Figure Legends

Figure 1. Total biomass (a) and Ectomycorrhizal (ECM) colonization (b), are significantly affected by the rarity level of plant host across all soil conditions in a common garden environment (Wooliver et al. 2018). Dark septate endophyte (DSE) colonization does not vary by the rarity level of plant host (c). Rarity level 1 represents the rarest species.
Figure 2. Total biomass (a) and Ectomycorrhizal (ECM) colonization (b) of rare and common eucalypts are significantly affected by Nitrogen (N) treatment (low vs. high) and rarity level. Plants conditioned in high N have higher total biomass, but significantly lower ECM colonization than counterparts conditioned in low N across all rarity levels. The negative relationship between total biomass and ECM colonization is however, most prevalently displayed in the rarest species compared to common species.
Figure 3. Total biomass (a) and Ectomycorrhizal (ECM) colonization (b) of rare and common eucalypts are significantly affected by the phylogenetic origin of conditioned soil treatments (soil origin) in which they are growing. Dark septate endophyte (DSE) colonization (c) does not vary by the phylogenetic origin of conditioned soil. Conspecific soil inoculum is conditioned by the same species, similar lineage soil inoculum is conditioned by phylogenetically similar species, and opposite lineage soil inoculum is conditioned by phylogenetically dissimilar species on the Tasmanian Eucalyptusphylogeny (Wooliver et al. 2018). Rarity level 1 represents the rarest species.
Figure 4. Belowground feedbacks in Ectomycorrhizal (ECM) colonization drive aboveground feedbacks in plant biomass. The total biomass of rare species display strongly negative plant-soil feedbacks, while the ECM colonization of rare species display strongly positive plant-soil feedbacks. The strength of these feedbacks are further affected by the phylogenetic origin of soil inoculum and rarity level of plant host. Conspecific to same lineage treatments represent differences in plant biomass and ECM colonization between plants conditioned by their own soil versus plants conditioned by phylogenetically similar species’ soil. Conspecific to opposite lineage treatments represent differences in plant biomass and ECM colonization between plants conditioned by their own soil versus plants conditioned by phylogenetically dissimilar species’ soil. Rarity level 1 represents the rarest species.
Figure 5 . The correlation between total biomass and Ectomycorrhizal (ECM) colonization are dependent on plant host rarity and the phylogenetic relatedness of conditioned soil (soil origin). As ECM colonization increases, total biomass significantly decreases across rarity levels in phylogenetically distant soil, such that the rarest species display lower biomass but higher ECM colonization than common species.

References

Ames, G.M., Wall, W.A., Hohmann, M.G., Wright, J.P. (2017). Trait space of rare plants in a fire-dependent ecosystem. Conserv. Biol. , 31(4): 903-911. doi: 10.1111/cobi.12867.
Anacker, B.L., Klironomos, J.N., Maherali, H., Reinhart, K.O., Strauss, S.Y. (2014). Phylogenetic conservatism in plant-soil feedback and its implications for plant abundance. Ecol. Lett ., 17(12): 1613-1621. doi: 10.1111/ele.12378.
Bever, J.D. (2003). Soil community feedback and the coexistence of competitors: conceptual frameworks and empirical tests. New Phytol. , 157(3): 465-473. doi: 10.1046/j.1469-8137.2003.00714.x.
Bothe, H., Turnau, K., Regvar, M. (2010). The potential role of arbuscular mycorrhizal fungi in protecting endangered plants and habitats. Mycorrhiza , 21: 445-457. doi: 10.1007.s00572-010-0332-4.
Boyd, J.N., Anderson, J.T., Brzyski, C., Cruse-Sanders, J. (2022). Eco-evolutionary causes and consequences of rarity in plants: a meta-analysis. New Phytol. , 235(3): 1272-1286. doi: 10.1111/nph.18172.
Boyd, J.N., Odell, J., Cruse-Sanders, J., Rogers, W., Anderson, J.T., Baskauf, C., Brzyski, J. (2022). Phenotypic plasticity and genetic diversity elucidate rarity and vulnerability of an endangered riparian plant. Ecosphere , 13(14), e3996. doi: 10.1002/ecs2.3996.
Bragion, E.F.A., Coelho, G.A.O., de Siqueira, F.F., Uriarte, M., van den Berg, E. (2018). Sharp differentiation on the performance of plant functional groups across natural edges. J. Plant Ecol. , 12(1): 186-198. doi: 10.1093/jpe/rty009.
Caruso, C.M., Maherali, H., Martin, R.A. (2020). A meta-analysis of natural selection on plant functional traits. Int. J. Plant Sci. , 181(1). doi: 10.1086/706199.
Chappell, C.R., Dhami, M.K., Bitter, M.C., Czech, L., Paredes, S.H., Barrie, F.B., Calderón, Y., Eritano, K., Golden, L.A., Hekmat-Scafe, D., Hsu, V., Kieschnick, C., Malladi, S., Rush, N., Fukami, T. (2022). Wide-ranging consequences of priority effects governed by an overarching factor. eLife , 11: e79647. doi: 10.7554/eLife.79647.
Chung, Y.A., Miller, T.E.X., Rudgers, J.A. (2015). Fungal symbionts maintain a rare plant population but demographic advantage drives the dominance of a common host. J. Ecol. , 103(4): 967-977. doi: 10.1111/1365-2745.12406.
Cole, C.T. (2003). Genetic variation in rare and common plants.Annu. Rev. Ecol. Evol. Syst. , 34: 213-237. doi: 10.1146/annurev.ecolsys.34.030102.151717.
Cortois, R., Schröder-Georgi, T., Weigelt, A., van der Putten, W.H., De Deyn, G.B. (2016). Plant-soil feedbacks: the role of plant functional group and plant traits. J. Ecol. , 104(6): 1608-1617. doi: 10.1111/1365-2745.12643.
Cosentino, F., Seamark, E.C.J., Van Cakenberghe, V., Maiorano, L. (2023). Not only climate: The importance of biotic interactions in shaping species distributions at macro scales. Ecol. Evol. , 13(3): e9855. doi: 10.1002/ece3.9855.
Cornwell, W.K. & Ackerly, D.D. (2010). A link between plant traits and abundance: evidence from coastal California woody plants. J. Ecol. , 98(4): 814-821. doi: 10.1111/j.1365-2745.2010.01662.x.
Crawford, K.M., Bauer, J.T., Comita, L.S., Eppinga, M.B., Johnson, D.J., Mangan, S.A., Queenborough, S.A., Strand, A.E., Suding, K.N., Umbanhowar, J., Bever, J.D. (2019). When and where plant-soil feedbacks may promote plant co-existence: a meta-analysis. Ecol. Lett. , 22(8): 1274-1284. doi: 10.1111/ele.13278.
Dee, L.E., Cowles, J., Isbell, F., Pau, S., Gaines, S.D., Reich, P.B. (2019). When do ecosystem services depend on rare species? Trends Ecol. Evol. , 34(8): 746-758. doi: 10.1016/j.tree.2019/03/010.
Enquist, B.J., Feng, X., Boyle, B., Maitner, B., Newman, E.A., Jørgensen, P.M., Roehrdanz, P.R., Thiers, B.M., Burger, J.R., Corlett, R.T., Couvreur, T.L.P., Dauby, G., Donoghue, J.C., Foden, W., Lovett, J.C., Marquet, P.A., Merow, C., Midgley, G., Morueta-Holme, N., Neves, D.M., Oliveira-Filho, A.T., Kraft, N.J.B., Park, D.S., Peet, R.K., Pillet, M., Serra-Diaz, J.M., Sandel, B., Schildhauer, M., Šímová, I., Violle, C., Wieringa, J.J., Wiser, S.K., Hannah, L., Svenning, J.C., McGill, B.J. (2019). The commonness of rarity across land plants.Sci. Adv. , 5(11), eaaz0414. doi: 10.1126/sciadv.aaz0414.
Fitzpatrick, C.R., Gehant, L., Kotanen, P.M., Johnson, M.T.J. (2017). Phylogenetic relatedness, phenotypic similarity and plant-soil feedbacks. J.Ecol. , 105(3): 786-800. doi: 10.1111/1365-2745.12709.
Fitzpatrick, C.R., Copeland, J., Wang, P.W., Guttman, D.S., Kotanen, P.M., Johnson, M.T.J. (2018). Assembly and ecological function of the root microbiome across angiosperm plant species. Proc. Natl. Acad. Sci. U.S.A. , 115(6): 1157-1165. doi: 10.1073/pnas.1717617115.
Flores-Tolentino, M., García-Valdés, R., Saénz-Romero, C., Ávila-Díaz, I., Paz, H., Lopez-Toledo, L. (2020). Distribution and conservation of species is mismatched if biotic interactions are ignored: the case of the orchid Laelia speciosa . Sci. Rep. , 10: 9542. doi: 10.1038/s41598-020-63638-9.
Friesen, M.L., Porter, S.S., Stark, S.C., von Wettberg, E.J., Sachs, J.L., Martinez-Romero, E. (2011). Microbially mediated plant functional traits. Annu. Rev. Ecol. Evol. Syst. , 42: 23-46. doi: 10.1146/annurev-ecolsys-102710-145039.
Hanisch, M., Schweiger, O., Cord, A.F., Volk, M., Knapp, S. (2020). Plant functional traits shape multiple ecosystem services, their trade-offs and synergies in grasslands. J. Appl. Ecol. , 57(8): 1535-1550. doi: 10.1111/1365-2664.13644.
Hannula, S.E., Heinen, R., Huberty, M., Steinauer, K., De Long, J.R., Jongen, R., Bezemer, T.M. (2021). Persistence of plant-mediated microbial soil legacy effects in soil and inside roots. Nat. Commun. , 12: 5686. doi: 10.1038/s41467-021-25971-z.
Hassan, K., Dastogeer, K.M.G., Carrillo, Y., Nielsen, U.N. (2022). Climate change-driven shifts in plant-soil feedbacks: a meta-analysis.Ecol. Process. , 11: 64. doi: 10.1186/s13717-022-00410-z.
He, C., Wang, W., Hou, J. (2019). Characterization of dark septate endophytic fungi and improve the performance of liquorice under organic residue treatment. Front. Microbiol. , 10:1364. doi: 10.3389/fmicb.2019.01364.
Heinen, R., van der Sluijs, M., Biere, A., Harvey, J.A., Bezemer, M. (2018). Plant community composition but not plant traits determine the outcome of soil legacy effects on plants and insects. J. Ecol. , 106(3): 1217-1229. doi: 10.1111/1365-2745.12907.
Heinen, R., Biere, A., Bezemer, T.M. (2020). Plant traits shape soil legacy effects on individual plant-insect interactions. Oikos , 129(2): 261-273. doi: 10.1111/oik.06812.
Hoeksema, J.D., Chaudhary, V.B., Gehring, C.A., Johnson, N.C., Karst, J., Koide, R.T., Pringle, A., Zabinski, C., Bever, J.D., Moore, J.C., Wilson, G.W.T., Klironomos, J.N., Umbanhowar, J. (2010). A meta-analysis of context-dependency in plant response to inoculation with mycorrhizal fungi. Ecol. Lett. , 13(3): 394-407. doi: 10.1111/j/1461-0248.2009.01430.x.
Holdaway, R.J., Richardson, S.J., Dickie, I.A., Peltzer, D.A., Coomes, D.A. (2011). Species-and community-level patterns in fine root traits along a 120,000-year soil chronosequence in temperate rain forest.J. Ecol. , 99(4): 954-963. doi: 10.1111/j.1365-2745.2011.01821.x.
Irl, S.D.H., Schweiger, A.H., Medina, F.M., Fernández-Palacios, J.M., Harter, D.E.V., Jentsch, A., Provenzale, A., Steinbauer, M.J., Beierkuhnlein, C. (2017). An island view of endemic rarity - Environmental drivers and consequences for nature conservation.Divers. Distrib. , 23(10): 1132-1142. doi: 10.1111/ddi.12605.
Johnson, N.C. (1993). Can fertilization of soil select less mutualistic mycorrhizae? Ecol. Appl. , 3(4): 749-757. doi: 10.2307/1942106.
Johnson, N.C., Rowland, D.L., Corkidi, L., Allen, E.B. (2008). Plant winners and losers during grassland N-eutrophication differ in biomass allocation and mycorrhizas. Ecology, 89(10): 2868-2878. doi: 10.1890/07-1394.1.
Johnson, N.C., Wilson, G.W.T., Bowker, M.A., Miller, R.M. (2010). Resource limitation is a driver of local adaptation in mycorrhizal symbioses. Proc. Natl. Acad. Sci. U.S.A. , 107(5): 2093-2098. doi: 10.1073/pnas.0906710107.
Jiang, Y., Wang, Z., Chu, C., Kembel, S.W., He, F. (2022). Phylogenetic dependence of plant-soil feedback promotes rare species in a subtropical forest. J. Ecol. , 110(6): 1237-1246. doi: 10.1111/1365-2745.13879.
Kałuka, I.L. & Jagodziński, A.M. (2017). Ectomycorrhizal fungi: A major player in early succession. In: Varma, A., Prasad, R., Tuteja, N. (eds) Mycorrhiza – Function, Diversity, State of the Art. Springer, Cham. doi: 10.1007/978-3-319-53064-2_10.
Kazarina, A., Sarkar, S., Thapa, S., Heeren, L., Kamke, A., Ward, K., Hartung, E., Ran, Q., Galliart, M., Jumpponen, A., Johnson, L., Lee, S.T.M. (2023). Home-field advantage affects the local adaptive interaction between Andropogon gerardii ecotypes and root-associated bacterial communities. Microbiol. Spectr. , 11(5). doi: 10.1128/spectrum.00208-23.
Ke, P.J., Miki, T., Ding, T.S. (2015). The soil microbial community predicts the importance of plant traits in plant-soil feedback.New Phytol. , 206(1): 329-341. doi: 10.1111/nph.13215.
Kempel, A., Rindisbacher, A., Fischer, M., Allan, E. (2018). Plant soil feedback strength in relation to large-scale plant rarity and phylogenetic relatedness. Ecology , 99(3): 597-606. doi: 10.1002/ecy.2145.
Kempel A, Vincent H, Prati D, Fischer M. (2020). Context dependency of biotic interactions and its relation to plant rarity. Divers. Distrib. , 26(6): 758-68. doi: 10.1111/ddi.13050.
Klironomos, J.N. (2002). Feedback with soil biota contributes to plant rarity and invasiveness in communities. Nature , 417(6884): 67-70. doi: 10.1038/417067a.
Kohl, K.D. (2020). Ecological and evolutionary mechanisms of underlying patterns of phylosymbiosis in host-associated microbial communities.Philos. Trans. R. Soc. B. , 375(1798). doi: 10.1098/rstb.2019.0251.
Kulmatiski, A., Beard, K.H., Stevens, J.R., Cobbold, S.M. (2008). Plant-soil feedbacks: a meta-analytical review. Ecol. Lett. , 11(9): 980-992. doi: 10.1111/j.1461-0248.2008.01209.x.
Kulmatiski, A. & Beard, K.H. (2011). Long-term plant growth legacies overwhelm short-term plant growth effects on soil microbial community structure. Soil Biol. Biochem. , 43(4): 823-830. doi: 10.1016/j.soilbio.2010.12.018.
Kunin, W.E. and Gaston, K.J. (1997). The biology of rarity: causes and consequences of rare-common differences. Springer Dordrecht. doi: 10.1007/978-94-011-5874-9.
Kuťáková, E., Herben, T., Münzbergová, Z. (2018). Heterospecific plant-soil feedback and its relationship to plant traits, species relatedness, and co-occurrence in natural communities. Oecologia , 187: 679-688. doi: 10.1007/s00442-018-4145-z.
Lachaise, T., Bergmann, J., Rilling, M.C., van Kleunen, M. (2021). Below-and aboveground traits explain local abundance, and regional, continental and global occurrence frequencies of grassland plants.Oikos , 130(1): 110-120. doi: 10.1111/oik.07874.
Lavorel, S., Grigulis, K., Lamarque, P., Colace, M.P., Garden, D., Girel, J., Pellet, G., Douzet, R. (2011). Using plant functional traits to understand the landscape distribution of multiple ecosystem services.J. Ecol. , 99(1): 135-147. doi: 10.1111/j.1365-2745.2010.01753.x.
Li, K., Veen, G.F., ten Hooven, F.C., Harvey, J.A., van der Putten, W. (2023). Soil legacy effects of plants and drought on aboveground insects in native and range expanding plant communities. Ecol. Lett. , 26(1): 37-52. doi: 10.1111/ele.14129.
Lu, W., Bi, X., Zheng, Y. (2023). Soil legacy effects on biomass allocation depend on native plant diversity in the invaded community.Sci. Prog. , 106(1): 368504221150060. doi: 10.1177/00368504221150060.
Maron, J.L., Smith, A.L., Ortega, Y.K., Pearson, D.E., Callaway, R.M. (2016). Negative plant-soil feedbacks increase with plant abundance, and are unchanged by competition. Ecology , 97(8): 2055-2063. doi: 10.1002/ecy.1431.
McKinney, M.L. (1997). How do rare species avoid extinction? A paleontological view. In: Kunin, W.E. & Gaston, K.J. (eds) The biology of rarity. Population and community biology series, 17. Springer, Dordrecht. doi: 10.1007/978-94-011-5874-9_7.
McMahen, K., Guichon, S.H.A., Anglin, C.D., Lavkulich, L.M., Grayston, S.J., Simard, S.W. (2022). Soil microbial legacies influence plant survival and growth in mine reclamation. Ecol. Evol. , 12(11): e9473. doi: 10.1002/ece3.9473.
Munson, S.M. & Sher, A.A. (2015). Long-term shifts in the phenology of rare and endemic Rocky Mountain plants. Am. J. Bot. , 102(8): 1268-1276. doi: 10.3732/ajb.1500156.
Münzbergová, Z. & Šurinová, M. (2015). The importance of species phylogenetic relationships and species traits for the intensity of plant-soil feedback. Ecosphere , 6(11): 1-16. doi: 10.1890/ES15-00206.
Nytko AG, Senior JK, Wooliver RC, O’Reilly-Wapstra J, Schweitzer JA, Bailey JK. An evolutionary case for rarity. [Preprint]. (2023). In review at Ecol. Evol. , doi: 10.21203/rs.3.rs-3369472/v1.
Nytko, A.G., Senior, J.K., O’Reilly-Wapstra, J., Schweitzer, J.A., Bailey, J.K. [Preprint]. (2023). Evolution of rarity and phylogeny determine above-and belowground biomass in plant-plant interactions. In review at PLOS One , doi: 10.1101/2023.11.10.566621.
Peay, K.G., Belisle, M., Fukami, T. (2012). Phylogenetic relatedness predicts priority effects in nectar yeast communities. Proc. Biol. Sci. , 279(1729): 1749-758. doi: 10.1098/rspb.2011.1230.
Poorter, H., Jagodzinski, A.M., Ruiz-Peinado, R., Kuyah, S., Luo, Y., Oleksyn, J., Usoltsev, V.A., Buckley, T.N., Reich, P.B., Sack, L. (2015). How does biomass distribution change with size and differ among species? An analysis for 1200 plant species from five continents.New Phytol. , 208(3): 736-749. doi: 10.1111/nph.13571.
Poot, P. & Lambers, H. (2003). Are trade-offs in allocation pattern and root morphology related to species abundance? A congeneric comparison between rare and common species in the south-western Australian flora.J. Ecol. , 91(1): 58-67. doi: 10.1046/j.1365-2745.2003.00738.x.
Pywell, R.F., Bullock, J.M., Roy, D.B., Warman, L., Walker, K.J., Rothery, P. (2003). Plant traits as predictors of performance in ecological restoration. J. Appl. Ecol. , 40(1): 65-77. doi: 10.1046/j.1365-2664.2003.00762.x.
Qin, F. & Yu, S. (2021). Compatible mycorrhizal types contribute to a better design for mixed Eucalyptus plantations. Front.Plant Sci. , 12: 616726. doi: 10.3389/fpls.616726.
Qu, Q., Xu, H., Liu, G., Xue, S. (2023). Soil legacy effects and plant-soil feedback contribution to secondary succession processes.Soil Ecol. Lett. , 5: 220131. doi: 10.1007/s42832-022-0131-9.
Reijenga, B.R., Murrell, D.J., Pigot, A.L. (2021). Priority effects and the macroevolutionary dynamics of biodiversity. Ecol. Lett. , 24(7): 1455-1466. doi: 10.1111/ele.13766.
Reinhart, K.O., Bauer, J.T., McCarthy-Neumann, S., MacDougall, A.S., Hierro, J.L., Chiuffo, M.C., Mangan, S.A., Heinze, J., Bergmann, J., Joshi, J., Duncan, R.P., Diez, J.M., Kardol, P., Rutten, G., Fischer, M., van der Putten, W.H., Bezemer, T.M., Klironomos, J. (2021). Globally, plant-soil feedbacks are weak predictors of plant abundance.Ecol. Evol. , 11(4): 1756-1768. doi: 10.1002/ece3.7167.
Reininger, V. & Sieber, T.N. (2012). Mycorrhiza reduces adverse effects of dark septate endophytes (DSE) on growth of conifers. PLOS One , 7(8): e42865. doi: 10.1371.journal.pone.0042865.
Schmid, M.W., van Moorsel, S.J., Hahl, T., De Luca, E., De Deyn, G.B., Wagg, C., Niklaus, P.A., Schmid, B. (2021). Effects of plant community history, soil legacy and plant diversity on soil microbial communities.J. Ecol. , 109(8): 3007-3023. doi: 10.1111/1365-2745.13714.
Segnitz, R.M., Russo, S.E., Davies, S.J., Peay, K.G. (2020). Ectomycorrhizal fungi drive patterns of plant-soil feedbacks in a regionally dominant tropical plant family. Ecology , 101(8): e03083. doi: 10.1002/ecy.3083.
Senior, J.K., Potts, B.M., O’Reilly-Wapstra, J.M., Bissett, A., Wooliver, R.C., Bailey, J.K., Glen, M., Schweitzer, J.A. (2018). Phylogenetic trait conservatism predicts patterns of plant-soil feedback. Ecosphere , 9(10), e02409. doi: 10.1002/ecs2.2409.
Soudzilovskaia, N.J., van Bodegom, P.M., Terrer, C., van’t Zelfde, M., McCallum, I., McCormack, M.L., Fisher, J.B., Brundrett, M.C., César de Sá, N., Tedersoo, L. (2019). Global mycorrhizal plant distribution linked to terrestrial carbon stocks. Nat. Commun. , 10, 5077. doi: 10.1038/s41467-019-13019-2.
Tedersoo, L. & Bahram, M. (2019). Mycorrhizal types differ in ecophysiology and alter plant nutrition and soil processes. Biol. Rev. Camb. Philos. Soc. , 94(5): 1857-1880. doi: 10.1111/brv.12538.
Treseder, K.K. (2004). A meta-analysis of mycorrhizal responses to nitrogen, phosphorous, and atmospheric CO2 in field studies. New. Phytol. , 164(2): 347-355. doi: 10.1111/j.1469-8137.2004.01159.x.
van de Voorde, T.F.J., van der Putten, W.H., Bezemer, M. (2011). Intra- and interspecific plant-soil interactions, soil legacies and priority effects during old-field succession. J. Ecol. , 99(4): 945-953. doi: 10.1111/j.1365-2745.2011.01815.x.
van der Putten, W.H., Bardgett, R.D., Bever, J.D., Bezemer, M., Casper, B.B., Fukami, T., Kardol, P., Klironomos, J.N., Kulmatiski, A., Schweitzer, J.A., Suding, K.N., van de Voorde, T.F.J., Wardle, D.A. (2013). Plant-soil feedbcaks: the past, the present and future challenges. J. Ecol. , 101(2): 265-276. doi: 10.1111/1365-2745.12054.
Van Nuland, M.E., Bailey, J.K., Schweitzer, J.A. (2017). Divergent plant-soil feedbacks could alter future elevation ranges and ecosystem dynamics. Nat. Ecol. Evol. , 1, 0150. doi: 10.1038/s41559-017-0150.
Vincent, H., Bornand, C.N., Kempel, A., Fischer, M. (2020). Rare species perform worse than widespread species under changed climate. Biol. Conserv. , 246. doi: 10.1016/j.biocon.2020.108586.
Wamelink, G.W.W., Goedhart, P.W., Frissel, J.Y. (2014). Why some plant species are rare. PLOS One , 9(10), e111293. doi: 10.1371/jounal.pone.0111293.
Wandrag, E.M., Bates, S.E., Barrett, L.G., Catford, J.A., Thrall, P.H., van der Putten, W.H., Duncan, R.P. (2020). Phylogenetic signals and predictability in plant-soil feedbacks. New Phytol. , 228(4): 1440-1449. doi: 10.1111/nph.16768.
Wang, X., Kou, Y., Liu, J., Zhao, W., Liu, Q. (2023). Soil microbial legacy determines mycorrhizal colonization and root traits of conifer seedlings during subalpine forest succession. Plant Soil , 485: 361-375. doi: 10.1007/s11104-022-05835-1.
Woolbright, S.A., Whitham, T.G., Gehring, C.A., Allan, G.J., Bailey, J.K. (2014). Climate relicts and their associated communities as natural ecology and evolution laboratories. Trends Ecol. Evol., 29(7): 406-416. doi: 10.1016/j.tree.2014.05.003.
Wooliver, R.C., Marion, Z.H., Peterson, C.R., Potts, B.M., Senior, J.K., Bailey, J.K., Schweitzer, J.A. (2017). Phylogeny is a powerful tool for predicting plant biomass responses to nitrogen enrichment.Ecology , 98(8): 2120-2132. doi: 10.1002/ecy.1896.
Wooliver, R.C., Senior, J.K., Potts, B.M., Van Nuland, M.E., Bailey, J.K., Schweitzer, J.A. (2018). Soil fungi underlie a phylogenetic pattern in plant growth responses to nitrogen enrichment. J. Ecol., 106(6): 2161-2175. doi: 10.1111/1365-2745.12983.
Wisz, M.S., Pottier, J., Kissling, W.D., Pellissier, L., Lenoir, J., Damgaard, C.F., Formann, C.F., Forchhammer, M.C., Grytnes, J.A., Guisan, A., Heikkinen, R.K., Høye, T.T., Kühn, I., Luoto, M., Maiorano, L., Nillsson, M.C., Normand, S., Öckinger, E., Schmidt, N.M., Termansen, M., Timmermann, A., Wardle, D.A., Aastrup, P., Svenning, J.C. (2013). The role of biotic interactions in shaping distributions and realized assemblages of species: implications for species distribution modeling.Biol. Rev. Camb. Philos. Soc. , 88(1): 15-30. doi: 10.1111/j.1469-185X.2012.00235.x.
Wurst, S. & Ohgushi, T. (2015). Do plant-and soil-mediated legacy effects impact future biotic interactions? Funct. Ecol. , 29(11): 1373-1382. doi: 10.1111.1365-2435.12456.
Xi, N., Adler, P.B., Chen, D., Wu, H., Catford, J.A., van Bodegom, P.M., Bahn, M., Crawford, K.M., Chu, C. (2021). Relationships between plant-soil feedbacks and functional traits. J. Ecol. , 109(9): 3411-3423. doi: 10.1111/1365-2745.13731.
Xie, L., Bi, Y., Ma, S., Shang, J., Hu, Q., Christie, P. (2021). Combined inoculation with dark septate endophytes and arbuscular mycorrhizal fungi: synergistic or competitive growth effects on maize?BMC Plant Biol. , 498. doi: 10.1186/s12870-021-03267-0.
Yan, X., Levine, J.M., Kandlikar, G.S. (2022). A quantitative synthesis of soil microbial effects on plant species coexistence. Proc. Natl. Acad. Sci. U.S.A. , 119(22), e2122088119. doi: 10.1073/pnas.2122088119.
Younginger, B.S., Sirová, D., Cruzan, M.B., Ballhorn, D.J. (2017). Is biomass a reliable estimate of plant fitness? Appl. Plant Sci. , 5(2): 1600094. doi: 10.3732/apps.1600094.
Zee, P.C. & Fukami, T. (2018). Priority effects are weakened by a short, but not long, history of sympatric evolution. Proc. Biol. Sci. , 285(1871): 20171722. doi: 10.1098/rspb.2017.1722.
Zhang, S., Zang, R., Sheil, D. (2022). Rare and common species contribute disproportionately to the functional variation within tropical forests. J. Environ. Manage. , 304, 114332. doi: 10.1016/j.jenvman.2021.114332.
Zhao, W., Wang, X., Howard, M.M., Kou, Y., Liu, Q. (2023). Functional shifts in soil fungal communities regulate differential tree species establishment during subalpine forest succession. Sci. Total Environ. , 861, 160616. doi: 10.1016/j.scitotenv.2022.160616.