https://doi.org/10.1016/j.heliyon.2023.e17815
Erisman, J.W., Sutton, M.A., Galloway, J., Klimont, Z., Winiwarter, W., 2008. How a century of ammonia synthesis changed the world. Nat. Geosci. 1, 636-639. https://doi.org/10.1038/ngeo325
Fu, Y.D., Xu, W., Wen, Z., Han, M.J., Sun, J.H., Tang, A.H., Liu, X.J., 2020. Enhanced atmospheric nitrogen deposition at a rural site in northwest China from 2011 to 2018. Atmos. Res. 245, 105071.https://doi.org/10.1016/j.atmosres.2020.105071
Galloway, J.N., Townsend, A.R., Erisman, J.W., Bekunda, M., Cai, Z., Freney, J.R., Martinelli, L.A., Seitzinger, S.P., Sutton, M.A., 2008. Transformation of the nitrogen cycle: recent trends, questions, and potential solutions. Science 320, 889-892.https://doi.org/10.1126/science.1136674
Gao, J., Li, Z., Chen, Z., Zhou, Y., Zhou, J., 2021. Deterioration of groundwater quality along an increasing intensive land use pattern in a small catchment. Agric. Water. Manag. 253, 106953.https://doi.org/10.1016/j.agwat.2021.106953
Gao, J., Wang, S., Li, Z., Wang, L., Zhou, J., 2021. High nitrate accumulation in the vadose zone after land-use change from croplands to orchards. Environ. Sci. Technol. 55, 5782-5790.https://pubs.acs.org/doi/10.1021/acs.est.0c06730
Gao, J.J., Bai, X.L., Zhou, B., Zhou, J.B., Chen, Z.J., 2012. Soil nutrient content and nutrient balances in newly-built solar greenhouses in northern China. Nutr. Cycl. Agroecosyst. 94, 63-72.
https://doi.org/10.1007/s10705-012-9526-9
Grant, R., Blicher-Mathiesen, G., 2004. Danish policy measures to reduce diffuse nitrogen emissions from agriculture to the aquatic environment. Water. Sci. Technol. 49, 91-99.
https://doi.org/10.2166/wst.2004.0170
Grieger, S.R., Harrison, J.A., 2021. Long-term disconnect between nutrient inputs and riverine exports in a Semi-Arid, agricultural watershed: Yakima River Basin 1945-2012. J. Geophys. Res. Biogeosci. 126.https://doi.org/10.1029/2020JG006072
Gu, B., Ju, X., Chang, J., Ge, Y., Vitousek, P.M., 2015. Integrated reactive nitrogen budgets and future trends in China. Proc. Natl. Acad. Sci. USA 112, 8792-8797.https://doi.org/10.1073/pnas.151021111
Haygarth, P.M., Jarvie, H.P., Powers, S.M., Sharpley, A.N., Elser, J.J., Shen, J., Peterson, H.M., Chan, N., Howden, N.J.K., Burt, T., Worrall, F., Zhang, F., Liu, X., 2014. Sustainable phosphorus management and the need for a long-term perspective: the legacy hypothesis. Environ. Sci. Technol. 48, 8417-8419.https://doi.org/10.1021/es502852s
Hong, B., Swaney, D.P., Howarth, R.W., 2013. Estimating net anthropogenic nitrogen inputs to U.S. watersheds: comparison of methodologies. Environ. Sci. Technol. 47, 5199-5207.
https://doi.org/10.1021/es303437c
Hou, C., Chu, M.L., Botero-Acosta, A., Guzman, J.A., 2021. Modeling field scale nitrogen non-point source pollution (NPS) fate and transport: influences from land management practices and climate. Sci. Total. Environ. 759, 143502.https://doi.org/10.1016/j.scitotenv.2020.143502
Ilampooranan, I., Van Meter, K.J., Basu, N.B., 2019. A race against time: modeling time lags in watershed response. Water. Resour. Res. 55, 3941-3959.https://doi.org/10.1029/2018WR023815
Kim, D., Kirschbaum, M.U.F., Eichler-Loebermann, B., Gifford, R.M., Liang, L.L., 2023. The effect of land-use change on soil C, N, P, and their stoichiometries: a global synthesis. Agric. Ecosyst. Environ. 348, 108402.https://doi.org/10.1016/j.agee.2023.108402
Kochiieru, M., Lamorski, K., Feiziene, D., Feiza, V., Slepetiene, A., Volungevicius, J., 2022. Land use and soil types affect macropore network, organic carbon and nutrient retention, Lithuania. Geoderma. Reg. 28, e00473.https://doi.org/10.1016/j.geodrs.2021.e00473
Krausmann, F., Erb, K., Gingrich, S., Haberl, H., Bondeau, A., Gaube, V., Lauk, C., Plutzar, C., Searchinger, T.D., 2013. Global human appropriation of net primary production doubled in the 20th century. Proc. Natl. Acad. Sci. USA 110, 10324-10329.https://doi.org/10.1073/pnas.1211349110
Kuestermann, B., Christen, O., Huelsbergen, K., 2010. Modelling nitrogen cycles of farming systems as basis of site- and farm-specific nitrogen management. Agric. Ecosyst. Environ. 135, 70-80.https://doi.org/10.1016/j.agee.2009.08.014
Lassaletta, L., Einarsson, R., Quemada, M., 2023. Nitrogen use efficiency of tomorrow. Nat. Food. 4, 281-282.https://doi.org/10.1038/s43016-023-00740-x
Le Noë, J., Billen, G., Esculier, F., Garnier, J., 2018. Long-term socioecological trajectories of agro-food systems revealed by N and P flows in French regions from 1852 to 2014. Agric. Ecosyst. Environ. 265, 132-143.https://doi.org/10.1016/j.agee.2018.06.006
Li, S.T., Jin, J.Y., 2011.Characteristics of nutrient input/output and nutrient balance in different regions of China. Sci. Agric. Sin. 44, 4207-4229 (in Chinese with English abstract).
Li, X., Li, Y.X., Zhang, J.X., Huang, D.L., Zheng, X. F., Wang, Z. H., 2016. Effects of maize straw return on yield and soil nitrate accumulation in different growth stages of winter wheat Agriculture. Res. Arid. Areas. 34, 156-162 (in Chinese with English abstract).
Liu, H.B., Lei, B.K., Zhang, Y.G., Zhang, W.L., Lin, B., 2001. Investigation and evaluation on nitrate pollution in groundwater of Shunyi District. Plant. Nutr. Fert. Sci. 7, 385-390 (in Chinese with English abstract).
Lim, J.Y., Islam Bhuiyan, M.S., Lee, S.B., Lee, J.G., Kim, P.J., 2021. Agricultural nitrogen and phosphorus balances of Korea and Japan: highest nutrient surplus among OECD member countries. Environ. Pollut. 286, 117353.https://doi.org/10.1016/j.envpol.2021.117353
Liu, X., Zhang, Y., Han, W., Tang, A., Shen, J., Cui, Z., Vitousek, P., Erisman, J.W., Goulding, K., Christie, P., Fangmeier, A., Zhang, F., 2013. Enhanced nitrogen deposition over China. Nature 494, 459-462.https://doi.org/10.1038/nature11917
Liu, Z.J., Hou, L.Y., Zhu, Y.J., Xu, X.P., 2021. Vertical distribution and regulation of Olsen-phosphorus in 6-m soil profiles after farmland-to-apple orchard conversion on the Chinese Loess Plateau. Catena 202, 105254.https://doi.org/10.1016/j.catena.2021.105254
Lu, C., Tian, H., 2017. Global nitrogen and phosphorus fertilizer use for agriculture production in the past half century: shifted hot spots and nutrient imbalance. Earth. Syst. Sci. Data. 9, 181-192.https://doi.org/10.1594/PANGAEA.863323
Lu, Y., Chen, Z., Kang, T., Zhang, X., Bellarby, J., Zhou, J., 2016. Land-use changes from arable crop to kiwi-orchard increased nutrient surpluses and accumulation in soils. Agric. Ecosyst. Environ. 223, 270-277.https://doi.org/10.1016/j.agee.2016.03.019
Lutz, S.R., Ebeling, P., Musolff, A., Van Nguyen, T., Sarrazin, F.J., Van Meter, K.J., Basu, N.B., Fleckenstein, J.H., Attinger, S., Kumar, R., 2022. Pulling the rabbit out of the hat: unravelling hidden nitrogen legacies in catchment-scale water quality models. Hydrol. Process. 36, e14682.
https://doi.org/10.1002/hyp.14682
Luz, F.B.D., Silva, V.R.D., Mallmann, F.J.K., Pires, C.A.B., Debiasi, H., Franchini, J.C., Cherubin, M.R., 2019. Monitoring soil quality changes in diversified agricultural cropping systems by the soil management assessment framework (SMAF) in southern Brazil. Agric. Ecosyst. Environ. 281, 100-110.https://doi.org/10.1016/j.agee.2019.05.006
Ma, L., Velthof, G.L., Wang, F.H., Qin, W., Zhang, W.F., Liu, Z., Zhang, Y., Wei, J., Lesschen, J.P., Ma, W.Q., Oenema, O., Zhang, F.S., 2012. Nitrogen and phosphorus use efficiencies and losses in the food chain in China at regional scales in 1980 and 2005. Sci. Total. Environ. 434, 51-61.
https://doi.org/10.1016/j.scitotenv.2012.03.028
Metson, G.S., Lin, J., Harrison, J.A., Compton, J.E., 2020. Where have all the nutrients gone? long‐term decoupling of inputs and outputs in the Willamette River watershed, Oregon, United States. J. Geophys. Res-Biogeo. 125.https://doi.org/10.1029/2020JG005792
Miao, P., Zhu, X., Zhang, S., Li, W., Zhou, J., Chen, Z., 2023. Long-term high nitrogen surplus in intensive apple-planting regions results in huge legacy nitrogen in the vadose zone: potential or real risk to the groundwater? Agric. Ecosyst. Environ. 357, 108682.https://doi.org/10.1016/j.agee.2023.108682
Min, L., Shen, Y., Pei, H., Wang, P., 2018. Water movement and solute transport in deep vadose zone under four irrigated agricultural land-use types in the North China Plain. J. Hydrol. 559, 510-522.
https://doi.org/10.1016/j.jhydrol.2018.02.037
Molénat, J., Gascuel Odoux, C., 2002. Modelling flow and nitrate transport in groundwater for the prediction of water travel times and of consequences of land use evolution on water quality. Hydrol. Process. 16, 479-492.https://doi.org/10.1002/hyp.328
Morseletto, P., 2019. Confronting the nitrogen challenge: Options for governance and target setting. Glob. Environ. Change. 54, 40-49.https://doi.org/10.1016/j.gloenvcha.2018.10.010
Mu, W., van Middelaar, C.E., Bloemhof, J.M., Oenema, J., de Boer, I.J.M., 2016. Nutrient balance at chain level: a valuable approach to benchmark nutrient losses of milk production systems. J. Clean. Prod. 112, 2419-2428.https://doi.org/10.1016/j.jclepro.2015.09.116
Mulimbi, W., Brye, K.R., Nalley, L.L., Birindwa, D.R., 2023. Conservation agriculture assists smallholder farmers and their agroecosystem in the Democratic Republic of the Congo. Agric. Ecosyst. Environ. 355, 108597.https://doi.org/10.1016/j.agee.2023.108597
Nguyen, T., Sarrazin, F.J., Ebeling, P., Musolff, A., Fleckenstein, J.H., Kumar, R., 2022. Toward understanding of long-term nitrogen transport and retention dynamics across German catchments. Geophys. Res. Lett. 49.https://doi.org/10.1029/2022GL100278
Niu, X., Jia, X., Yang, X., Wang, J., Wei, X., Wu, L., Shao, M., 2022. Tracing the sources and fate of NO3in the vadose zone-groundwater system of a thousand-year-cultivated region. Environ. Sci. Technol. 56, 9335-9345.https://doi.org/10.1021/acs.est.1c06289
Pawar, N.J., Shaikh, I.J., 1995. Nitrate pollution of ground waters from shallow basaltic aquifers, Deccan Trap hydrologic province, India. Environ. geol. 25, 197-204.
https://doi.org/10.1007/BF00768549
Penuelas, J., Janssens, I.A., Ciais, P., Obersteiner, M., Sardans, J., 2020. Anthropogenic global shifts in biospheric N and P concentrations and ratios and their impacts on biodiversity, ecosystem productivity, food security, and human health. Glob. Chang. Biol. 26, 1962-1985.https://doi.org/10.1111/gcb.14981
Qi, Y.B., Chang, Q.R., Liu, M.Y., Liu, J., Chen, T., 2014. County-scale spatial variability of soil nutrient distribution and determination of reasonable sampling density. Chin. Soil. Sci. 45, 556-561.
(in Chinese with English abstract).
Ren, M., Li, C., Gao, X., Niu, H., Cai, Y., Wen, H., Yang, M., Siddique, K.H.M., Zhao, X., 2023. High nutrients surplus led to deep soil nitrate accumulation and acidification after cropland conversion to apple orchards on the Loess Plateau, China. Agric. Ecosyst. Environ. 351, 108482.
https://doi.org/10.1016/j.agee.2023.108482
Rivett, M.O., Buss, S.R., Morgan, P., Smith, J.W.N., Bemment, C.D., 2008. Nitrate attenuation in groundwater: A review of biogeochemical controlling processes. Water. Res. 42, 4215-4232.https://doi.org/10.1016/j.watres.2008.07.020
Roobroeck, D., Palm, C.A., Nziguheba, G., Weil, R., Vanlauwe, B., 2021. Assessing and understanding non-responsiveness of maize and soybean to fertilizer applications in African smallholder farms. Agric. Ecosyst. Environ. 305, 107165.https://doi.org/10.1016/j.agee.2020.107165
Sabo, R.D., Clark, C.M., Bash, J., Sobota, D., Cooter, E., Dobrowolski, J.P., Houlton, B.Z., Rea, A., Schwede, D., Morford, S.L., Compton, J.E., 2019. Decadal shift in nitrogen inputs and fluxes across the contiguous United States: 2002-2012. J. Geophys. Res. Biogeosci. 124, 3104-3124.
https://doi.org/10.1029/2019JG005110
Sanchez Gutierrez, R., Sanchez Murillo, R., Esquivel Hernandez, G., Birkel, C., Boll, J., Rojas-Jimenez, L.D., Castro-Chacon, L., 2023. Nitrate legacy in a tropical and complex fractured volcanic aquifer system. J. Geophys. Res. Biogeosci. 128.https://doi.org/10.1029/2023JG007554
Smith, L., Inman, A., Xin, L., Zhang, H.F., Meng, F.Q., Zhou, J.B., Burke, S., Rahn, C., Siciliano, G., Haygarth, P.M., Bellarby, J., Ben, S., 2017. Mitigation of diffuse water pollution from agriculture in England and China, and the scope for policy transfer. Land. Use. Policy. 61, 208-219.
https://doi.org/10.1016/j.landusepol.2016.09.028
Steffen, W., Richardson, K., Rockstrom, J., Cornell, S.E., Fetzer, I., Bennett, E.M., Biggs, R., Carpenter, S.R., de Vries, W., de Wit, C.A., Folke, C., Gerten, D., Heinke, J., Mace, G.M., Persson, L.M., Ramanathan, V., Reyers, B., Sorlin, S., 2015. Planetary boundaries: guiding human development on a changing planet. Science 347, 6223.https://doi.org/10.1126/science.1259855
Suennemann, M., Siebert, J., Reitz, T., Schaedler, M., Yin, R., Eisenhauer, N., 2021. Combined effects of land-use type and climate change on soil microbial activity and invertebrate decomposer activity. Agric. Ecosyst. Environ. 318, 107490.https://doi.org/10.1016/j.agee.2021.107490
Sun, B., Shen, R.P., Bouwman, A.F., 2008. Surface N balances in agricultural crop production systems in China for the period 1980 - 2015. Pedosphere 18, 304-315.https://doi.org/10.1016/S1002-0160(08)60020-X
Sun, C., Chen, L., Zhai, L., Liu, H., Shen, Z., 2020. National assessment of nitrogen fertilizers fate and related environmental impacts of multiple pathways in China. J. Clean. Prod. 277, 123519.
https://doi.org/10.1016/j.jclepro.2020.123519
Tian, H., Xu, R., Pan, S., Yao, Y., Bian, Z., Cai, W., Hopkinson, C.S., Justic, D., Lohrenz, S., Lu, C., Ren, W., Yang, J., 2020. Long-term trajectory of nitrogen loading and delivery from Mississippi River Basin to the Gulf of Mexico. Global. Biogeochem. Cycles. 34.
https://doi.org/10.1029/2019GB006475
Tian, H.Y., Qiao, J.B., Zhu, Y.J., Jia, X.X., Shao, M.A., 2021. Vertical distribution of soil available phosphorus and soil available potassium in the critical zone on the Loess Plateau, China. Sci. Rep. 11, 3159.https://doi.org/10.1038/s41598-021-82677-4
van Grinsven, H.J.M., Berge, H.F.M.T., Dalgaard, T., Fraters, B., Durand, P., Hart, A., Hofman, G., Jacobsen, B.H., Lalor, S.T.J., Lesschen, J.P., Osterburg, B., Richards, K.G., Techen, A.K., Vertes, F., Webb, J., Willems, W.J., 2012. Management, regulation and environmental impacts of nitrogen fertilization in northwestern Europe under the Nitrates Directive; a benchmark study. Biogeosciences 9, 5143-5160.https://doi.org/10.5194/bg-9-5143-2012
Wang, D., Li, P., Mu, D., Liu, W., Chen, Y., Fida, M., 2024. Unveiling the biogeochemical mechanism of nitrate in the vadose zone-groundwater system: Insights from integrated microbiology, isotope techniques, and hydrogeochemistry. Sci. Total. Environ. 906, 167481.
https://doi.org/10.1016/j.scitotenv.2023.167481
Wang, S., Zheng, W., Currell, M., Yang, Y., Zhao, H., Lv, M., 2017. Relationship between land-use and sources and fate of nitrate in groundwater in a typical recharge area of the North China Plain. Sci. Total. Environ. 609, 607-620.https://doi.org/10.1016/j.scitotenv.2017.07.176
Wen, Z., Xu, W., Li, Q., Han, M., Tang, A., Zhang, Y., Luo, X., Shen, J., Wang, W., Li, K., Pan, Y., Zhang, L., Li, W., Collett, J.L., Zhong, B., Wang, X., Goulding, K., Zhang, F., Liu, X., 2020. Changes of nitrogen deposition in China from 1980 to 2018. Environ. Int. 144, 106022.
https://doi.org/10.1016/j.envint.2020.106022
Wu, H., Wang, L., Kang, L., Liu, C., LI, M., 2023. Study on the effect of planting pattern adjustment on the growth of kiwifruit inter-root microorganisms and fruit quality. Turk. J. Agric. For. 47, 263-272.
https://doi.org/10.55730/1300-011X.3084
Xin, J., Wang, Y., Shen, Z., Liu, Y., Wang, H., Zheng, X., 2021. Critical review of measures and decision support tools for groundwater nitrate management: a surface-to-groundwater profile perspective. J. Hydrol. 598, 126386.https://doi.org/10.1016/j.jhydrol.2021.126386
Yang, C., Zheng, H., Huang, B., Li, R., Ouyang, Z., Li, C., 2018. Crop structure changes altered the cropland nitrogen balance between 2005 and 2015 on the Sanjiang Plain, China. Sustainability 10, 4011.
https://doi.org/10.3390/su10114011
Yin, Y., Zhao, R., Yang, Y., Meng, Q., Ying, H., Cassman, K.G., Cong, W., Tian, X., He, K., Wang, Y., Cui, Z., Chen, X., Zhang, F., 2021. A steady-state N balance approach for sustainable smallholder farming. Proc Natl Acad. Sci. USA. 118.https://doi.org/10.1073/pnas.2106576118
Yu, C., Huang, X., Chen, H., Godfray, H.C.J., Wright, J.S., Hall, J.W., Gong, P., Ni, S., Qiao, S., Huang, G., Xiao, Y., Zhang, J., Feng, Z., Ju, X., Ciais, P., Stenseth, N.C., Hessen, D.O., Sun, Z., Le Yu, Cai, W., Fu, H., Huang, X., Zhang, C., Liu, H., Taylor, J., 2019. Managing nitrogen to restore water quality in China. Nature 567, 516-520.https://doi.org/10.1038/s41586-019-1001-1
Yu, X., Li, H., Doluschitz, R., 2020. Towards sustainable management of mineral fertilizers in China: an integrative analysis and review. Sustainability 12, 7028.https://doi.org/10.3390/su12177028
Zhang, W.L., Tian, Z.X., Zhang, N., Li, X.Q., 1995. Investigation of nitrate pollution in groundwater due to nitrogen fertilization in agriculture in North China. Plant. Nutr. Fert. Sci, 82-89 (in Chinese with English abstract).
Zhang, W.L., Tian, Z.X., Zhang, N., Li, X.Q., 1996. Nitrate pollution of groundwater in northern China. Agric Ecosyst Environ 59, 223-231.https://doi.org/10.1016/0167-8809(96)01052-3
Zhang, Y., Wang, Y., Wang, Y., Xi, H., 2009. Investigating the impacts of landuse-landcover (LULC) change in the Pearl River Delta region on water quality in the Pearl River estuary and Hong Kong’s Coast. Remote. Sens. 1, 1055-1064.https://doi.org/10.3390/rs1041055
Zhao, J., Pullens, J.W.M., Sørensen, P., Blicher-Mathiesen, G., Olesen, J.E., Børgesen, C.D., 2022. Agronomic and environmental factors influencing the marginal increase in nitrate leaching by adding extra mineral nitrogen fertilizer. Agric. Ecosyst. Environ. 327, 107808.
https://doi.org/10.1016/j.agee.2021.107808
Zheng, M., Hua, Z., Wu, Y., Xiao, Y., Du, Y., Xu, W., Lu, F., Wang, X., Ouyang, Z., 2015. Changes in nitrogen budget and potential risk to the environment over 20 years (1990–2010) in the agroecosystems of the Haihe Basin, China. J. Environ. sci. 28, 195-202.https://doi.org/10.1016/j.jes.2014.05.053
Zhi, W., Li, L., 2020. The shallow and deep hypothesis: subsurface vertical chemical contrasts shape nitrate export patterns from different land uses. Environ. Sci. Technol. 54, 11915-11928.
https://doi.org/10.1021/acs.est.0c01340
Zhou, J., Gu, B., Schlesinger, W.H., Ju, X., 2016. Significant accumulation of nitrate in Chinese semi-humid croplands. Sci. Rep. 6, 25088.https://doi.org/10.1038/srep25088
Zhu, X., Fu, W., Kong, X., Chen, C., Liu, Z., Chen, Z., Zhou, J., 2021. Nitrate accumulation in the soil profile is the main fate of surplus nitrogen after land-use change from cereal cultivation to apple orchards on the Loess Plateau. Agric. Ecosyst. Environ. 319, 107574.
https://doi.org/10.1016/j.agee.2021.107574