REFERENCES
1. Organization, W.H. (2022). Global antimicrobial resistance and use surveillance system (‎GLASS)‎ report 2022. WHO: Geneva .
2. Penesyan, A., Paulsen, I.T., Kjelleberg, S., & Gillings, M.R. (2021). Three faces of biofilms: A microbial lifestyle, a nascent multicellular organism, and an incubator for diversity. npj Biofilms and Microbiomes , 7 , 80.
3. Vishwakarma, A., Dang, F., Ferrell, A., Barton, H.A., & Joy, A. (2021). Peptidomimetic polyurethanes inhibit bacterial biofilm formation and disrupt surface established biofilms. Journal of the American Chemical Society , 143 , 9440-9449.
4. Koo, H., Allan, R.N., Howlin, R.P., Stoodley, P., & Hall-Stoodley, L. (2017). Targeting microbial biofilms: current and prospective therapeutic strategies. Nature Reviews Microbiology , 15 , 740-755.
5. Chambers, J.R., & Sauer, K. (2013). Small RNAs and their role in biofilm formation. Trends in Microbiology , 21 , 39-49.
6. Willyard, C. (2017). The drug-resistant bacteria that pose the greatest health threats. Nature , 543 , 15-15.
7. Murray, C.J.L., Ikuta, K.S., Sharara, F., Swetschinski, L., Robles Aguilar, G., Gray, A., Han, C., Bisignano, C., Rao, P., & Wool, E. (2022). Global burden of bacterial antimicrobial resistance in 2019: A systematic analysis. The Lancet , 399 , 629-655.
8. Zhang, S., Yang, H., Wang, M., Mantovani, D., Yang, K., Witte, F., Tan, L., Yue, B., & Qu, X. (2023). Immunomodulatory biomaterials against bacterial infections: Progress, challenges, and future perspectives. The Innovation , 4 , 100503.
9. Gupta, A., Mumtaz, S., Li, C.H., Hussain, I., & Rotello, V.M. (2019). Combatting antibiotic-resistant bacteria using nanomaterials.Chemical Society Reviews , 48 , 415-427.
10. Zhang, L., Ma, X., Wang, G., Liang, X., Mitomo, H., Pike, A., Houlton, A., & Ijiro, K. (2021). Non-origami DNA for functional nanostructures: From structural control to advanced applications.Nano Today , 39 , 101154.
11. Fan, X., Yang, F., Nie, C., Ma, L., Cheng, C., & Haag, R. (2021). Biocatalytic nanomaterials: A new pathway for bacterial disinfection.Advanced Materials , 33 , 2100637.
12. Xie, X., Sun, T., Xue, J., Miao, Z., Yan, X., Fang, W., Li, Q., Tang, R., Lu, Y., Tang, L., Zha, Z., & He, T. (2020). Targeted antibacterial therapy: Ag nanoparticles cluster with pH-triggered reassembly in targeting antimicrobial applications. Advanced Functional Materials , 30 , 2070106.
13. Yan, L., Mu, J., Ma, P., Li, Q., Yin, P., Liu, X., Cai, Y., Yu, H., Liu, J., Wang, G., & Liu, A. (2021). Gold nanoplates with superb photothermal efficiency and peroxidase-like activity for rapid and synergistic antibacterial therapy. Chemical Communications ,57 , 1133-1136.
14. Izzi, M., Sportelli, M.C., Torsi, L., Picca, R.A., & Cioffi, N. (2023). Synthesis and antimicrobial applications of ZnO nanostructures: A review. ACS Applied Nano Materials , 6 , 10881-10902.
15. Gonçalves, R.A., Ku, J.W.K., Zhang, H., Salim, T., Oo, G., Zinn, A.A., Boothroyd, C., Tang, R.M.Y., Gan, C.L., Gan, Y.H., & Lam, Y.M. (2022). Copper-nanoparticle-coated fabrics for rapid and sustained antibacterial activity applications. ACS Applied Nano Materials ,5 , 12876-12886.
16. Alotaibi, A.M., Promdet, P., Hwang, G.B., Li, J., Nair, S.P., Sathasivam, S., Kafizas, A., Carmalt, C.J., & Parkin, I.P. (2021). Zn and N codoped TiO2 thin films: Photocatalytic and bactericidal activity. ACS Applied Materials & Interfaces ,13 , 10480-10489.
17. Zhong, Y., Zheng, X., Zhao, S., Su, X., & Loh, X. (2022). Stimuli-activable metal-bearing nanomaterials and precise on-demand antibacterial strategies. ACS Nano , 16 , 19840-19872.
18. Vimbela, G.V., Ngo, S.M., Fraze, C., Yang, L., & Stout, D.A. (2017). Antibacterial properties and toxicity from metallic nanomaterials. International Journal of Nanomedicine , 12 , 3941-3965.
19. Du, X., Zhang, M., Ma, Y., Wang, X., Liu, Y., Huang, H., & Kang, Z. (2023). Size-dependent antibacterial of carbon dots by selective absorption and differential oxidative stress of bacteria. Journal of Colloid and Interface Science , 634 , 44-53.
20. Chen, W., Shen, J., Wang, Z., Liu, X., Xu, Y., Zhao, H., & Astruc, D. (2021). Turning waste into wealth: Facile and green synthesis of carbon nanodots from pollutants and applications to bioimaging.Chemical Science , 12 , 11722-11729.
21. Wang, J., Chou, S., Yang, Z., Yang, Y., Wang, Z., Song, J., Dou, X., & Shan, A. (2018). Combating drug-resistant fungi with novel imperfectly amphipathic palindromic peptides. Journal of Medicinal Chemistry , 61 , 3889-3907.
22. Chen, M., Zhang, J., Qi, J., Dong, R., Liu, H., Wu, D., Shao, H., & Jiang, X. (2022). Boronic acid-decorated multivariate photosensitive metal-organic frameworks for combating multi-drug-resistant bacteria.ACS Nano , 16 , 7732-7744.
23. Nie, X., Jiang, C., Wu, S., Chen, W., Lv, P., Wang, Q., Liu, J., Narh, C., Cao, X., Ghiladi, R.A., & Wei, Q. (2020). Carbon quantum dots: A bright future as photosensitizers for in vitro antibacterial photodynamic inactivation. Journal of Photochemistry and Photobiology B: Biology , 206 , 111864.
24. Amato, A., Becci, A., & Beolchini, F. (2020). Citric acid bioproduction: The technological innovation change. Critical Reviews in Biotechnology , 40 , 199-212.
25. Godbey, W.T., Wu, K.K., & Mikos, A.G. (1999). Poly (ethylenimine) and its role in gene delivery. Journal of Controlled Release ,60 , 149-160.
26. Yang, J., Gao, G., Zhang, X., Ma, Y., Chen, X., & Wu, F. (2019). One-step synthesis of carbon dots with bacterial contact-enhanced fluorescence emission: Fast Gram-type identification and selective Gram-positive bacterial inactivation. Carbon , 146 , 827-839.
27. Lee, H., Chiang, P., Wu, H., Wang, T., Yang, T., Cheng, W., Lo, L., & Liao, W. (2022). Versatile azido-functionalized carbon dots for cancer cell imaging. ACS Applied Nano Materials , 5 , 12374-12379.
28. Wang, T., Chen, C., Wang, C., Tan, Y., & Liao, W. (2017). Multicolor functional carbon dots via one-step refluxing synthesis.ACS Sensors , 2 , 354-363.
29. Liu, M., Chen, B., Li, C., & Huang, C. (2019). Carbon dots: Synthesis, formation mechanism, fluorescence origin and sensing applications. Green Chemistry , 21 , 449-471.
30. Liu, S., Tian, J., Wang, L., Zhang, Y., Qin, X., Luo, Y., Asiri, A.M., Al-Youbi, A.O., & Sun, X. (2012). Hydrothermal treatment of grass: A low-cost, green route to nitrogen-doped, carbon-rich, photoluminescent polymer nanodots as an effective fluorescent sensing platform for label-free detection of Cu (II) ions. Advanced Materials , 24 , 2037-2041.
31. Pfeiffer, T., De Nicola, A., Montis, C., Carlà, F., van der Vegt, N.F.A., Berti, D., & Milano, G. (2019). Nanoparticles at biomimetic interfaces: Combined experimental and simulation study on charged gold nanoparticles/lipid bilayer interfaces. The Journal of Physical Chemistry Letters , 10 , 129-137.
32. Jian, H.J., Wu, R.S., Lin, T.Y., Li, Y.J., Lin, H.J., Harroun, S.G., Lai, J.Y., & Huang, C.C. (2017). Super-cationic carbon quantum dots synthesized from spermidine as an eye drop formulation for topical treatment of bacterial keratitis. ACS Nano , 11 , 6703-6716.
33. Zheng, W., Jia, Y., Zhao, Y., Zhang, J., Xie, Y., Wang, L., Zhao, X., Liu, X., Tang, R., Chen, W., & Jiang, X. (2021). Reversing bacterial resistance to gold nanoparticles by size modulation.Nano Letters , 21 , 1992-2000.
34. Tiwari, D.K., Jha, G., Tiwari, M., Kerkar, S., Das, S., & Gobre, V.V. (2021). Synergistic antibacterial potential and cell surface topology study of carbon nanodots and tetracycline against E. coli . Frontiers in Bioengineering and Biotechnology , 9 , 626276.
35. LeCroy, G.E., Yang, S., Yang, F., Liu, Y., Fernando, K.A.S., Bunker, C.E., Hu, Y., Luo, P.G., & Sun, Y. (2016). Functionalized carbon nanoparticles: Syntheses and applications in optical bioimaging and energy conversion. Coordination Chemistry Reviews ,320-321 , 66-81.
36. Dong, X., Ge, L., Abu Rabe, D.I., Mohammed, O.O., Wang, P., Tang, Y., Kathariou, S., Yang, L., & Sun, Y. (2020). Photoexcited state properties and antibacterial activities of carbon dots relevant to mechanistic features and implications. Carbon , 170 , 137-145.
37. Fernando, K.A.S., Sahu, S., Liu, Y., Lewis, W.K., Guliants, E.A., Jafariyan, A., Wang, P., Bunker, C.E., & Sun, Y. (2015). Carbon quantum dots and applications in photocatalytic energy conversion. ACS Applied Materials & Interfaces , 7 , 8363-8376.
38. Al Awak, M.M., Wang, P., Wang, S., Tang, Y., Sun, Y., & Yang, L. (2017). Correlation of carbon dots’ light-activated antimicrobial activities and fluorescence quantum yield. RSC Advances ,7 , 30177-30184.
39. Wang, X., Wang, H., Cheng, J., Li, H., Wu, X., Zhang, D., Shi, X., Zhang, J., Han, N., & Chen, Y. (2023). Initiative ROS generation of Cu-doped ZIF-8 for excellent antibacterial performance. Chemical Engineering Journal , 466 , 143201.
40. Lyublinskaya, O.G., Ivanova, J.S., Pugovkina, N.A., Kozhukharova, I.V., Kovaleva, Z.V., Shatrova, A.N., Aksenov, N.D., Zenin, V.V., Kaulin, Y.A., Gamaley, I.A., & Nikolsky, N.N. (2017). Redox environment in stem and differentiated cells: A quantitative approach. Redox Biology , 12 , 758-769.
41. Maisch, T., Baier, J., Franz, B., Maier, M., Landthaler, M., Szeimies, R.M., & Bäumler, W. (2007). The role of singlet oxygen and oxygen concentration in photodynamic inactivation of bacteria.Proceedings of the National Academy of Sciences of the United States of America , 104 , 7223-7228.
42. Carloni, P., Damiani, E., Greci, L., Stipa, P., Tanfani, F., Tartaglini, E., & Wozniak, M. (1993). On the use of 1,3-diphenylisobenzofuran (DPBF). Reactions with carbon and oxygen centered radicals in model and natural systems. Research on Chemical Intermediates , 19 , 395-405.
43. Yu, X., Wang, S., Zhang, X., Qi, A., Qiao, X., Liu, Z., Wu, M., Li, L., & Wang, Z.L. (2018). Heterostructured nanorod array with piezophototronic and plasmonic effect for photodynamic bacteria killing and wound healing. Nano Energy , 46 , 29-38.
44. Gkana, E.N., Giaouris, E.D., Doulgeraki, A.I., Kathariou, S., & Nychas, G.-J.E. (2017). Biofilm formation by Salmonella typhimurium and Staphylococcus aureus on stainless steel under either mono- or dual-species multi-strain conditions and resistance of sessile communities to sublethal chemical disinfection. Food Control ,73 , 838-846.
45. Wang, X., Huang, Y., Wu, S., Duan, N., Xu, B., & Wang, Z. (2016). Simultaneous detection of Staphylococcus aureus and Salmonella typhimurium using multicolor time-resolved fluorescence nanoparticles as labels. International Journal of Food Microbiology , 237 , 172-179.
46. Kamimura, R., Kanematsu, H., Ogawa, A., Kogo, T., Miura, H., Kawai, R., Hirai, N., Kato, T., Yoshitake, M., & Barry, D.M. (2022). Quantitative analyses of biofilm by using crystal violet staining and optical reflection. Materials , 15 , 6727.
47. Ran, H., Cheng, X., Bao, Y., Hua, X., Gao, G., Zhang, X., Jiang, Y., Zhu, Y., & Wu, F. (2019). Multifunctional quaternized carbon dots with enhanced biofilm penetration and eradication efficiencies. Journal of Materials Chemistry B , 7 , 5104-5114.