4.4 Condition comparisons
Regarding the ERP components, the comparison among the three conditions
showed that the pN was present in the Keypress condition only.
This could be explained because greater cognitive control is needed to
inhibit a simple and, therefore, completely automatic movement. The
early BP amplitude was similar in the three conditions confirming the BP
omnipresence in any voluntary movement (e.g., Nann et al., 2019). The
late BP was found to be the largest in the Keypress condition,
intermediate in the Reaching condition, and small in theReaching-Stepping condition. This effect could be explained by
the accelerator/brake system mentioned before but also by the
association between the BP amplitude and the response time which was
repeatedly reported in the literature (e.g., Di Russo et al., 2019).
Indeed, the response time was necessary minimum in the Keypresscondition, intermediate in the Reaching condition, and maximum in
the Reaching-Stepping condition since the three actions required
increasing time to be accomplished. The pBP was found to be larger in
the Reaching condition and equally large in the other two
conditions confirming its association with finalized arm movements
(Breveglieri et al., 2014). Finally, the vN, which has been associated
with visual and attentional readiness and the construction of an
internal representation of a stimulus aimed at increasing the response
speed to the materialization of the stimulus itself (Di Russo et al.,
2019, 2021), showed greater amplitude in the Reaching-Steppingcondition, followed by the Reaching condition and then the
Keypress condition. This is probably because theReaching-Stepping condition requires body movements to the target
and visual anticipation has a key role in body navigation (e.g.,
Grill-Spector et al., 2001).
Conclusions
We found three different patterns
of brain preparation preceding three different externally-triggered
movements. All movements required similar early premotor and parietal
activities, but while the simple keypress required inhibitory control in
prefrontal areas, reaching action required strong hand control in
contralateral parietal areas, and stepping action a body movement
control in bilateral media parieto-occipital areas. Reconstruction of
the cortical sources subtending the found ERP confirmed previous
neuroimaging literature and propose
the novel notion that the found
brain areas are strictly related with action anticipation since are
active well before the movement-triggering stimulus and therefore action
initiation. These activities can be detected in ERP analyses and used
for a better understanding of motor control and the neural processes
that supports the action anticipation in humans.
References
Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior
parietal cortex. Annual review of neuroscience , 25 ,
189–220. https://doi.org/10.1146/annurev.neuro.25.112701.142922
Aron A. R. (2011). From reactive to proactive and selective control:
developing a richer model for stopping inappropriate
responses. Biological psychiatry , 69 (12), e55–e68.
https://doi.org/10.1016/j.biopsych.2010.07.024
Bakola, S., Gamberini, M., Passarelli, L., Fattori, P., & Galletti, C.
(2010). Cortical connections of parietal field PEc in the macaque:
linking vision and somatic sensation for the control of limb
action. Cerebral cortex , 20 (11), 2592–2604.
https://doi.org/10.1093/cercor/bhq007
Batista, A. P., & Andersen, R. A. (2001). The parietal reach region
codes the next planned movement in a sequential reach
task. Journal of neurophysiology , 85 (2), 539–544.
https://doi.org/10.1152/jn.2001.85.2.539
Battaglia-Mayer, A., Ferraina, S., Mitsuda, T., Marconi, B., Genovesio,
A., Onorati, P., Lacquaniti, F., & Caminiti, R. (2000). Early coding of
reaching in the parietooccipital cortex. Journal of
neurophysiology , 83 (4), 2374–2391.
https://doi.org/10.1152/jn.2000.83.4.2374
Berchicci, M., Russo, Y., Bianco, V., Quinzi, F., Rum, L., Macaluso, A.,
Committeri, G., Vannozzi, G., & Di Russo, F. (2020). Stepping forward,
stepping backward: a movement-related cortical potential study unveils
distinctive brain activities. Behavioural brain
research , 388 , 112663. https://doi.org/10.1016/j.bbr.2020.112663
Bianco, V., Perri, R. L., Berchicci, M., Quinzi, F., Spinelli, D., & Di
Russo, F. (2020). Modality-specific sensory readiness for upcoming
events revealed by slow cortical potentials. Brain structure &
function , 225 (1), 149–159.
https://doi.org/10.1007/s00429-019-01993-8
Bianco, V., Berchicci, M., Quinzi, F., Perri, R. L., Spinelli, D., & Di
Russo, F. (2020). Females are more proactive, males are more reactive:
neural basis of the gender-related speed/accuracy trade-off in
visuo-motor tasks. Brain structure & function , 225 (1),
187–201. https://doi.org/10.1007/s00429-019-01998-3
Bozzacchi, C., Giusti, M. A., Pitzalis, S., Spinelli, D., & Di Russo,
F. (2012). Awareness affects motor planning for goal-oriented
actions. Biological psychology , 89 (2), 503–514.
https://doi.org/10.1016/j.biopsycho.2011.12.020
Breveglieri, R., Galletti, C., Dal Bò, G., Hadjidimitrakis, K., &
Fattori, P. (2014). Multiple aspects of neural activity during reaching
preparation in the medial posterior parietal area V6A. Journal of
cognitive neuroscience , 26 (4), 878–895.
https://doi.org/10.1162/jocn_a_00510
Breveglieri, R., Galletti, C., Monaco, S., & Fattori, P. (2008).
Visual, somatosensory, and bimodal activities in the macaque parietal
area PEc. Cerebral cortex , 18 (4), 806–816.
https://doi.org/10.1093/cercor/bhm127
Breveglieri, R., Galletti, C., Gamberini, M., Passarelli, L., &
Fattori, P. (2006). Somatosensory cells in area PEc of macaque posterior
parietal cortex. The Journal of neuroscience , 26 (14),
3679–3684. https://doi.org/10.1523/jneurosci.4637-05.2006
Caspari, N., Arsenault, J. T., Vandenberghe, R., & Vanduffel, W.
(2018). Functional Similarity of Medial Superior Parietal Areas for
Shift-Selective Attention Signals in Humans and Monkeys. Cerebral
cortex , 28 (6), 2085–2099. https://doi.org/10.1093/cercor/bhx114
Connolly, J. D., Andersen, R. A., & Goodale, M. A. (2003). FMRI
evidence for a ’parietal reach region’ in the human
brain. Experimental brain research , 153 (2), 140–145.
https://doi.org/10.1007/s00221-003-1587-1
Culham, J. C., Danckert, S. L., DeSouza, J. F., Gati, J. S., Menon, R.
S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI
activation in dorsal but not ventral stream brain
areas. Experimental brain research , 153 (2), 180–189.
https://doi.org/10.1007/s00221-003-1591-5
Cui, H., & Andersen, R. A. (2007). Posterior parietal cortex encodes
autonomously selected motor plans. Neuron , 56 (3),
552–559. https://doi.org/10.1016/j.neuron.2007.09.031
Crammond D. J. (1997). Motor imagery: never in your wildest
dream. Trends in neurosciences , 20 (2), 54–57.
https://doi.org/10.1016/s0166-2236(96)30019-2
Dalla Volta, R., Fasano, F., Cerasa, A., Mangone, G., Quattrone, A., &
Buccino, G. (2015). Walking indoors, walking outdoors: an fMRI
study. Frontiers in psychology , 6 , 1502.
https://doi.org/10.3389/fpsyg.2015.01502
Deecke L. (2012). There are conscious and unconscious agendas in the
brain and both are important-our will can be conscious as well as
unconscious. Brain sciences , 2 (3), 405–420.
https://doi.org/10.3390/brainsci2030405
Dennett, D. (2005). Sweet Dreams: Philosophical Obstacles to a Science
of Consciousness; MIT Press: Cambridge, A, USA.
Desmurget M., Reilly K.T., Richard N., Szathmari A., Mottolese C., and
Sirigu A. (2009). Movement intention after parietal cortex stimulation
in humans. Science 324, 811–813. 10.1126/science.1169896
Di Russo, F., Berchicci, M., Bianco, V., Perri, R. L., Pitzalis, S., &
Mussini, E. (2021). Modulation of anticipatory visuospatial attention in
sustained and transient tasks. Cortex , 135 , 1–9.
https://doi.org/10.1016/j.cortex.2020.11.007
Di Russo, F., Berchicci, M., Bozzacchi, C., Perri, R. L., Pitzalis, S.,
& Spinelli, D. (2017). Beyond the ”Bereitschaftspotential”: Action
preparation behind cognitive functions. Neuroscience and
biobehavioral reviews , 78 , 57–81.
https://doi.org/10.1016/j.neubiorev.2017.04.019
Di Russo, F., M, B., V, B., Rl, P., S, P., F, Q., & D, S. (2019).
Normative event-related potentials from sensory and cognitive tasks
reveal occipital and frontal activities prior and following visual
events. NeuroImage , 196 , 173–187.
https://doi.org/10.1016/j.neuroimage.2019.04.033
Evans, C., Milner, A. D., Humphreys, G. W., & Cavina-Pratesi, C.
(2013). Optic ataxia affects the lower limbs: evidence from a single
case study. Cortex , 49 (5), 1229–1240.
https://doi.org/10.1016/j.cortex.2012.07.008
Evans, B. D., & Stringer, S. M. (2012). Transformation-invariant visual
representations in self-organizing spiking neural
networks. Frontiers in computational neuroscience , 6 , 46.
https://doi.org/10.3389/fncom.2012.00046
Fattori, P., Kutz, D. F., Breveglieri, R., Marzocchi, N., & Galletti,
C. (2005). Spatial tuning of reaching activity in the medial
parieto-occipital cortex (area V6A) of macaque monkey. The
European journal of neuroscience , 22 (4), 956–972.
https://doi.org/10.1111/j.1460-9568.2005.04288.x
Fattori, P., Breveglieri, R., Marzocchi, N., Filippini, D., Bosco, A.,
& Galletti, C. (2009). Hand orientation during reach-to-grasp movements
modulates neuronal activity in the medial posterior parietal area
V6A. The Journal of neuroscience , 29 (6), 1928–1936.
https://doi.org/10.1523/jneurosci.4998-08.2009
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical
power analyses using G*Power 3.1: tests for correlation and regression
analyses. Behavior research methods, 41 (4), 1149–1160.
https://doi.org/10.3758/brm.41.4.1149
Filippini, M., Breveglieri, R., Hadjidimitrakis, K., Bosco, A., &
Fattori, P. (2018). Prediction of Reach Goals in Depth and Direction
from the Parietal Cortex. Cell reports , 23 (3), 725–732.
https://doi.org/10.1016/j.celrep.2018.03.090
Flanders, M. (2009). Voluntary Movement. In: Binder, M.D., Hirokawa, N.,
Windhorst, U. (eds) Encyclopedia of Neuroscience. Springer, Berlin,
Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_6413
Galletti, C., Gamberini, M., & Fattori, P. (2022). The posterior
parietal area V6A: An attentionally-modulated visuomotor region involved
in the control of reach-to-grasp action. Neuroscience and
biobehavioral reviews , 141 , 104823.
https://doi.org/10.1016/j.neubiorev.2022.104823
Gamberini, M., Dal Bò, G., Breveglieri, R., Briganti, S., Passarelli,
L., Fattori, P., & Galletti, C. (2018). Sensory properties of the
caudal aspect of the macaque’s superior parietal lobule. Brain
structure & function , 223 (4), 1863–1879.
https://doi.org/10.1007/s00429-017-1593-x
Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral
occipital complex and its role in object recognition. Vision
research , 41 (10-11), 1409–1422.
https://doi.org/10.1016/s0042-6989(01)00073-6
Hadjidimitrakis, K., Bertozzi, F., Breveglieri, R., Galletti, C., &
Fattori, P. (2017). Temporal stability of reference frames in monkey
area V6A during a reaching task in 3D space. Brain structure &
function , 222 (4), 1959–1970.
https://doi.org/10.1007/s00429-016-1319-5
Impieri, D., Gamberini, M., Passarelli, L., Rosa, M. G. P., & Galletti,
C. (2018). Thalamo-cortical projections to the macaque superior parietal
lobule areas PEc and PE. The Journal of comparative
neurology , 526 (6), 1041–1056. https://doi.org/10.1002/cne.24389
Inouchi, M., Matsumoto, R., Taki, J., Kikuchi, T., Mitsueda-Ono, T.,
Mikuni, N., Wheaton, L., Hallett, M., Fukuyama, H., Shibasaki, H.,
Takahashi, R., & Ikeda, A. (2013). Role of posterior parietal cortex in
reaching movements in humans: clinical implication for ’optic
ataxia’. Clinical neurophysiology , 124 (11), 2230–2241.
https://doi.org/10.1016/j.clinph.2013.05.011
Frey, S. H., Vinton, D., Norlund, R., & Grafton, S. T. (2005). Cortical
topography of human anterior intraparietal cortex active during visually
guided grasping. Brain research. Cognitive brain
research , 23 (2-3), 397–405.
https://doi.org/10.1016/j.cogbrainres.2004.11.010
Hoffmann, S., & Falkenstein, M. (2008). The correction of eye blink
artefacts in the EEG: a comparison of two prominent methods. PloS
one , 3 (8), e3004. https://doi.org/10.1371/journal.pone.0003004
Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J.,
Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic
artifacts by blind source
separation. Psychophysiology , 37 (2), 163–178.
Kline, A., Pittman, D., Ronsky, J., & Goodyear, B. (2020).
Differentiating the Brain’s involvement in Executed and Imagined
Stepping using fMRI. Behavioural brain research , 394 ,
112829. https://doi.org/10.1016/j.bbr.2020.112829
Kornhuber, H.H., Deecke, L.(1965). Hirnpotentialänderungen bei
Willkürbewegungen und passiven Bewegungen des Menschen:
Bereitschaftspotential und reafferente Potentiale. Pflügers
Arch. 284, 1–17. https://doi.org/10.1007/BF00412364
Kuang, S., Morel, P., & Gail, A. (2016). Planning Movements in Visual
and Physical Space in Monkey Posterior Parietal Cortex. Cerebral
cortex , 731–747. https://doi.org/10.1093/cercor/bhu312
Lau, H. C., Rogers, R. D., Haggard, P., & Passingham, R. E. (2004).
Attention to intention. Science, 303 (5661), 1208-1210.
Lindner A., Iyer A., Kagan I., and Andersen R. A (2010). Human posterior
parietal cortex plans where to reach and what to avoid. J.
Neurosci. 30 , 11715–11725. https://10.1523/jneurosci.2849-09.2010
Luck, S. J., & Gaspelin, N. (2017). How to get statistically
significant effects in any ERP experiment (and why you
shouldn’t). Psychophysiology , 54 (1), 146–157.
https://doi.org/10.1111/psyp.12639
Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H.,
Kennedy, W. A., Ledden, P. J., Brady, T. J., Rosen, B. R., & Tootell,
R. B. (1995). Object-related activity revealed by functional magnetic
resonance imaging in human occipital cortex. Proceedings of the
National Academy of Sciences of the USA , 92 (18), 8135–8139.
https://doi.org/10.1073/pnas.92.18.8135
Maltempo, T., Pitzalis, S., Bellagamba, M., Di Marco, S., Fattori, P.,
Galati, G., Galletti, C., & Sulpizio, V. (2021). Lower visual field
preference for the visuomotor control of limb movements in the human
dorsomedial parietal cortex. Brain structure &
function , 226 (9), 2989–3005.
https://doi.org/10.1007/s00429-021-02254-3
Mele (2007). Decisions,
Intentions, Urges, and Free Will: Why Libet Has Not Shown What He Says
He Has, Causation and Explanation, Joseph Keim Campbell, Michael
O’Rourke, Harry S. Silverstein Molenberghs, P., Mesulam, M. M., Peeters,
R., & Vandenberghe, R. R. (2007). Remapping attentional priorities:
differential contribution of superior parietal lobule and intraparietal
sulcus. Cerebral cortex , 17 (11), 2703–2712.
https://doi.org/10.1093/cercor/bhl179
Nann, M., Cohen, L. G., Deecke, L., & Soekadar, S. R. (2019). To jump
or not to jump - The Bereitschaftspotential required to jump into
192-meter abyss. Scientific reports , 9 (1), 2243.
https://doi.org/10.1038/s41598-018-38447-w
Nguyen, V. T., Breakspear, M., & Cunnington, R. (2014). Reciprocal
interactions of the SMA and cingulate cortex sustain premovement
activity for voluntary actions. The Journal of neuroscience,
34 (49), 16397–16407.
https://doi.org/10.1523/jneurosci.2571-14.2014
Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low
resolution electromagnetic tomography: a new method for localizing
electrical activity in the brain. International journal of
psychophysiology , 18 (1), 49–65.
https://doi.org/10.1016/0167-8760(84)90014-x
Pascual-Marqui R. D. (2002). Standardized low-resolution brain
electromagnetic tomography (sLORETA): technical details. Methods
and findings in experimental and clinical pharmacology , 24 Suppl
D , 5–12.
Perri, R. L., Berchicci, M., Spinelli, D., & Di Russo, F. (2014).
Individual differences in response speed and accuracy are associated to
specific brain activities of two interacting systems. Frontiers in
behavioral neuroscience , 8 , 251.
https://doi.org/10.3389/fnbeh.2014.00251
Pilacinski, A., Wallscheid, M., & Lindner, A. (2018). Human posterior
parietal and dorsal premotor cortex encode the visual properties of an
upcoming action. PloS one , 13 (10), e0198051.
https://doi.org/10.1371/journal.pone.0198051
Pitzalis S., Sereno M.I., Committeri G., Fattori P., Galati G., Tosoni
A., et al. (2013). The human homologue of macaque area
V6A. Neuroimage 82, 517–530.
https://doi.org/10.1016/j.neuroimage.2013.06.026
Pitzalis, S., Serra, C., Sulpizio, V., Committeri, G., de Pasquale, F.,
Fattori, P., Galletti, C., Sepe, R., & Galati, G. (2020). Neural bases
of self- and object-motion in a naturalistic vision. Human brain
mapping , 41 (4), 1084–1111. https://doi.org/10.1002/hbm.24862
Pitzalis, S., Serra, C., Sulpizio, V., Di Marco, S., Fattori, P.,
Galati, G., & Galletti, C. (2019). A putative human homologue of the
macaque area PEc. NeuroImage , 202 , 116092.
https://doi.org/10.1016/j.neuroimage.2019.116092
Pitzalis, S., Fattori, P., & Galletti, C. (2015). The human cortical
areas V6 and V6A. Visual neuroscience , 32 , E007.
https://doi.org/10.1017/S0952523815000048
Piserchia, V., Breveglieri, R., Hadjidimitrakis, K., Bertozzi, F.,
Galletti, C., & Fattori, P. (2017). Mixed body/hand reference frame for
reaching in 3D space in macaque parietal area PEc. Cerebral
cortex, 27 (3), 1976-1990.
Shibasaki H. (2012). Cortical activities associated with voluntary
movements and involuntary movements. Clinical neurophysiology,
123 (2), 229–243. https://doi.org/10.1016/j.clinph.2011.07.042
Shibasaki, H., & Hallett, M. (2006). What is the
Bereitschaftspotential? Clinical neurophysiology, 117 (11),
2341–2356. https://doi.org/10.1016/j.clinph.2006.04.025
Sirigu, A., Duhamel, J. R., Cohen, L., Pillon, B., Dubois, B., & Agid,
Y. (1996). The mental representation of hand movements after parietal
cortex damage. Science , 273 (5281), 1564–1568.
https://doi.org/10.1126/science.273.5281.1564
Snyder, L. H., Batista, A. P., & Andersen, R. A. (1998). Change in
motor plan, without a change in the spatial locus of attention,
modulates activity in posterior parietal cortex. Journal of
neurophysiology , 79 (5), 2814–2819.
https://doi.org/10.1152/jn.1998.79.5.2814
Snyder, L. H., Batista, A. P., & Andersen, R. A. (2000).
Intention-related activity in the posterior parietal cortex: a
review. Vision research , 40 (10-12), 1433–1441.
https://doi.org/10.1016/s0042-6989(00)00052-3
Sulpizio, V., Neri, A., Fattori, P., Galletti, C., Pitzalis, S., &
Galati, G. (2020). Real and Imagined Grasping Movements Differently
Activate the Human Dorsomedial Parietal
Cortex. Neuroscience , 434 , 22–34.
https://doi.org/10.1016/j.neuroscience.2020.03.019
Sulpizio, V., Fattori, P., Pitzalis, S., & Galletti, C. (2023).
Functional organization of the caudal part of the human superior
parietal lobule. Neuroscience and biobehavioral
reviews , 153 , 105357.
https://doi.org/10.1016/j.neubiorev.2023.105357
Teixeira, S., Machado, S., Velasques, B., Sanfim, A., Minc, D.,
Peressutti, C., Bittencourt, J., Budde, H., Cagy, M., Anghinah, R.,
Basile, L. F., Piedade, R., Ribeiro, P., Diniz, C., Cartier, C.,
Gongora, M., Silva, F., Manaia, F., & Silva, J. G. (2014). Integrative
parietal cortex processes: neurological and psychiatric
aspects. Journal of the neurological sciences , 338 (1-2),
12–22. https://doi.org/10.1016/j.jns.2013.12.025
Tosoni A., Pitzalis S., Committeri G., Fattori P., Galletti C., and
Galati G. (2015). Resting-state connectivity and functional
specialization in human medial parieto-occipital cortex. Brain
Structure &. Function. 220, 3307–3321.https://doi.org/10.1007/s00429-014-0858-x
Vandenberghe, R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M.
(2001). Functional specificity of superior parietal mediation of spatial
shifting. NeuroImage , 14 (3), 661–673.
https://doi.org/10.1006/nimg.2001.0860
Vesia, M., Yan, X., Henriques, D. Y., Sergio, L. E., & Crawford, J. D.
(2008). Transcranial magnetic stimulation over human dorsal-lateral
posterior parietal cortex disrupts integration of hand position signals
into the reach plan. Journal of neurophysiology , 100 (4),
2005–2014. https://doi.org/10.1152/jn.90519.2008
Wheaton, L. A., Nolte, G., Bohlhalter, S., Fridman, E., & Hallett, M.
(2005). Synchronization of parietal and premotor areas during
preparation and execution of praxis hand movements. Clinical
neurophysiology, 116 (6), 1382–1390.
https://doi.org/10.1016/j.clinph.2005.01.008
Wheaton, L. A., Shibasaki, H., & Hallett, M. (2005). Temporal
activation pattern of parietal and premotor areas related to praxis
movements. Clinical neurophysiology, 116 (5), 1201–1212.
https://doi.org/10.1016/j.clinph.2005.01.001
Whitlock J. R. (2014). Navigating actions through the rodent parietal
cortex. Frontiers in human neuroscience , 8 , 293.
https://doi.org/10.3389/fnhum.2014.00293
Witt, J. K. (2011). Action’s Effect on Perception. Current
Directions in Psychological Science , 20(3), 201-206.
https://doi.org/10.1177/0963721411408770