soil feedbcaks: the past, the present and future
challenges. J. Ecol. , 101(2): 265-276. doi:
10.1111/1365-2745.12054.
Van Nuland, M.E., Bailey, J.K., Schweitzer, J.A. (2017). Divergent
plant-soil feedbacks could alter future elevation ranges and ecosystem
dynamics. Nat. Ecol. Evol. , 1, 0150. doi:
10.1038/s41559-017-0150.
Vincent, H., Bornand, C.N., Kempel, A., Fischer, M. (2020). Rare species
perform worse than widespread species under changed climate. Biol.
Conserv. , 246. doi: 10.1016/j.biocon.2020.108586.
Wamelink, G.W.W., Goedhart, P.W., Frissel, J.Y. (2014). Why some plant
species are rare. PLOS One , 9(10), e111293. doi:
10.1371/jounal.pone.0111293.
Wandrag, E.M., Bates, S.E., Barrett, L.G., Catford, J.A., Thrall, P.H.,
van der Putten, W.H., Duncan, R.P. (2020). Phylogenetic signals and
predictability in plant-soil feedbacks. New Phytol. , 228(4):
1440-1449. doi: 10.1111/nph.16768.
Wang, X., Kou, Y., Liu, J., Zhao, W., Liu, Q. (2023). Soil microbial
legacy determines mycorrhizal colonization and root traits of conifer
seedlings during subalpine forest succession. Plant Soil , 485:
361-375. doi: 10.1007/s11104-022-05835-1.
Woolbright, S.A., Whitham, T.G., Gehring, C.A., Allan, G.J., Bailey,
J.K. (2014). Climate relicts and their associated communities as natural
ecology and evolution laboratories. Trends Ecol. Evol., 29(7):
406-416. doi: 10.1016/j.tree.2014.05.003.
Wooliver, R.C., Marion, Z.H., Peterson, C.R., Potts, B.M., Senior, J.K.,
Bailey, J.K., Schweitzer, J.A. (2017). Phylogeny is a powerful tool for
predicting plant biomass responses to nitrogen enrichment.Ecology , 98(8): 2120-2132. doi: 10.1002/ecy.1896.
Wooliver, R.C., Senior, J.K., Potts, B.M., Van Nuland, M.E., Bailey,
J.K., Schweitzer, J.A. (2018). Soil fungi underlie a phylogenetic
pattern in plant growth responses to nitrogen enrichment. J. Ecol.,
106(6): 2161-2175. doi: 10.1111/1365-2745.12983.
Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J.,
Damgaard, C.F., Formann, C.F., Forchhammer, M.C., Grytnes, J.A., Guisan,
A., Heikkinen, R.K., Høye, T.T., Kühn, I., Luoto, M., Maiorano, L.,
Nillsson, M.C., Normand, S., Öckinger, E., Schmidt, N.M., Termansen, M.,
Timmermann, A., Wardle, D.A., Aastrup, P., Svenning, J.C. (2013). The
role of biotic interactions in shaping distributions and realized
assemblages of species: implications for species distribution modeling.Biol. Rev. Camb. Philos. Soc. , 88(1): 15-30. doi:
10.1111/j.1469-185X.2012.00235.x.
Wurst, S. & Ohgushi, T. (2015). Do plant-and soil-mediated legacy
effects impact future biotic interactions? Funct. Ecol. , 29(11):
1373-1382. doi: 10.1111.1365-2435.12456.
Xi, N., Adler, P.B., Chen, D., Wu, H., Catford, J.A., van Bodegom, P.M.,
Bahn, M., Crawford, K.M., Chu, C. (2021). Relationships between
plant-soil feedbacks and functional traits. J. Ecol. , 109(9):
3411-3423. doi: 10.1111/1365-2745.13731.
Xie, L., Bi, Y., Ma, S., Shang, J., Hu, Q., Christie, P. (2021).
Combined inoculation with dark septate endophytes and arbuscular
mycorrhizal fungi: synergistic or competitive growth effects on maize?BMC Plant Biol. , 498. doi: 10.1186/s12870-021-03267-0.
Yan, X., Levine, J.M., Kandlikar, G.S. (2022). A quantitative synthesis
of soil microbial effects on plant species coexistence. Proc.
Natl. Acad. Sci. U.S.A. , 119(22), e2122088119. doi:
10.1073/pnas.2122088119.
Younginger, B.S., Sirová, D., Cruzan, M.B., Ballhorn, D.J. (2017). Is
biomass a reliable estimate of plant fitness? Appl. Plant Sci. ,
5(2): 1600094. doi: 10.3732/apps.1600094.
Zee, P.C. & Fukami, T. (2018). Priority effects are weakened by a
short, but not long, history of sympatric evolution. Proc. Biol.
Sci. , 285(1871): 20171722. doi: 10.1098/rspb.2017.1722.
Zhang, S., Zang, R., Sheil, D. (2022). Rare and common species
contribute disproportionately to the functional variation within
tropical forests. J. Environ. Manage. , 304, 114332. doi:
10.1016/j.jenvman.2021.114332.
Zhao, W., Wang, X., Howard, M.M., Kou, Y., Liu, Q. (2023). Functional
shifts in soil fungal communities regulate differential tree species
establishment during subalpine forest succession. Sci. Total
Environ. , 861, 160616. doi: 10.1016/j.scitotenv.2022.160616.