References
[1]
Javanian
M, Barary M, Ghebrehewet S et al. A brief review of influenza virus
infection. J MED VIROL. 2021. 93. 4638-4646. doi: 10.1002/jmv.26990
[2]
Herold
S, Becker C, Ridge KM et al. Influenza virus-induced lung injury:
pathogenesis and implications for treatment. EUR RESPIR J. 2015. 45.
1463-78. doi: 10.1183/09031936.00186214
[3]
Iuliano
AD, Roguski KM, Chang HH et al. Estimates of global seasonal
influenza-associated respiratory mortality: a modelling study. LANCET.
2018. 391. 1285-1300. doi: 10.1016/S0140-6736(17)33293-2
[4]
Zangrillo
A, Biondi- Zoccai G, Landoni G et al. Extracorporeal membrane
oxygenation (ECMO) in patients with H1N1 influenza infection: a
systematic review and meta-analysis including 8 studies and 266 patients
receiving ECMO. CRIT CARE. 2013. 17. R30. doi: 10.1186/cc12512
[5]
Dobson
J, Whitley RJ, Pocock S et al. Oseltamivir treatment for influenza in
adults: a meta-analysis of randomised controlled trials. LANCET. 2015.
385. 1729-1737. doi: 10.1016/S0140-6736(14)62449-1
[6]
Gao
YL, Zhai JH, Chai YF. Recent Advances in the Molecular Mechanisms
Underlying Pyroptosis in Sepsis. MEDIAT INFLAMM. 2018. 2018. 5823823.
doi: 10.1155/2018/5823823
[7]
Tate
MD, Ong J, Dowling JK et al. Reassessing the role of the NLRP3
inflammasome during pathogenic influenza A virus infection via temporal
inhibition. SCI REP-UK. 2016. 6. 27912. doi: 10.1038/srep27912
[8]
Ong
JD, Mansell A, Tate MD. Hero turned villain: NLRP3 inflammasome-induced
inflammation during influenza A virus infection. J LEUKOCYTE BIOL. 2017.
101. 863-874. doi: 10.1189/jlb.4MR0616-288R
[9]
Rosa
CP, Belo T, Santos N et al. Reactive oxygen species trigger inflammasome
activation after intracellular microbial interaction. LIFE SCI. 2023.
331. 122076. doi: 10.1016/j.lfs.2023.122076
[10]
Heid
ME, Keyel PA, Kamga C et al. Mitochondrial reactive oxygen species
induces NLRP3-dependent lysosomal damage and inflammasome activation. J
IMMUNOL. 2013. 191. 5230-8. doi: 10.4049/jimmunol.1301490
[11]
Cho
HY, Kleeberger SR. Nrf2 protects against airway disorders. TOXICOL APPL
PHARM. 2010. 244. 43-56. doi: 10.1016/j.taap.2009.07.024
[12]
Garofalo
RP, Kolli D, Casola A. Respiratory syncytial virus infection: mechanisms
of redox control and novel therapeutic opportunities. ANTIOXID REDOX
SIGN. 2013. 18. 186-217. doi: 10.1089/ars.2011.4307
[13]
Kesic
MJ, Meyer M, Bauer R et al. Exposure to ozone modulates human airway
protease/antiprotease balance contributing to increased influenza A
infection. PLOS ONE. 2012. 7. e35108. doi: 10.1371/journal.pone.0035108
[14]
Qi Y,
Gao F, Hou L et al. Anti-Inflammatory and Immunostimulatory Activities
of Astragalosides. AM J CHINESE MED. 2017. 45. 1157-1167. doi:
10.1142/S0192415X1750063X
[15]
Li X,
Qu L, Dong Y et al. A review of recent research progress on the
astragalus genus. MOLECULES. 2014. 19. 18850-80. doi:
10.3390/molecules191118850
[16]
Liang
Y, Zhang Q, Zhang L et al. Astragalus Membranaceus Treatment Protects
Raw264.7 Cells from Influenza Virus by Regulating G1 Phase and the
TLR3-Mediated Signaling Pathway. EVID-BASED COMPL ALT. 2019. 2019.
2971604. doi: 10.1155/2019/2971604
[17]
Khan
HM, Raza SM, Anjum AA et al. Antiviral, embryo toxic and cytotoxic
activities of Astragalus membranaceus root extracts. PAK J PHARM SCI.
2019. 32. 137-142.
[18]
Tang
LL, Sheng JF, Xu CH et al. Clinical and experimental effectiveness of
Astragali compound in the treatment of chronic viral hepatitis B. J INT
MED RES. 2009. 37. 662-7. doi: 10.1177/147323000903700308
[19]
Chen
XJ, Bian ZP, Lu S et al. Cardiac protective effect of Astragalus on
viral myocarditis mice: comparison with Perindopril. AM J CHINESE MED.
2006. 34. 493-502. doi: 10.1142/S0192415X06004028
[20]
Kang
X, Su S, Hong W et al. Research Progress on the Ability of Astragaloside
IV to Protect the Brain Against Ischemia-Reperfusion Injury. FRONT
NEUROSCI-SWITZ. 2021. 15. 755902. doi: 10.3389/fnins.2021.755902
[21]
Chen
Y, Wu M. Exploration of molecular mechanism underlying protective effect
of astragaloside IV against radiation-induced lung injury by suppressing
ferroptosis. ARCH BIOCHEM BIOPHYS. 2023. 745. 109717. doi:
10.1016/j.abb.2023.109717
[22]
Yu WN,
Sun LF, Yang H. Inhibitory Effects of Astragaloside IV on
Bleomycin-Induced Pulmonary Fibrosis in Rats Via Attenuation of
Oxidative Stress and Inflammation. INFLAMMATION. 2016. 39. 1835-41. doi:
10.1007/s10753-016-0420-5
[23]
Yuan
S, Zuo B, Zhou SC et al. Integrating Network Pharmacology and
Experimental Validation to Explore the Pharmacological Mechanism of
Astragaloside IV in Treating Bleomycin-Induced Pulmonary Fibrosis. Drug
Des Devel Ther. 2023. 17. 1289-1302. doi: 10.2147/DDDT.S404710
[24]
Wang
L, Gu W, Shi Y et al. Protective effects of astragaloside IV on
IL-8-treated diaphragmatic muscle cells. EXP THER MED. 2019. 17.
519-524. doi: 10.3892/etm.2018.6940
[25]
Zhang
J, Zhang W, Ren L et al. Astragaloside IV attenuates IL-1beta secretion
by enhancing autophagy in H1N1 infection. FEMS MICROBIOL LETT. 2020.
367. doi: 10.1093/femsle/fnaa007
[26]
Beck
MA, Nelson HK, Shi Q et al. Selenium deficiency increases the pathology
of an influenza virus infection. FASEB J. 2001. 15. 1481-3. doi:
[27]
La
Gruta NL, Kedzierska K, Stambas J et al. A question of
self-preservation: immunopathology in influenza virus infection. IMMUNOL
CELL BIOL. 2007. 85. 85-92. doi: 10.1038/sj.icb.7100026
[28]
Shinya
K, Gao Y, Cilloniz C et al. Integrated clinical, pathologic, virologic,
and transcriptomic analysis of H5N1 influenza virus-induced viral
pneumonia in the rhesus macaque. J VIROL. 2012. 86. 6055-66. doi:
10.1128/JVI.00365-12
[29]
Tisoncik
JR, Korth MJ, Simmons CP et al. Into the eye of the cytokine storm.
MICROBIOL MOL BIOL R. 2012. 76. 16-32. doi: 10.1128/MMBR.05015-11
[30]
Wang
S, Li J, Huang H et al. Anti-hepatitis B virus activities of
astragaloside IV isolated from radix Astragali. BIOL PHARM BULL. 2009.
32. 132-5. doi: 10.1248/bpb.32.132
[31]
Chen
P, Xie Y, Shen E et al. Astragaloside IV attenuates myocardial fibrosis
by inhibiting TGF-beta1 signaling in coxsackievirus B3-induced
cardiomyopathy. EUR J PHARMACOL. 2011. 658. 168-74. doi:
10.1016/j.ejphar.2011.02.040
[32]
Zhang
Y, Zhu H, Huang C et al. Astragaloside IV exerts antiviral effects
against coxsackievirus B3 by upregulating interferon-gamma. J CARDIOVASC
PHARM. 2006. 47. 190-5. doi: 10.1097/01.fjc.0000199683.43448.64
[33]
Indu
P, Arunagirinathan N, Rameshkumar MR et al. Antiviral activity of
astragaloside II, astragaloside III and astragaloside IV compounds
against dengue virus: Computational docking and in vitro studies. MICROB
PATHOGENESIS. 2021. 152. 104563. doi: 10.1016/j.micpath.2020.104563
[34]
Shang
L, Qu Z, Sun L et al. Astragaloside IV inhibits adenovirus replication
and apoptosis in A549 cells in vitro. J PHARM PHARMACOL. 2011. 63.
688-94. doi: 10.1111/j.2042-7158.2011.01258. x
[35]
Song
K, Yu JY, Li J et al. Astragaloside IV Regulates cGAS-STING Signaling
Pathway to Alleviate Immunosuppression Caused by PRRSV Infection.
VIRUSES-BASEL. 2023. 15. doi: 10.3390/v15071586
[36]
Banerjee
S, Ghosh S, Mandal A et al. ROS-associated immune response and
metabolism: a mechanistic approach with implication of various diseases.
ARCH TOXICOL. 2020. 94. 2293-2317. doi: 10.1007/s00204-020-02801-7
[37]
Liu M,
Chen F, Liu T et al. The role of oxidative stress in influenza virus
infection. MICROBES INFECT. 2017. 19. 580-586. doi:
10.1016/j.micinf.2017.08.008
[38]
De
Angelis M, Amatore D, Checconi P et al. Influenza Virus Down-Modulates
G6PD Expression and Activity to Induce Oxidative Stress and Promote Its
Replication. FRONT CELL INFECT MI. 2021. 11. 804976. doi:
10.3389/fcimb.2021.804976
[39]
Liu
CC, Miao Y, Chen RL et al. STIM1 mediates IAV-induced inflammation of
lung epithelial cells by regulating NLRP3 and inflammasome activation
via targeting miR-223. LIFE SCI. 2021. 266. 118845. doi:
10.1016/j.lfs.2020.118845
[40]
Yamada
Y, Limmon GV, Zheng D et al. Major shifts in the spatio-temporal
distribution of lung antioxidant enzymes during influenza pneumonia.
PLOS ONE. 2012. 7. e31494. doi: 10.1371/journal.pone.0031494
[41]
Cerda-Bernad
D, Valero-Cases E, Pastor JJ et al. Saffron bioactives crocin, crocetin
and safranal: effect on oxidative stress and mechanisms of action. CRIT
REV FOOD SCI. 2022. 62. 3232-3249. doi: 10.1080/10408398.2020.1864279
[42]
Harding
AT, Goff MA, Froggatt HM et al. GPER1 is required to protect fetal
health from maternal inflammation. SCIENCE. 2021. 371. 271-276. doi:
10.1126/science. aba 9001
[43]
Imamura
K, Imamachi N, Akizuki G et al. Long noncoding RNA NEAT1-dependent SFPQ
relocation from promoter region to paraspeckle mediates IL8 expression
upon immune stimuli. MOL CELL. 2014. 53. 393-406. doi:
10.1016/j.molcel.2014.01.009