References
[1] Javanian M, Barary M, Ghebrehewet S et al. A brief review of influenza virus infection. J MED VIROL. 2021. 93. 4638-4646. doi: 10.1002/jmv.26990
[2] Herold S, Becker C, Ridge KM et al. Influenza virus-induced lung injury: pathogenesis and implications for treatment. EUR RESPIR J. 2015. 45. 1463-78. doi: 10.1183/09031936.00186214
[3] Iuliano AD, Roguski KM, Chang HH et al. Estimates of global seasonal influenza-associated respiratory mortality: a modelling study. LANCET. 2018. 391. 1285-1300. doi: 10.1016/S0140-6736(17)33293-2
[4] Zangrillo A, Biondi- Zoccai G, Landoni G et al. Extracorporeal membrane oxygenation (ECMO) in patients with H1N1 influenza infection: a systematic review and meta-analysis including 8 studies and 266 patients receiving ECMO. CRIT CARE. 2013. 17. R30. doi: 10.1186/cc12512
[5] Dobson J, Whitley RJ, Pocock S et al. Oseltamivir treatment for influenza in adults: a meta-analysis of randomised controlled trials. LANCET. 2015. 385. 1729-1737. doi: 10.1016/S0140-6736(14)62449-1
[6] Gao YL, Zhai JH, Chai YF. Recent Advances in the Molecular Mechanisms Underlying Pyroptosis in Sepsis. MEDIAT INFLAMM. 2018. 2018. 5823823. doi: 10.1155/2018/5823823
[7] Tate MD, Ong J, Dowling JK et al. Reassessing the role of the NLRP3 inflammasome during pathogenic influenza A virus infection via temporal inhibition. SCI REP-UK. 2016. 6. 27912. doi: 10.1038/srep27912
[8] Ong JD, Mansell A, Tate MD. Hero turned villain: NLRP3 inflammasome-induced inflammation during influenza A virus infection. J LEUKOCYTE BIOL. 2017. 101. 863-874. doi: 10.1189/jlb.4MR0616-288R
[9] Rosa CP, Belo T, Santos N et al. Reactive oxygen species trigger inflammasome activation after intracellular microbial interaction. LIFE SCI. 2023. 331. 122076. doi: 10.1016/j.lfs.2023.122076
[10] Heid ME, Keyel PA, Kamga C et al. Mitochondrial reactive oxygen species induces NLRP3-dependent lysosomal damage and inflammasome activation. J IMMUNOL. 2013. 191. 5230-8. doi: 10.4049/jimmunol.1301490
[11] Cho HY, Kleeberger SR. Nrf2 protects against airway disorders. TOXICOL APPL PHARM. 2010. 244. 43-56. doi: 10.1016/j.taap.2009.07.024
[12] Garofalo RP, Kolli D, Casola A. Respiratory syncytial virus infection: mechanisms of redox control and novel therapeutic opportunities. ANTIOXID REDOX SIGN. 2013. 18. 186-217. doi: 10.1089/ars.2011.4307
[13] Kesic MJ, Meyer M, Bauer R et al. Exposure to ozone modulates human airway protease/antiprotease balance contributing to increased influenza A infection. PLOS ONE. 2012. 7. e35108. doi: 10.1371/journal.pone.0035108
[14] Qi Y, Gao F, Hou L et al. Anti-Inflammatory and Immunostimulatory Activities of Astragalosides. AM J CHINESE MED. 2017. 45. 1157-1167. doi: 10.1142/S0192415X1750063X
[15] Li X, Qu L, Dong Y et al. A review of recent research progress on the astragalus genus. MOLECULES. 2014. 19. 18850-80. doi: 10.3390/molecules191118850
[16] Liang Y, Zhang Q, Zhang L et al. Astragalus Membranaceus Treatment Protects Raw264.7 Cells from Influenza Virus by Regulating G1 Phase and the TLR3-Mediated Signaling Pathway. EVID-BASED COMPL ALT. 2019. 2019. 2971604. doi: 10.1155/2019/2971604
[17] Khan HM, Raza SM, Anjum AA et al. Antiviral, embryo toxic and cytotoxic activities of Astragalus membranaceus root extracts. PAK J PHARM SCI. 2019. 32. 137-142.
[18] Tang LL, Sheng JF, Xu CH et al. Clinical and experimental effectiveness of Astragali compound in the treatment of chronic viral hepatitis B. J INT MED RES. 2009. 37. 662-7. doi: 10.1177/147323000903700308
[19] Chen XJ, Bian ZP, Lu S et al. Cardiac protective effect of Astragalus on viral myocarditis mice: comparison with Perindopril. AM J CHINESE MED. 2006. 34. 493-502. doi: 10.1142/S0192415X06004028
[20] Kang X, Su S, Hong W et al. Research Progress on the Ability of Astragaloside IV to Protect the Brain Against Ischemia-Reperfusion Injury. FRONT NEUROSCI-SWITZ. 2021. 15. 755902. doi: 10.3389/fnins.2021.755902
[21] Chen Y, Wu M. Exploration of molecular mechanism underlying protective effect of astragaloside IV against radiation-induced lung injury by suppressing ferroptosis. ARCH BIOCHEM BIOPHYS. 2023. 745. 109717. doi: 10.1016/j.abb.2023.109717
[22] Yu WN, Sun LF, Yang H. Inhibitory Effects of Astragaloside IV on Bleomycin-Induced Pulmonary Fibrosis in Rats Via Attenuation of Oxidative Stress and Inflammation. INFLAMMATION. 2016. 39. 1835-41. doi: 10.1007/s10753-016-0420-5
[23] Yuan S, Zuo B, Zhou SC et al. Integrating Network Pharmacology and Experimental Validation to Explore the Pharmacological Mechanism of Astragaloside IV in Treating Bleomycin-Induced Pulmonary Fibrosis. Drug Des Devel Ther. 2023. 17. 1289-1302. doi: 10.2147/DDDT.S404710
[24] Wang L, Gu W, Shi Y et al. Protective effects of astragaloside IV on IL-8-treated diaphragmatic muscle cells. EXP THER MED. 2019. 17. 519-524. doi: 10.3892/etm.2018.6940
[25] Zhang J, Zhang W, Ren L et al. Astragaloside IV attenuates IL-1beta secretion by enhancing autophagy in H1N1 infection. FEMS MICROBIOL LETT. 2020. 367. doi: 10.1093/femsle/fnaa007
[26] Beck MA, Nelson HK, Shi Q et al. Selenium deficiency increases the pathology of an influenza virus infection. FASEB J. 2001. 15. 1481-3. doi:
[27] La Gruta NL, Kedzierska K, Stambas J et al. A question of self-preservation: immunopathology in influenza virus infection. IMMUNOL CELL BIOL. 2007. 85. 85-92. doi: 10.1038/sj.icb.7100026
[28] Shinya K, Gao Y, Cilloniz C et al. Integrated clinical, pathologic, virologic, and transcriptomic analysis of H5N1 influenza virus-induced viral pneumonia in the rhesus macaque. J VIROL. 2012. 86. 6055-66. doi: 10.1128/JVI.00365-12
[29] Tisoncik JR, Korth MJ, Simmons CP et al. Into the eye of the cytokine storm. MICROBIOL MOL BIOL R. 2012. 76. 16-32. doi: 10.1128/MMBR.05015-11
[30] Wang S, Li J, Huang H et al. Anti-hepatitis B virus activities of astragaloside IV isolated from radix Astragali. BIOL PHARM BULL. 2009. 32. 132-5. doi: 10.1248/bpb.32.132
[31] Chen P, Xie Y, Shen E et al. Astragaloside IV attenuates myocardial fibrosis by inhibiting TGF-beta1 signaling in coxsackievirus B3-induced cardiomyopathy. EUR J PHARMACOL. 2011. 658. 168-74. doi: 10.1016/j.ejphar.2011.02.040
[32] Zhang Y, Zhu H, Huang C et al. Astragaloside IV exerts antiviral effects against coxsackievirus B3 by upregulating interferon-gamma. J CARDIOVASC PHARM. 2006. 47. 190-5. doi: 10.1097/01.fjc.0000199683.43448.64
[33] Indu P, Arunagirinathan N, Rameshkumar MR et al. Antiviral activity of astragaloside II, astragaloside III and astragaloside IV compounds against dengue virus: Computational docking and in vitro studies. MICROB PATHOGENESIS. 2021. 152. 104563. doi: 10.1016/j.micpath.2020.104563
[34] Shang L, Qu Z, Sun L et al. Astragaloside IV inhibits adenovirus replication and apoptosis in A549 cells in vitro. J PHARM PHARMACOL. 2011. 63. 688-94. doi: 10.1111/j.2042-7158.2011.01258. x
[35] Song K, Yu JY, Li J et al. Astragaloside IV Regulates cGAS-STING Signaling Pathway to Alleviate Immunosuppression Caused by PRRSV Infection. VIRUSES-BASEL. 2023. 15. doi: 10.3390/v15071586
[36] Banerjee S, Ghosh S, Mandal A et al. ROS-associated immune response and metabolism: a mechanistic approach with implication of various diseases. ARCH TOXICOL. 2020. 94. 2293-2317. doi: 10.1007/s00204-020-02801-7
[37] Liu M, Chen F, Liu T et al. The role of oxidative stress in influenza virus infection. MICROBES INFECT. 2017. 19. 580-586. doi: 10.1016/j.micinf.2017.08.008
[38] De Angelis M, Amatore D, Checconi P et al. Influenza Virus Down-Modulates G6PD Expression and Activity to Induce Oxidative Stress and Promote Its Replication. FRONT CELL INFECT MI. 2021. 11. 804976. doi: 10.3389/fcimb.2021.804976
[39] Liu CC, Miao Y, Chen RL et al. STIM1 mediates IAV-induced inflammation of lung epithelial cells by regulating NLRP3 and inflammasome activation via targeting miR-223. LIFE SCI. 2021. 266. 118845. doi: 10.1016/j.lfs.2020.118845
[40] Yamada Y, Limmon GV, Zheng D et al. Major shifts in the spatio-temporal distribution of lung antioxidant enzymes during influenza pneumonia. PLOS ONE. 2012. 7. e31494. doi: 10.1371/journal.pone.0031494
[41] Cerda-Bernad D, Valero-Cases E, Pastor JJ et al. Saffron bioactives crocin, crocetin and safranal: effect on oxidative stress and mechanisms of action. CRIT REV FOOD SCI. 2022. 62. 3232-3249. doi: 10.1080/10408398.2020.1864279
[42] Harding AT, Goff MA, Froggatt HM et al. GPER1 is required to protect fetal health from maternal inflammation. SCIENCE. 2021. 371. 271-276. doi: 10.1126/science. aba 9001
[43] Imamura K, Imamachi N, Akizuki G et al. Long noncoding RNA NEAT1-dependent SFPQ relocation from promoter region to paraspeckle mediates IL8 expression upon immune stimuli. MOL CELL. 2014. 53. 393-406. doi: 10.1016/j.molcel.2014.01.009