References
Abbott R. J. (1992). Plant invasions, interspecific hybridization and the evolution of new plant taxa. Trends in ecology & evolution7 (12), 401–405. https://doi.org/10.1016/0169-5347(92)90020-C
Abbott, R., Albach, D., Ansell, S., Arntzen, J. W., Baird, S. J., Bierne, N., Boughman, J., Brelsford, A., Buerkle, C. A., Buggs, R., Butlin, R. K., Dieckmann, U., Eroukhmanoff, F., Grill, A., Cahan, S. H., Hermansen, J. S., Hewitt, G., Hudson, A. G., Jiggins, C., Jones, J., … Zinner, D. (2013). Hybridization and speciation. Journal of evolutionary biology26 (2), 229–246. https://doi.org/10.1111/j.1420-9101.2012.02599.x
Baack, E., Melo, M. C., Rieseberg, L. H., & Ortiz-Barrientos, D. (2015). The origins of reproductive isolation in plants. The New phytologist207 (4), 968–984. https://doi.org/10.1111/nph.13424
Barker, M. S., Arrigo, N., Baniaga, A. E., Li, Z., & Levin, D. A. (2016). On the relative abundance of autopolyploids and allopolyploids. The New phytologist210 (2), 391–398. https://doi.org/10.1111/nph.13698
Blanckaert, A., & Bank, C. (2018). In search of the Goldilocks zone for hybrid speciation. PLoS genetics14 (9), e1007613. https://doi.org/10.1371/journal.pgen.1007613
Blanckaert, A., Sriram, V., & Bank, C. (2023). In search of the Goldilocks zone for hybrid speciation II: hard times for hybrid speciation?. Evolution; international journal of organic evolution77 (10), 2162–2172. https://doi.org/10.1093/evolut/qpad125
Bock, D. G., Cai, Z., Elphinstone, C., González-Segovia, E., Hirabayashi, K., Huang, K., Keais, G. L., Kim, A., Owens, G. L., & Rieseberg, L. H. (2023). Genomics of plant speciation. Plant communications4 (5), 100599. https://doi.org/10.1016/j.xplc.2023.100599
Brennan, A. C., Hiscock, S. J., & Abbott, R. J. (2019). Completing the hybridization triangle: the inheritance of genetic incompatibilities during homoploid hybrid speciation in ragworts (Senecio ). AoB PLANTS11 (1), ply078. https://doi.org/10.1093/aobpla/ply078
Buerkle, C. A., & Rieseberg, L. H. (2008). The rate of genome stabilization in homoploid hybrid species. Evolution; international journal of organic evolution62 (2), 266–275. https://doi.org/10.1111/j.1558-5646.2007.00267.x
Buerkle, C. A., Morris, R. J., Asmussen, M. A., & Rieseberg, L. H. (2000). The likelihood of homoploid hybrid speciation. Heredity84 ( Pt 4) , 441–451. https://doi.org/10.1046/j.1365-2540.2000.00680.x
Buerkle, C.A., Wolf, D.E., Rieseberg, L.H. (2003). The Origin and Extinction of Species Through Hybridization. In: Brigham, C.A., Schwartz, M.W. (eds) Population Viability in Plants. Ecological Studies , vol 165. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-662-09389-4_5
Chapman, M. A., & Burke, J. M. (2007). Genetic divergence and hybrid speciation. Evolution; international journal of organic evolution61 (7), 1773–1780. https://doi.org/10.1111/j.1558-5646.2007.00134.x
Comeault A. A. (2018). The genomic and ecological context of hybridization affects the probability that symmetrical incompatibilities drive hybrid speciation. Ecology and evolution8 (5), 2926–2937. https://doi.org/10.1002/ece3.3872
Cuevas, A., Ravinet, M., Saetre, G. P., & Eroukhmanoff, F. (2021). Intraspecific genomic variation and local adaptation in a young hybrid species. Molecular ecology30 (3), 791–809. https://doi.org/10.1111/mec.15760
Dagilis, A. J., Peede, D., Coughlan, J. M., Jofre, G. I., D’Agostino, E. R. R., Mavengere, H., Tate, A. D., & Matute, D. R. (2022). A need for standardized reporting of introgression: Insights from studies across eukaryotes. Evolution letters6 (5), 344–357. https://doi.org/10.1002/evl3.294
Goulet-Scott, B. E., Garner, A. G., & Hopkins, R. (2021). Genomic analyses overturn two long-standing homoploid hybrid speciation hypotheses. Evolution; international journal of organic evolution75 (7), 1699–1710. https://doi.org/10.1111/evo.14279
Grant, V. (1981). Plant Speciation . New York Chichester, West Sussex: Columbia University Press. https://doi.org/10.7312/gran92318
Green, R. E., Krause, J., Briggs, A. W., Maricic, T., Stenzel, U., Kircher, M., Patterson, N., Li, H., Zhai, W., Fritz, M. H., Hansen, N. F., Durand, E. Y., Malaspinas, A. S., Jensen, J. D., Marques-Bonet, T., Alkan, C., Prüfer, K., Meyer, M., Burbano, H. A., Good, J. M., … Pääbo, S. (2010). A draft sequence of the Neandertal genome. Science (New York, N.Y.)328 (5979), 710–722. https://doi.org/10.1126/science.1188021
Hermansen, J. S., Haas, F., Trier, C. N., Bailey, R. I., Nederbragt, A. J., Marzal, A., & Saetre, G. P. (2014). Hybrid speciation through sorting of parental incompatibilities in Italian sparrows. Molecular ecology23 (23), 5831–5842. https://doi.org/10.1111/mec.12910
Hudson, R. R., Kreitman, M., & Aguadé, M. (1987). A test of neutral molecular evolution based on nucleotide data. Genetics116 (1), 153–159. https://doi.org/10.1093/genetics/116.1.153
Lamichhaney, S., Han, F., Webster, M. T., Andersson, L., Grant, B. R., & Grant, P. R. (2018). Rapid hybrid speciation in Darwin’s finches. Science (New York, N.Y.)359 (6372), 224–228. https://doi.org/10.1126/science.aao4593
Leducq, J. B., Nielly-Thibault, L., Charron, G., Eberlein, C., Verta, J. P., Samani, P., Sylvester, K., Hittinger, C. T., Bell, G., & Landry, C. R. (2016). Speciation driven by hybridization and chromosomal plasticity in a wild yeast. Nature microbiology1 , 15003. https://doi.org/10.1038/nmicrobiol.2015.3
Li, M., Zheng, Z., Liu, J., Yang, Y., Ren, G., Ru, D., Zhang, S., Du, X., Ma, T., Milne, R., & Liu, J. (2021). Evolutionary origin of a tetraploid Allium species on the Qinghai-Tibet Plateau. Molecular ecology30 (22), 5780–5795. https://doi.org/10.1111/mec.16168
Liu, B., Abbott, R. J., Lu, Z., Tian, B., & Liu, J. (2014). Diploid hybrid origin of Ostryopsis intermedia (Betulaceae) in the Qinghai-Tibet Plateau triggered by Quaternary climate change. Molecular ecology23 (12), 3013–3027. https://doi.org/10.1111/mec.12783
Lukhtanov VA, Shapoval NA, Anokhin BA, Saifitdinova AF, Kuznetsova VG. Homoploid hybrid speciation and genome evolution via chromosome sorting. Proc Biol Sci. 2015 May 22;282(1807):20150157. doi: 10.1098/rspb.2015.0157. Mallet, 2007;
Masello, J. F., Quillfeldt, P., Sandoval-Castellanos, E., Alderman, R., Calderón, L., Cherel, Y., Cole, T. L., Cuthbert, R. J., Marin, M., Massaro, M., Navarro, J., Phillips, R. A., Ryan, P. G., Shepherd, L. D., Suazo, C. G., Weimerskirch, H., & Moodley, Y. (2019). Additive Traits Lead to Feeding Advantage and Reproductive Isolation, Promoting Homoploid Hybrid Speciation. Molecular biology and evolution36 (8), 1671–1685. https://doi.org/10.1093/molbev/msz090
Mavárez, J., Salazar, C. A., Bermingham, E., Salcedo, C., Jiggins, C. D., & Linares, M. (2006). Speciation by hybridization in Heliconius butterflies. Nature441 (7095), 868–871. https://doi.org/10.1038/nature04738
Mayrose, I., Zhan, S. H., Rothfels, C. J., Magnuson-Ford, K., Barker, M. S., Rieseberg, L. H., & Otto, S. P. (2011). Recently formed polyploid plants diversify at lower rates. Science (New York, N.Y.)333 (6047), 1257. https://doi.org/10.1126/science.1207205
Meier, J. I., Marques, D. A., Mwaiko, S., Wagner, C. E., Excoffier, L., & Seehausen, O. (2017). Ancient hybridization fuels rapid cichlid fish adaptive radiations. Nature communications8 , 14363. https://doi.org/10.1038/ncomms14363
Monnet, F., Postel, Z., Touzet, P., Fraïsse, C., Van de Peer, Y., Vekemans, X., & Roux, C. (2023). Rapid establishment of species barriers in plants compared to animals. bioRxivhttps://do.org/10.1101/2023.10.16.562535
Nevado, B., Harris, S. A., Beaumont, M. A., & Hiscock, S. J. (2020). Rapid homoploid hybrid speciation in British gardens: The origin of Oxford ragwort (Senecio squalidus). Molecular ecology29 (21), 4221–4233. https://doi.org/10.1111/mec.15630
Nieto Feliner, G., Álvarez, I., Fuertes-Aguilar, J., Heuertz, M., Marques, I., Moharrek, F., Piñeiro, R., Riina, R., Rosselló, J. A., Soltis, P. S., & Villa-Machío, I. (2017). Is homoploid hybrid speciation that rare? An empiricist’s view. Heredity118 (6), 513–516. https://doi.org/10.1038/hdy.2017.7
Osborne, O. G., Batstone, T. E., Hiscock, S. J., & Filatov, D. A. (2013). Rapid speciation with gene flow following the formation of Mt. Etna. Genome Biology and Evolution5 (9), 1704–1715. https://doi.org/10.1093/gbe/evt127
Ottenburghs J. (2018). Exploring the hybrid speciation continuum in birds. Ecology and evolution8 (24), 13027–13034. https://doi.org/10.1002/ece3.4558
Ottenburghs, J., Megens, H. J., Kraus, R. H. S., Madsen, O., van Hooft, P., van Wieren, S. E., Crooijmans, R. P. M. A., Ydenberg, R. C., Groenen, M. A. M., & Prins, H. H. T. (2016). A tree of geese: A phylogenomic perspective on the evolutionary history of True Geese. Molecular phylogenetics and evolution101 , 303–313. https://doi.org/10.1016/j.ympev.2016.05.021
Owens G. L. (2021). From common gardens to candidate genes: an elegant case of homoploid hybrid speciation. Molecular plant14 (2), 200–201. https://doi.org/10.1016/j.molp.2020.11.020
Owens, G. L., Huang, K., Todesco, M., & Rieseberg, L. H. (2023). Re-evaluating Homoploid Reticulate Evolution in Helianthus Sunflowers. Molecular biology and evolution40 (2), msad013. https://doi.org/10.1093/molbev/msad013
Papoli Yazdi, H., Ravinet, M., Rowe, M., Saetre, G. P., Guldvog, C. Ø., Eroukhmanoff, F., Marzal, A., Magallanes, S., & Runemark, A. (2022). Extensive transgressive gene expression in testis but not ovary in the homoploid hybrid Italian sparrow. Molecular ecology31 (15), 4067–4077. https://doi.org/10.1111/mec.16572
Ravinet, M., Elgvin, T. O., Trier, C., Aliabadian, M., Gavrilov, A., & Sætre, G. P. (2018). Signatures of human-commensalism in the house sparrow genome. Proceedings. Biological sciences285 (1884), 20181246. https://doi.org/10.1098/rspb.2018.1246
Rieseberg, L. H. (1997). Hybrid origins of plant species. Annual Review of Ecology and Systematics 28 , 359-389. https://doi.org/10.1146/annurev.ecolsys.28.1.359
Rieseberg, L. H., Raymond, O., Rosenthal, D. M., Lai, Z., Livingstone, K., Nakazato, T., Durphy, J. L., Schwarzbach, A. E., Donovan, L. A., & Lexer, C. (2003). Major ecological transitions in wild sunflowers facilitated by hybridization. Science (New York, N.Y.)301 (5637), 1211–1216. https://doi.org/10.1126/science.1086949
Rokas, A., & Holland, P. W. (2000). Rare genomic changes as a tool for phylogenetics. Trends in ecology & evolution, 15(11), 454–459. https://doi.org/10.1016/s0169-5347(00)01967-4
Roux, C., Fraïsse, C., Romiguier, J., Anciaux, Y., Galtier, N., & Bierne, N. (2016). Shedding Light on the Grey Zone of Speciation along a Continuum of Genomic Divergence. PLoS biology14 (12), e2000234. https://doi.org/10.1371/journal.pbio.2000234
Salazar, C., Baxter, S. W., Pardo-Diaz, C., Wu, G., Surridge, A., Linares, M., Bermingham, E., & Jiggins, C. D. (2010). Genetic evidence for hybrid trait speciation in Heliconius butterflies. PLoS genetics6 (4), e1000930. https://doi.org/10.1371/journal.pgen.1000930
Schemske, D. W. (2000). Understanding the origin of species.Evolution; international journal of organic evolution , 54(3), 1069–1073, https://doi.org/10.1111/j.0014-3820.2000.tb00111.x
Schumer, M., Cui, R., Rosenthal, G. G., & Andolfatto, P. (2015). Reproductive isolation of hybrid populations driven by genetic incompatibilities. PLoS genetics11 (3), e1005041. https://doi.org/10.1371/journal.pgen.1005041
Schumer, M., Rosenthal, G. G., & Andolfatto, P. (2014). How common is homoploid hybrid speciation?. Evolution; international journal of organic evolution68 (6), 1553–1560. https://doi.org/10.1111/evo.12399
Schumer, M., Rosenthal, G. G., & Andolfatto, P. (2018). What do we mean when we talk about hybrid speciation?. Heredity120 (4), 379–382. https://doi.org/10.1038/s41437-017-0036-z
Smith, S. A., & Donoghue, M. J. (2008). Rates of molecular evolution are linked to life history in flowering plants. Science (New York, N.Y.)322 (5898), 86–89. https://doi.org/10.1126/science.1163197
Soltis, D. E., Buggs, R. J. A., Doyle, J. J., & Soltis, P. S. (2010). What we still don’t know about polyploidy. Taxon 59 (5), 1387–1403. https://doi.org/10.1002/tax.595006
Stevison, L. S., Bailey, N. P., Szpiech, Z. A., Novak, T. E., Melnick, D. J., Evans, B. J., & Wall, J. D. (2022). Evolution of genes involved in the unusual genitals of the bear macaque, Macaca arctoidesEcology and Evolution , 12, e8897. https://doi.org/10.1002/ece3.8897
Stull, G. W., Pham, K. K., Soltis, P. S., & Soltis, D. E. (2023). Deep reticulation: the long legacy of hybridization in vascular plant evolution. The Plant journal : for cell and molecular biology114 (4), 743–766. https://doi.org/10.1111/tpj.16142
Sun, Y., Lu, Z., Zhu, X., & Ma, H. (2020). Genomic basis of homoploid hybrid speciation within chestnut trees. Nature communications11 (1), 3375. https://doi.org/10.1038/s41467-020-17111-w
Taylor, S. A., & Larson, E. L. (2019). Insights from genomes into the evolutionary importance and prevalence of hybridization in nature. Nature ecology & evolution3 (2), 170–177. https://doi.org/10.1038/s41559-018-0777-y
Thompson, K. A., Brandvain, Y., Coughlan, J. M., Delmore, K. E., Justen, H., Linnen, C. R., Ortiz-Barrientos, D., Rushworth, C. A., Schneemann, H., Schumer, M., & Stelkens, R. (2023). The Ecology of Hybrid Incompatibilities. Cold Spring Harbor perspectives in biology , a041440. Advance online publication. https://doi.org/10.1101/cshperspect.a041440
Wang, D., Xu, X., Zhang, H., Xi, Z., Abbott, R. J., Fu, J., & Liu, J. (2022). Abiotic Niche Divergence of Hybrid Species from Their Progenitors. The American naturalist200 (5), 634–645. https://doi.org/10.1086/721372
Wang, Z., Jiang, Y., Bi, H., Lu, Z., Ma, Y., Yang, X., Chen, N., Tian, B., Liu, B., Mao, X., Ma, T., DiFazio, S. P., Hu, Q., Abbott, R. J., & Liu, J. (2021). Hybrid speciation via inheritance of alternate alleles of parental isolating genes. Molecular plant14 (2), 208–222. https://doi.org/10.1016/j.molp.2020.11.008
Wang, Z., Kang, M., Li, J., Zhang, Z., Wang, Y., Chen, C., Yang, Y., & Liu, J. (2022). Genomic evidence for homoploid hybrid speciation between ancestors of two different genera. Nature communications13 (1), 1987. https://doi.org/10.1038/s41467-022-29643-4
Wogan, G. O. U., Yuan, M. L., Mahler, D. L., & Wang, I. J. (2023). Hybridization and Transgressive Evolution Generate Diversity in an Adaptive Radiation of Anolis Lizards. Systematic biology72 (4), 874–884. https://doi.org/10.1093/sysbio/syad026
Wood, T. E., Takebayashi, N., Barker, M. S., Mayrose, I., Greenspoon, P. B., & Rieseberg, L. H. (2009). The frequency of polyploid speciation in vascular plants. Proceedings of the National Academy of Sciences of the United States of America106 (33), 13875–13879. https://doi.org/10.1073/pnas.0811575106
Wu, H., Wang, Z., Zhang, Y., Frantz, L., Roos, C., Irwin, D. M., Zhang, C., Liu, X., Wu, D., Huang, S., Gu, T., Liu, J., & Yu, L. (2023). Hybrid origin of a primate, the gray snub-nosed monkey. Science (New York, N.Y.)380 (6648), eabl4997. https://doi.org/10.1126/science.abl4997 Zalmat et al., 2021;
Y C Brandt, D., Wei, X., Deng, Y., Vaughn, A. H., & Nielsen, R. (2022). Evaluation of methods for estimating coalescence times using ancestral recombination graphs. Genetics221 (1), iyac044. https://doi.org/10.1093/genetics/iyac044.
Zhang, B. L., Chen, W., Wang, Z., Pang, W., Luo, M. T., Wang, S., Shao, Y., He, W. Q., Deng, Y., Zhou, L., Chen, J., Yang, M. M., Wu, Y., Wang, L., Fernández-Bellon, H., Molloy, S., Meunier, H., Wanert, F., Kuderna, L., Marques-Bonet, T., … Wu, D. D. (2023). Comparative genomics reveals the hybrid origin of a macaque group. Science advances9 (22), eadd3580. https://doi.org/10.1126/sciadv.add3580
Zou, T., Kuang, W., Yin, T., Frantz, L., Zhang, C., Liu, J., Wu, H., & Yu, L. (2022). Uncovering the enigmatic evolution of bears in greater depth: The hybrid origin of the Asiatic black bear. Proceedings of the National Academy of Sciences of the United States of America119 (31), e2120307119. https://doi.org/10.1073/pnas.2120307119