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Abstract—This work presents a model predictive control
(MPC) scheme to achieve three-dimensional (3D) tracking control
and point stabilisation of an autonomous underwater vehicle
(AUV) subject to environmental disturbances. The AUV is
modelled as a coupled, nonlinear system. The control scheme is
developed using a linear parameter-varying (LPV) formulation
of the nonlinear model in velocity form to obtain an optimisation
control problem with efficient online solvers and does not require
model augmentation that can potentially increase computational
efforts. The control strategy inherently provides offset-free con-
trol when tracking piece-wise constant reference signals, ensures
feasibility for trajectories containing unreachable points and
is relatively simple to implement since parameterisation of all
equilibria is not required. A simple switching law is proposed
for task switching between the 3D trajectory tracking and
point stabilisation. The MPC is designed to ensure closed-loop
stability of the vehicle in both motion control tasks via the
imposition of terminal constraints. Through simulations of the
coupled nonlinear Naminow-D AUV under ocean current and
wave disturbances, the effectiveness of the control strategy in
trajectory tracking and point stabilisation is demonstrated.

Index Terms—Model Predictive Control, Autonomous Un-
derwater Vehicle, Trajectory Tracking, Positioning Control

I. INTRODUCTION

In the past two decades, significant progress has been
made in the field of autonomous underwater vehicles (AUV5s),
with a variety of results reported on its technological devel-
opment [1], [2]. Applications are found in a wide range of
tasks including ocean floor mapping, underwater structures
inspection and maintenance, condition monitoring and survey,
which highlights the need for AUV operation with some level
of autonomy.

The operational duration of an AUV is limited by the
internal battery which acts as the sole energy source. Re-
motely operated docking stations have been developed to
avoid frequent launching and recovery tasks of the vehicle,
enabling charging and data upload to be performed underwater
[3]. Typically, two separate control problems are involved for
AUV operation before retreating to the docking position, the
trajectory tracking/path-following and the point stabilisation.
The former entails the steering of the vehicle through a
predefined track, the latter is on steering of the vehicle to
a defined target position with a constant orientation [4]. These
two control problems are mostly studied separately in the
literature [4]-[6].
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An AUV is characterised by its high-dimensional, cou-
pled, nonlinear dynamics with physical limitations, and its
operation is subject to uncertain disturbance from marine
environment. Motion controllers for underwater robots have
been developed using classical modelling techniques such
as input-output decoupling and local linearisation [7], which
may fail to give satisfactory control performance as they
are mainly suitable around a designated operating point or
region. Other model-based approaches have been proposed to
address the weaknesses of classical techniques. Backstepping
based on Lyapunov theory is one of the commonly used
nonlinear controllers for AUV motion control [4], [5], [8].
Environmental disturbances are either assumed to be known
or estimated using a variety of methods such as exponential
observer [9], neural networks [10] and fuzzy logic [11]. Some
of these techniques require accurate models which are not easy
to obtain [12].

Sliding mode control (SMC) has been proposed as an
alternative technique for AUV control considering its high ro-
bustness to both model uncertainties and time-varying external
disturbances [13]-[15]. A standard SMC has the drawback of
making input chattering that may generate undesired high-
frequency dynamics in motion control. Intelligent methods
based on fuzzy logic have been deployed to reduce the
effect of chattering in SMC [16], [17], with an increased
complexity in controller design. Combined backstepping and
SMC was proposed in [18]-[20], where backstepping is used
to compute a virtual control law and SMC is employed to
improve the overall robustness of the control system. In the
context of backstepping SMC [21], unknown thrust dynamics
was estimated using a recurrent neural network. A radial basis
function neural network was used [22] to estimate uncertain
model parameters and external disturbance to improve the
performance of a backstepping terminal SMC scheme.

Recent AUV control strategies are aimed at addressing
practical issues including system constraints [23]. There is no
straightforward method of including system constraints in the
control techniques described above. Model-based predictive
control (MPC) provides a natural approach to incorporate
constraints on inputs, states and outputs into controller design
with robustness to system uncertainties [24], [25]. In [26],
MPC was proposed for AUV control based on a model that
is decoupled into the diving and manoeuvring planes. Two
MPC controllers were used to control each plane separately.
The input constraints were incorporated into the design, and
the effects of external disturbances weren’t considered. A
Lyapunov-based nonlinear MPC (NMPC) law was proposed
to handle coupling and nonlinearities in the AUV model
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[23]. A robust nonlinear MPC scheme for AUV stabilisation
with experimental validation was presented in [27]. A tube-
based, collision-free tracking NMPC was developed based
on a decoupled model, in which pitch and roll motions are
neglected [28]. A challenge with NMPC schemes is their high
computational cost which limits their potential for practical
implementation. As a result, some studies [29] have focused
on developing algorithms to speed up the control signal com-
putation in NMPC framework for AUVs. In [30], a linearised
AUV model was used to formulate a linear MPC based on
a quadratic program with efficient off-the-shelf solvers. The
scheme is not suitable for tracking curved trajectories since the
nonlinearities of the vehicle will be amplified. More recently,
a linear parameter varying (LPV) MPC (LPV-MPC) strategy
based on the kinematic model of an AUV was proposed to
track curved trajectories [31]. The study did not consider input
torque and moment constraints [31]. In [32], an LPV-MPC was
developed for the dynamic positioning of AUVs during dock-
ing and a Kalman filter was used to estimate modelling errors
and external disturbances. Whereas theoretical stability proofs
exist [23], [28] for AUV control systems based on NMPC,
none of the studies [31], [32] based on LPV models provide
theoretical proof for stability. Guaranteeing stability for LPV-
MPC schemes for AUV control is challenging because they
are required to track curved trajectories.

For AUVs with underwater docking stations, it is neces-
sary to steer the vehicle during underwater operations through
desired trajectories which may be curved before returning
to the docking point where the vehicle needs to maintain
a defined constant position for docking. In the literature
discussed above, these problems are often studied differently
because it is challenging to guarantee good performance in
both curved and constant reference signal tracking. In the AUV
context, tracking constant reference signals is known as point
stabilisation which is closely related to dynamic positioning
[4]. Since it is more challenging to track curved trajectories,
many studies [23], [31] on AUV control have been dedicated
to this task without necessarily considering how the proposed
controllers would perform when tracking piece-wise constant
signals under persistent disturbances such as ocean currents.
When AUVs operate in relatively shallow waters, the effects
of both ocean currents and waves need to be considered, which
adds complexity to the controller design.

Considering the issues highlighted above, the main ob-
jective of this work is to develop an MPC scheme based on
LPV formulation of the vehicle model that can effectively
steer AUVs along 3D trajectories that may be curved, and
also provide effective tracking of piece-wise constant reference
signals required to maintain a desired position and orientation
as in underwater docking operations. The main contributions
of this paper are outlined below.

1) A novel velocity MPC algorithm without model augmen-
tation is developed for a coupled and nonlinear AUV
by reformulating its model as an LPV system. The key
advantage of velocity MPC algorithm lies in its ability
to provide offset-free control, particularly when tracking

piece-wise constant reference signals. This capability is
crucial for achieving effective point stabilization during

docking operations, especially in the presence of un-
known persistent disturbances. The conventional veloc-
ity MPC algorithms [33]-[35] are based on augmented
models that lead to increased computational requirements
due to increased state dimensions. Additionally, model
augmentation may result in a loss of stabilisability. These
issues had been reported [36] to be a limiting factor for
the wide use of velocity MPC algorithm to high-order
systems.

2) The velocity MPC problem is formulated to ensure nom-
inal stability by satisfying the conditions of a defined
reachable state. To smoothly transition from 3D trajectory
tracking to point stabilisation and avoid jump disconti-
nuity, a simple time parameterisation is proposed. This
helps mitigate abrupt changes that could otherwise lead to
infeasibility by necessitating substantial changes in input
forces and velocities during the transition phase.

3) The developed AUV motion control scheme can cope
with tracking reachable references and also trajectories
including unreachable points. For AUVs operating in a
constrained workspace, this feature can be used to ensure
the AUV remains within the workspace boundaries that
define the set of reachable output references.

The rest of this paper is organised as follows. Section II pro-
vides the modelling of AUV and environmental disturbances.
In Section III, the velocity form LPV-MPC algorithm is devel-
oped and analysed. Section IV presents the simulation study
and results. Concluding remarks and areas to be considered in
future studies are discussed in Section V.

Notations

Hereafter, N denotes the non-negative integer set, R the
real set, R™” and R™*" denote n-dimension vector and m X
n matrix, ()T denotes matrix transpose. R = O denotes a
positive semi-definite real matrix. Given a vector x € R™ and
a weighting matrix Q € R™*", the weighted 2-norm x ' Qx
is written as || x ||f:2 . The notations I,, and 0,,,x,, stand for an
n X n identity matrix and an m X n zero matrix, respectively.
The notation diag(Q,...,Q,) denotes the block diagonal
matrix having the entries Q1,...,Q, in its main diagonal.
In addition, given x = [v; xo, x3]', we define the skew-

. . —T3 T2
symmetric matrix of x as S(x) = [ = 00 - ]
—T2 I

II. AUV AND DISTURBANCE MODELLING
A. AUV Kinematics

The kinematic model forms the basis for the transforma-
tion from the vehicle’s motion reference frame to the earth-
fixed coordinate system. Whereas the earth-fixed reference
frame is used to define the position and orientation of the
vehicle, the motion reference frame is used to describe the
velocities of the vehicle. The AUV kinematic model is written
as

7 =J(n)v, (1)
in which ] ( ) 0
. 1\n 3x3
J(m) = [03><3 Jz(n)}
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Fig. 1. Naminow-D AUV conceptual layout showing the 6 DoFs with body-
fixed (Op) and earth-fixed (Of) reference frames illustrated

cosfcosyy  —sinycosg + cosysindsing
J1(n) = |sinfcosyy  costpcosg + singsindsing
—sinf cosfsing

cosycosgsing + sinysing
sinfsinycos¢g — cosysing | ,

cosfcosep
1 singtanf  cosgtand
Ja(n) = |0 cos¢ —sing
0 sing/cosd cosp/cosb
Here, n = [z y 2z ¢ 0 1/1]T is the vehicle’s position vector

in the earth-fixed reference frame, comprised of position
(x,y,2) and orientation (¢,6,1) variables. The roll angle,
pitch angle and yaw angle are denoted by ¢, 6 and .
Also,v=[uvwpq r]T represents the vector of velocities,
comprised of surge velocity u, sway velocity v, heave velocity
w, roll rate p, pitch rate ¢ and yaw rate r of the vehicle. A
schematic diagram showing the 6 DoF of a typical streamlined
underwater vehicle is shown in Fig. 1. Note that J(n) is
singular for § = +7/2. Hence, we implement the constraint
|| < /2 to prevent this singularity problem.

B. AUV Dynamics

The 6 DoF AUV motion dynamics that rely on the
Newton-Euler equation and Quasi-Lagrange equation [7] can
be written as

My + C(v)v+Dw)v +g(n) =T, )

where the matrices M, C(v), D(v) and g(n) are defined
in Appendix V-A. The external forces and moments generated
by the vehicle’s thrusters are defined in a 6 DoF vector as

T 1
T:[TxTyTzTKTMTN] ER6X7 (3)

with subscripts X, Y, Z, K, M, N used for each DoF. Their
constraint sets are defined as follows:

le[TXTyTZ]TGﬂgR?’y €]

=[x Tmn] €T CRY, 5)

for which we define

Ti:={m1 € R*: |rx|,[ry |, 172] < TLmax} (6)

To = {2 €R®: [ricl, Il Irv] < moman} . (D)

Here 71 max and T2 max denote upper bounds on the input
forces and moments, respectively. The constraint set is

T = {7’ eRS: |7 < Tmax}, (8)

T

where 7 = [} ) e T

mT —
Ta } > Tmax = [Tl,max Tl,max

C. Modelling the Effects of Environmental Disturbances

In this study, we consider the effects of external distur-
bances in the form of ocean currents and waves. Whereas
ocean current v° can be modelled as constant/slowly-changing
disturbances that are irrotational in the inertia frame of refer-
ence [32], [37], ocean waves are time-varying in nature. Ocean
currents are modelled as wave motion moving in a specified
direction with an approximately constant speed affecting the
vehicle’s motion [38]. The assumption of irrotational currents
implies that p¢ = ¢ = r® = 0m/s while slowly-changing
velocity of the currents mean that 4¢ = ¢ = w® ~ 0m/s%.
Therefore, ocean current is given by v¢ = [u¢ v¢ w® 00 0] .

Denote

T = [ ¥ Y Tl T ] T e ROX! 9
as the forces and moments generated by ocean waves affecting
the vehicle’s motion, with superscript *w’ standing for waves.
Each component of the 6 DoFs ocean wave vector 7%, can be
modelled by a second-order system [7], i.e.,

01 [ o 1 2 o]
] el IR 0

z
=10 1] [zwl} +d;

0,2
where the subscript ¢ (= X, Y, Z, K, M, N) corresponds
to the DoF of the vehicle, the amplitude of 7} in the ¢—th
DoF can be changed by the choice of parameter K, ;. The
term w; is a zero-mean white process noise, §; is the damping
coefficient, w, ; is the frequency of encounter. It is noted we ;
is relevant only when the vehicle is moving at a forward
speed u > Om/s. The term d; in the output equation can be
modelled as slowly changing bias terms (Wiener processes).
It is recommended in [7] that a maximum value of d;"®* is

applied to d;, i.e., |d;| < d*®*.

To simulate the effects of ocean currents and waves on

the AUV motion, the model (2) is modified to obtain:

(1)

My +C" )W +DW v +gn)=1+7", (12)

where " = v — v° represents the relative velocity vector.
Since the ocean current is generally constant or slowly-
changing, it is assumed that the current acceleration is negli-
gible, that is, ° ~ 0. The model (12) is used to simulate the
vehicle’s motion while (2) is used for controller design.

III. PREDICTIVE CONTROL DESIGN

In this section, the design of a predictive controller is
presented based on the LPV model of the AUV.
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A. Problem Statement

Denote x = [p' v']T € R!? as the state vector
including the position vector, 17, and the velocity vector, v.
The kinematics and dynamics of an AUV can be combined to

give the nonlinear state space model
x=A.x)+B.r+D.7",

y = Gx (13)

in which

A=

B. — {M‘)l} D, = {M"l} ,G=[10],

and y = 1 € RS is the output vector. A constraint is applied on
the position vector 7 to avoid singular transformation matrix
J(n). Moreover, it is desired that the linear velocities of the
underwater vehicle have an upper bound since most tasks are
performed at relatively low speeds [27]. Hence, the constraint
set X' for the state vector is defined as

X = {X c Rlz : |X| S Xmax}y (14)

where x,,.x defines a hard constraint on the state vector.
Assume a smooth time-dependent trajectory

y!(k) = [ (k) y" (k) 2 (k) ¢, 07,07,
the problem considered in this work includes two tasks:

1) 3D tracking. Steer the AUV, modelled by the nonlinear,
coupled model in (13), for z(k), y(k) and z(k) to follow
[z9(Kk) y? (k) 22(k)] " until the AUV reaches the docking
vicinity. The orientation variables, ¢(k), 6(k) and ¥ (k),
do not need to track any desired references during this
task period.

2) Point stabilisation. When the AUV reaches the dock-
ing vicinity, the objective here is to maintain the ve-
hicle at the desired position and orientation, yg =
[z9 y? 22 ¢? 9% h9]T. The reference at steady state is
denoted as y?.

15)

These two control objectives need to be achieved while
ensuring

« the capability to minimise the impact of environmental
disturbances and model mismatch during trajectory track-
ing;

o the AUV is able to achieve the desired position and
orientation for docking via the integral action in the MPC
controller;

« the physical limitations in the form of input saturation for
forces and moments and state constraints for pitch angle
and linear velocities are satisfied;

« the vehicle can track both reachable and unreachable
reference signals.

B. Novel MPC Design

The continuous nonlinear model in (13) is simplified by
setting g(n) = 0, neglecting the unknown ocean currents and
waves and discretised by applying the Forward Euler method

to give the LPV state space model for control design.

x(k+1) = Axx(k) + BT(k)

y(k) = Gx(k) "
where
[ J(m)Ts
Ax [0 I-MYC)+ D(V)))TJ 7
0
B = [MlTs] ’

in which T is the sampling time and k is time index. For
simplicity of notation, the time index in 7 and v are omitted
in the definition of Ay since they correspond to that of x(k).

To reduce the impact of the modelling errors and ex-
ternal disturbances, the velocity form of MPC is considered.
Specifically, a new formulation of the optimisation problem is
employed where the state augmentation can be avoided. First,
write the increment form of the LTV model as

Ax(k+ 1) = AxAx(k) + BAT(k)
y(k) = GAx(k) +y(k—1)
where Ax(k) =x(k) —x(k—1), AT(k) =71(k) —7(k—1),
and there is an implicit velocity term Av(k) = v(k)—v(k—1).
The following assumptions are made for the LTV model.

a7)

Assumption 1.

1) The sets defined by the constraints X in (14) and T in
(8) are convex sets containing the origin.
2) Model (16) is locally stabilisable for all x(k) € X.

It is worth noting that trajectory generation algorithms
typically produce smooth paths for navigation [7]. However,
the transition towards the docking point specified by y? may
result in a jump discontinuous reference signal. This can
be addressed by parameterising the straight line joining the
final point of the trajectory to the docking position. This
may be done by defining p;(k) = [z; v; 2]" as the tail
of the smooth trajectory (15) and p, = [z y¢ 29]T. The
transition must be performed at a low resultant speed defined
as U, = vu? + v2 + w?. Based on this, the transition time %,

can then be approximated as

o e —ps |

* TS US .
Note that the definition of (18) assumes the desired trajectory
and the AUV model are sampled using the same period. Define
h =m/ts with m = 1,2,3..., then, the parameterisation is
obtained as

(18)

h—1)py(k) + hp?, if h <1

o) = 4~ VPl a9
Ps, Otherwise

where py(k) = [2d(k) yd(k) 2%(k)]". Through (19), a

smooth transition from the 3D trajectory to the dock-
ing point can be achieved since y? is replaced by the
time-parameterised reference signal defined by y?(k) =
[ (k) yl(hk) 2(k) ¢ 07 T,

Several velocity/increment MPC algorithms have been
developed for linear and nonlinear systems [34], [35], [39],
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Fig. 2. Control strategy leveraging reachable references and velocity dynamics

[40]. The nonlinear method in [35] leads to a quasi-LPV MPC.
The state velocity is augmented with the outputs of the system
and used as the prediction model. Such a method increases the
dimension of the prediction model from R!? to R!8, leading
to increased computational cost. Moreover, the stabilisability
of the augmented model may not be locally guaranteed even
when the original system (Ay, B) is locally stabilisable since
there would be a need to ensure that the original system has
no zero at the origin. In this work, we propose a different
approach in the implementation of the velocity MPC, with the
aim to achieve the tracking capability without applying state

augmentation.
Define the set of reachable states in N steps as

RY ={x,(k) | I(AT(K|K),...,AT(N — 1K) :
Ax(k + jlk) = AxAx(k|k) + SA;BAT(k +ilk),
x(k + Nk) = x.(k), x(k +j|;c=)Oe X,
T(k+j — 1]k) :T(k—1)+§AT(k+i|k) cu
=0

Av(k+N|k)=0, j=1,...,N}

The corresponding reachable output set is denoted by Rg .
For workspace constrained AUV operation, the linear position
variables, (z,y,z), may become unreachable. To avoid this,
define r € ), in which ), C )Y denotes the set that
incorporate the workspace positional constraints. Then, the set
for reachable output reference signal is defined as

Ry ={reRY [ Ar+ (1 - Ny(k) e RY,re ¥},

where 0 < A\ < 1 is a constant coefficient, ensuring r and y (k)
belong to the same convex set of Rg . Then, the reachable
reference trajectory in every time step r(k), is computed by

solving the problem
k) = i —y(k) |7
r(k) arg min | r—y°(k) e (20)

with P = 0. Given the desired trajectory y¢(k) in (15), the
following cost function is considered

V(r(k) Y (k), AU(k))
N-1
—ZHI‘ y(k+ k) 1§ + > | Ak +ilk) IR
=0 (21)
where AU(k) = [AT(k|k)T ... AT(k+ N, —1]k)T]" and
Y (k) = [y(k+1k)" ... y(k+N—1/£)7]7, Q = 0 and

R > 0 are the weighting matrices for output tracking and
control activities, respectively.

The proposed MPC is formulated as a finite-horizon
constrained optimal control problem using the velocity form

prediction model (17). Considering a quadratic cost function,
the novel velocity form MPC problem is formulated as

AU(k)" = ai%r(r}gi)n V(r(k),Y(k),AU(k))

s.t:
y(k+ jlk) = CAx(k + j|k) + y(k + j|k — 1)
7j—1
Ax(k + jlk) = ALAx(k[k) + > ALBAT(k +ilk)
=0

x(k+jlk)e X, j=1,...,N,

T(k+ilk)eT, i=0,...,N -1,

Ax(klk) = Ax(k)

yk+jlk=1)=y(k-1)

y(k+ N|k) = r(k), Av(k+ N|k) =0

(22)

where N is the prediction horizon, and AU(k)* =
{AT(k|k)*,...,AT(k+ N, — 1]k)*} is the optimal control
sequence. It is noted that obtaining the control sequence
by solving (22) satisfies the reachable set requirement and
assures that the AUV’s prescribed trajectory does not ex-
ceed the workspace boundary. Furthermore, the constraints
defined as y(k+ N|k) = r(k) and Av(k+ N|k) = 0
are enforced to impose stability. For every time step k, the
stability constraint ensures that the reachable state is given
as x,.(k) = [r(k)T v(k+ N —1|k)T]T. They are set up to
assure that the terminal state in each N-window, x(k + N|k),
is a forced equilibrium when the reference r(k) is constant
during point stabilisation task as the AUV navigates at a
constant speed. For time-varying reference signal r(k), these
constraints ensure x(k + N|k) is always feasible because r(k)
is defined within the reachable set according to (20). Based
on the receding horizon strategy, the optimal input increment
at k is A7 (k|k)* and the corresponding control input applied
is

T(k) =7k —1) 4+ A1(klk)* (23)

The control strategy leveraging the concept of reachable set is
depicted in Fig. 2.

Denote Q; € R%*6 and Q, € R®X% as two diagonal
matrices on the output error weighting, used for the 3D
trajectory tracking and the point stabilisation for docking,
respectively. For the trajectory tracking problem, the weighting
priorities are put on minimisation of the three error terms on
linear positioning

e (k) =2 (k) — 2(k), e,(k) =y’ (k)
e (k) = 2%(k) — z(k).
For point stabilisation, the setting of Qs needs to cover all
6 DoFs, that is, in addition to the three errors in (24), the
following three orientation errors
es(k) =¢" — B(k), eg(k) =07 —
6w(k) = 1/}d - 1/’(]‘1)7

also need to be minimised so that the specified linear position
and orientation are maintained. Switching between the use of

M )
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Algorithm 1: MPC for 3D trajectory tracking and
point stabilisation
Input: AUV LPV model, Q, R, N and N, with
N, < N.
1 Define the transition resultant speed Us.
2 Implement (19) to assure smooth transition from
trajectory tracking to point stabilisation.
3 for k>0 Ndo

4 | if ay’(k)/T, = O then

5 ‘ Q=Q:

6 else

7 | Q=Q

8 end

9 Solve (20) to obtain r(k)

10 Get Ax(k) and y(k — 1); then, solve (22).
u Obtain the optimal input 7(k) based on (23).
12 Apply input to the AUV to obtain x(k + 1)
13 k+—k+1

14 end

Q1 and Q2 depends on the nature of the reference signal,
y?(k). When y?(k) is time-varying, Q = Qi holds; when
y?(k) is time-invariant, Q = Q. is applied. With sampling
time of T, Ay“(k)/T, # O for time-varying y?(k), and for
time-invariant reference, Ay“(k)/r, = 0. The implementation
procedure for the developed predictive controller is outlined in
Algorithm 1. It is noted that the proposed algorithm imposes
a computational burden similar to that of a standard MPC
problem, with the only extra demand being the solution of
(20), which constitutes a relatively straightforward quadratic
problem. Consequently, this approach allows us to avoid the
need to solve a high-dimensional nonlinear MPC problem
having both state and input constraints. Nevertheless, we
acknowledge significant advancements that have been achieved
in expediting computations within the realm of nonlinear MPC
[29], [41].

Remark 1. The stability constraint is employed to theoreti-
cally demonstrate that the MPC problem (22) ensures stability
for the discretised model (17). Enforcing this constraint typ-
ically means using a longer prediction horizon compared to
scenarios where the constraint is overlooked.

C. Offset-free Control and Stability Analysis

Let d(k) represent the lumped unknown disturbances
affecting the vehicle, including both constant and time-varying
components. The convergence of the system states is a nec-
essary assumption to assure the offset-free property of an
MPC controller [42]. The states and outputs of the closed-
loop system converge to steady state values as k — oo,
yi(k) = yi.

Remark 2. Although tracking error may not be completely
eliminated under time-varying disturbances and reference sig-
nals, a well-posed optimisation problem can help to minimise
the tracking error. Moreover, it is desirable to achieve offset

elimination subject to the constant or slowly-varying distur-
bances during docking so as to ensure that the vehicle is driven

as close as possible to the desired position and orientation.

The following theorem summarises the main properties
of the proposed control strategy.

Theorem 1. Under Assumption 1, the control law T(k),
obtained by solving (22), starting from a feasible initial state
increment Ax(0), and applying (23), is recursively feasible
and stabilises system (17). As k — oo, this controller makes
the output converge to one of the following: (i) y? if y? € Ry;
(i) v(k) if y? ¢ Ry, where v(k) is obtained by solving (20).

Proof. See Appendix V-B for the proof of the theorem. [

Wave amplitude

0 100 200 300 400 500

Time [s]
Fig. 3. Wave signal produced using modified Pierson-Moskowitz Spectrum
Velocity MPC
= = =MPCin [31]
—— — = = Reference
0
-50
=100
h -150 10
-200
15
y(t) [m] -10 s s
Fig. 4. Case 1: AUV 3D closed-loop response for combined trajectory

tracking and point stabilisation control.

TABLE I
NAMINOW-D AUV DYNAMIC PARAMETERS
Xy Y, Ziy Y Z My, Ny
—6 —230 —230 28.3 —28.3 —28.3 28.3
Kp My Ni o Xpuju  Yolo Zwlw  Kpppp
—1.31 —161 —161 —12.7 —574 —574 —0.63
Mgl Nirfr Yrlr Zjglg - Mjwjw Npp  m
—4127  —4127 12.3 12.3 27.4 —274 197.8
w B Ty Yb, Zb . Lyy 1.,
1940 1999 —1.378 0 5.8 144 114
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TABLE II
CONTROLLERS TURNING PARAMETERS

Parameter Notation MPC [31] Proposed MPC
Prediction horizon N 20 20
Control weights R 201 0.051
Output weights Q I —
Output weight for Q1 - diag(2,2,2,1,
objective 1 1,1) x 1000
Output weight for Q2 - 10001
objective 2
Weight in (20) P - I

IV. SIMULATED CASE STUDIES
A. Simulation Set-up

The wave model in (10) and (11) is considered in approx-
imating first- and second-order components of ocean waves.

2F Velocity MPC
£ | = = =MPCin [31]
S 0 _____ - —— ————
1 1 1 1 1
0 100 200 300 400 500
) Time [s]

0 100 200 300

El
3
0 100 200 300 400 500
Time [s]
— 05} ]
=)
g 0 o
05 ] ] ] ]
0 100 200 300 400 500
Time s]

Here, we employ the modified Pierson—-Moskowitz Spectrum
[7] with & = 0.2573 and w,; = 0.8 rad/s under beam sea
condition. The gain K, ; = 1.5 and w; is modelled as a white
process noise with zero mean and standard deviation of 0.15.
Furthermore, d; is modelled as a standard Wiener process in
the range [—100, 100]. These parameters are assumed to hold
fort =X, Y, Z, K, M, N, ie., the wave is considered
the same in all 6 DoFs. The ocean current is modelled in the
Cartesian plane with u¢ = 0.2 m/s,v¢ = 0.15 m/s, w® =
0.1 m/s. In the studied scenario, the dynamics of the AUV

are considered to be affected by both ocean currents and waves
according to (13). The wave signal impacting the six DoFs of

the AUV dynamics is shown in Fig. 3.

The Naminow-D dynamic parameters first published in
[32] are given in Table I. A state constraint is implemented on
the pitch angle such that |#] < 7/2 always hold. Since in many
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Fig. 5. Case 1: Evolution of errors (left) and input forces and moments (right). The green lines in the selected input plot show their constraints.
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Fig. 6. Case 1: Evolution of linear (left) and angular (right) velocities of the AUV.

underwater tasks AUVs are required to move at relatively low
speeds [27], we define upper bounds on the linear velocities:
Umax = 1.5 M/S, Umax = 1 m/s and wyax = 0.5 m/s. The input
forces and moments are constrained as follows: 71 max =
[600 600 600] " N and T2 max = [300 300 300] " Nm.

The parameter setting for the proposed MPC and the
MPC from [31] are shown in Table II. The same prediction
horizon is used for the two controllers. The weights on the
linear position terms in Q; are selected to be twice of those
in Q2 to prioritise minimisation of the linear position errors
during trajectory tracking control. The simulation experiment
was set up in MATLAB environment where (20) and (22) are
solved using quadprog to obtain the control signals applied
to the nonlinear model (13).

B. Simulation Results

1) Case 1: The 3D reference trajectory is defined as

y®(t) = [10sin0.03¢ 10c0s0.03t — 0.5t 0 0 7/6] ", ¢ < 350 s
(26)

and the final docking position is

yé=1-90 —12 —17500 /6] ", ¢ > 350 s, 27)

where t = kT;. Notice that the AUV needs to perform the
task with a 30° heading angle. Also, it is generally desired
to always keep roll motion, (¢, p), minimal for improved
stability of marine vehicles [43]. Since the final point on the
trajectory (26) is significantly distant from the docking posi-
tion (27), the straight line joining these points is paramterised
by considering a resultant AUV speed of U; = 0.15 m/s. When
the vehicle approaches the docking point defined at ¢ > 350 s,
it is essential to control the AUV’s linear and angular positions
such that the errors in the 6 outputs is as small as possible for
effective docking operation.

The AUV’s initial position is n(0) = [2 8 0 0 0 0]".
The 3D motion profiles of the Naminow-D AUV along with

the defined trajectory for the two predictive controllers are
shown in Fig. 4. Fig. 5 shows the time profiles of the position
tracking errors and input signals for both control methods,
from which it is seen that the proposed controller provides
better tracking performance. In the second phase when the
vehicle is driven towards the docking position, the merit of
the proposed controller is even more evident. With MPC in
[31], steady state errors are maintained due to the persistent
non-zero disturbances, whereas the proposed MPC achieves
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Fig. 7. Case 1: Predicted velocity increment trajectories at selected time
instants.
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Fig. 8. Case 2: Closed-loop response under Test 1 and Test 2. Green lines show input constraints.

the docking position with close-to-zero errors in all 6 DoFs.
The linear and angular velocities of the AUV are shown in Fig.
6. A salient point worthy of note is that the linear velocities do
not converge to zeros at the docking point because the AUV
needs to maintain speeds that counter the effects of the non-
zero linear velocities of ocean currents . When compared to
the results from the MPC in [31], the proposed MPC provides
better stabilisation of roll motion by keeping the roll angle ¢,
and velocity p, in the vicinity of zero. Therefore, the results
show the superiority of the proposed MPC in 3D trajectory
tracking and point stabilisation control tasks. Furthermore, in
Fig. 7, the predicted velocity changes of the AUV at time steps
during the transition from the spiral trajectory to the linear
trajectory, specifically at ¢t = [349.8,350.2], are depicted.
The graph illustrates that stability constraint is satisfied by
guaranteeing that the predictions converge to zero at the end

of the prediction horizon.

2) Case 2: Two test scenarios are considered to demon-
strate the capability of the proposed controller to track trajec-
tories containing unreachable points. The reference trajectory
y?(k) is defined by two straight lines, in the xy—pane, with
no changes in the z—direction. In Test 1, no vehicle positional
constraints are applied; therefore, the reference trajectory
y¢(k) is regarded as reachable and doesn’t consider workspace
constraint. In Test 2, the workspace is constrained by |z| < 16
and |y| < 25, which makes part of the reference stay outside
the constrained region.

The plots of time profiles of the position outputs and
control inputs in both Test 1 and Test 2 are shown in Fig. 8.
To make the convergence properties of the proposed MPC
visible, the response in the xy—plane is shown in Fig. 9
along with the implemented output constraints. Evidently, the
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Fig. 9. Case 2: Closed-loop motion of the AUV in the x — y plane with the
impact of unreachable reference signals demonstrated.

result of Test 1 is as expected because the outputs tracked the
desired trajectories throughout the simulation range. In Test
2, there are unreachable points along the defined trajectories
due to the workspace constraints, which deviates the AUV
movement from the reference until the desired trajectories
become reachable. Based on the reference calculation in (20),
it is expected that the AUV will converge to the optimum
values within the reachable set Ry, i.e., the optimum points
that correspond to the boundaries defined by the intersecting
vertical and horizontal constraint lines.

V. CONCLUSIONS AND FUTURE WORKS

This paper presents a velocity form model predictive
controller for combined 3D trajectory tracking and point
stabilisation control of an AUV operating in the presence
of ocean current and wave disturbances. The ocean current
is modelled to move at a constant speed while the ocean
waves are modelled as time-varying disturbances with both
primary and secondary components of the waves considered.
The main control objective is to minimise tracking errors
when the AUV is steered to follow a reachable, and possibly
unreachable, 3D reference trajectory. This control objective
is achieved with input and state constraints considered in the
optimisation design. The designed predictive controller also
achieves close-to-zero errors in the 6 DoFs of the vehicle in
point stabilisation, as required for effective docking operation.
The constraint on the pitch angle is imposed to prevent the
rotation matrix from becoming singular. The control input
constraints are a result of the limits on the forces and moments
that the vehicle can generate, and the upper velocity bounds are
usually required for a variety of underwater tasks. The closed-
loop stability is guaranteed by enforcing a terminal equality
constraint.

The simulation results demonstrate the merit of the pro-
posed control algorithm. Importantly, it shows that offset-free
control is useful for minimising output tracking errors in both
time-varying reference tracking and point stabilisation. More-
over, state augmentation that is a feature of velocity-based
techniques is avoided to prevent any increased computational

demand. In the future development, the proposed methodology
can be expanded to consider collision-avoidance control in

the presence of fixed or moving obstacles. The experimental
validation in laboratory environment is another next-step work.
Moreover, the issue of lacking guaranteed robust stability in
offset-free tracking MPC remains open.

APPENDIX
A. Dynamic Parameters Description

e M = Mg + May € RO*6 is the inertia matrix
consisting of two matrices, with subscript 'RB’ standing
for rigid body and ’AM’ for added mass components,
defined explicitly as

m 0 0 0 mzg  —MYyg
0 m 0 —mzy 0 mgy
. 0 0 m myg —My 0
Mre =1 0 _mzy my, L 0 0
mzg 0 —mxy 0 Iyy 0
—myy My 0 0 0 I..
X. 0 0 0 0 0
0 Y, 0 0 0 Y
o 0 Zy 0 Z; 0
Mav==19 0o 0o K, 0 o]
0 0 My 0 M; 0
0 N, 0 0 0 N
where ¥ = [z, y, z,]", is the vector from the origin

of the body-fixed coordinate system to the centre of
gravity of the AUV expressed in the same reference
frame. I., I, and I, represent the moment of inertia.
The added mass matrix component X, represents the
hydrodynamic added force X along the x-axis due to
acceleration © in the x-axis. Similar notations are used
for y— and z—directions, on the other five acceleration
terms, v, w, P, ¢ and 7. The entries in Mrp and May
are typically provided in AUV specifications.

e C(v) = Cgrp + Cam € R%6 is the Coriolis-centripetal
matrix with rigid body and added mass components. The
rigid body component based on Lagrangian parameteri-
sation is given by [7]:

03
Cre = [_ms (1) + ?ng (rg) S (v9)
—mS (1) —mS (1) S (r.’é)}
S (Tpvz)

(28)

in which I, = diag(ly4, Iyy, I..). For convenience, the
inertia matrix is written in a block structure as
My Mo
M = .
AM [Mm Moo
The added mass Coriolis effects based on skew-
symmetrical parameterisation is written as

—S(Muvi + Mi2vs)
—S(Maiv1 + Mavs) |-

(29)

033

Cam = —S(Mi1v1 + Mizvs2)

T T
where vy = [u v w] and vy = [p ¢ 7]
o D(v) € RY%6 is the vehicle’s hydrodynamic damping
matrix. The Naminow-D AUV model adapted in this
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work employs a coupled structure and nonlinear represen-
tation of the damping effects such that D(v) = —D|v/|,

where
Xjupu 0 0 0 0 0
00 Zuw 0 Zyy 0
D=1 0 0" Kipip R
0 0 Mo 0 Mgg 0
0 Nyp 0 0 0 Ny

in which X, -+, N}, are the nonlinear hydrody-
namic coefficients and |v| denotes the absolute value of
the velocity vector
o The vector g(n) € R®*! describes the forces and mo-
ments due to the AUV’s weight and buoyancy, i.e.,
(W — B) sind
—(W — B) cosf sing
—(W — B) cosf sing
—gycosf sing + g.cos coseg | °
g=sinf + g, cosfcoso
—gzcosf sing — gysinf
where g, = (2, — 2,B), g, = (y,W — yB) and
9. = (24W — z,B). Here, the vector [z}, yp zb]T denotes
the centre of of buoyancy of the AUV and is assumed to
coincide with the centre of gravity, while W and B are
the weight and buoyancy of the AUV, respectively.

gn) =

B. Proof of Theorem 1

This proof is given in three steps. Step I establishes
recursive feasibility and Step II shows that the proposed
control strategy provides closed-loop stability. In step III, it is
shown that offset-free control is ensured for reachable piece-
wise constant references. For reference signals that are not
reachable, the algorithm converges to a reachable point that
minimises the tracking error. The first two steps follow the
standard approach in MPC literature with some modifications
to suit the current study.

Step I: Given that the initial state increment Ax(k|k) =
Ax(0) is feasible, the optimal control sequence from solving
(22) is {AT(k|K)*, AT(k + 1|k)*,...,AT(k+ N, — 1]k)*}.
Shifting the current time by 1 so that & <« k + 1
results in a feasible and possibly sub-optimal solution
given by {Ar(k+1|k)*,...,Ar(k+ N, — 1]k)*,0} ob-
tained by setting A7 (k+ Ny|k)* = 0, which also implies
7(k 4+ Nylk)* = 7(k + N, — 1|k)*. Based on the constraint
Av(k+ N|k) = 0, keeping the input unchanged for a
constant reference y?, makes the terminal state x(k + N|k) =
x,-(k), a forced equilibrium at steady state and is feasible. For
curved or time-varying user-defined reference signals y?(k),
the constraint ensures x(k + N |k) is a feasible state since r(k)
is reachable for all k.

Step II: Let V (k) be equal to the cost function evaluated
at time k. We note that the cost function is always positive
and equal to zero only when |y(k + j|k) — r(k)] = 0 and
AT (k + ilk) = 0. To guarantee (Lyapunov) stability, we now
need to show that V (k) decays monotonously. Considering
the feasible input increment sequence at time step k + 1
constructed in Step I, a feasible, possibly suboptimal, value

of the cost function V(k + 1) expressed in terms of V (k) is
given by
V(k+1) = V(k)= | y(k+ k) — x(k) Ig — | A7(k[E) %
+ [y (k + NJk) — (k) IIg
(30)
From (30), it is straightforward to see that the forcing of
y(N + 1]k) to be equal to r(k) through the stability constraint
ensures that || y(k+ N|k) — r(k) [|§= 0. This implies
V(k 4+ 1) < V(k) holds because || y(k + N|k) — r(k) [I§
— |y 1k) — x(k) |5 — | Ar(kk) [A< 0. and
the only condition that will enable the equality to hold is
when the system reaches steady state with y?(k) = y? and
At(klk) = 0 as k — oo. In sum, V (k) is a Lyapunov
function that decreases along the prescribed trajectories. Thus,
the predictive controller is asymptotically stable given r(k) Vk.
Step 11l Here, we follow an approach similar to that used
in [42] where constraints are assumed inactive at steady state
which means that the predictive control law can be considered
unconstrained. Under the assumption of piece-wise constant
reference, y?(co) = y? and d(k) — d(oco) at steady state
when the vehicle converges towards the docking point. The
stability of the closed-loop system at steady state implies that
x(k) = x(0), y(k) =y(c0) and 7(k) = 7(0c0) as k — oo.
First consider the case where y? € Ry. In this case,
the steady state reachable reference r(co) = y? because it
minimises (20) and fulfills the properties of Ry with A = 1.
Assume that the predictive controller (22) is unconstrained at
this steady state. For this unconstrained case, it is evident that
the optimal control increment is given by

AT*(00) = Kprpo(r(oo) — y°(c0)) 31)

where K s pc is the unconstrained controller gain and y(0o)
is the “free” trajectory which represents the part of y(co) that
depend on the past control and the actual measurement i.e.,
without terms in AU7}, to be computed. Based on the system
convergence, A7*(c0) = 0 which means that y°(co0) = r(c0)
holds from (31). Furthermore, y°(c0) = y(oco) because
y(k—1) = y(k) = y(c0) as k — oco. Therefore, the system
converges to y¢, i.e., the plant output reaches the reference
because y(o0) = r(00) = y(oco) = y? at steady state and
this ensures offset-free control.

For the second case in which y¢ ¢ Ry, The vector
r(oo) that minimises (20) is not exactly equal to y?, that is,
r(oo) # y<. However, r(oo) can take any arbitrary reachable
output that minimises (20) while ensuring it remains in the
same set Ry as the current steady state reachable output
y(00). Following similar procedure under the assumption of
unconstrained law as in the first case, it follows that the closed-
loop system converges with y(k) = r(k) # y? as k — oo.
Hence, completing the proof.
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