4.4 Condition comparisons
Regarding the ERP components, the comparison among the three conditions showed that the pN was present in the Keypress condition only. This could be explained because greater cognitive control is needed to inhibit a simple and, therefore, completely automatic movement. The early BP amplitude was similar in the three conditions confirming the BP omnipresence in any voluntary movement (e.g., Nann et al., 2019). The late BP was found to be the largest in the Keypress condition, intermediate in the Reaching condition, and small in theReaching-Stepping condition. This effect could be explained by the accelerator/brake system mentioned before but also by the association between the BP amplitude and the response time which was repeatedly reported in the literature (e.g., Di Russo et al., 2019). Indeed, the response time was necessary minimum in the Keypresscondition, intermediate in the Reaching condition, and maximum in the Reaching-Stepping condition since the three actions required increasing time to be accomplished. The pBP was found to be larger in the Reaching condition and equally large in the other two conditions confirming its association with finalized arm movements (Breveglieri et al., 2014). Finally, the vN, which has been associated with visual and attentional readiness and the construction of an internal representation of a stimulus aimed at increasing the response speed to the materialization of the stimulus itself (Di Russo et al., 2019, 2021), showed greater amplitude in the Reaching-Steppingcondition, followed by the Reaching condition and then the Keypress condition. This is probably because theReaching-Stepping condition requires body movements to the target and visual anticipation has a key role in body navigation (e.g., Grill-Spector et al., 2001).
Conclusions
We found three different patterns of brain preparation preceding three different externally-triggered movements. All movements required similar early premotor and parietal activities, but while the simple keypress required inhibitory control in prefrontal areas, reaching action required strong hand control in contralateral parietal areas, and stepping action a body movement control in bilateral media parieto-occipital areas. Reconstruction of the cortical sources subtending the found ERP confirmed previous neuroimaging literature and propose the novel notion that the found brain areas are strictly related with action anticipation since are active well before the movement-triggering stimulus and therefore action initiation. These activities can be detected in ERP analyses and used for a better understanding of motor control and the neural processes that supports the action anticipation in humans.
References
Andersen, R. A., & Buneo, C. A. (2002). Intentional maps in posterior parietal cortex. Annual review of neuroscience25 , 189–220. https://doi.org/10.1146/annurev.neuro.25.112701.142922
Aron A. R. (2011). From reactive to proactive and selective control: developing a richer model for stopping inappropriate responses. Biological psychiatry69 (12), e55–e68. https://doi.org/10.1016/j.biopsych.2010.07.024
Bakola, S., Gamberini, M., Passarelli, L., Fattori, P., & Galletti, C. (2010). Cortical connections of parietal field PEc in the macaque: linking vision and somatic sensation for the control of limb action. Cerebral cortex20 (11), 2592–2604. https://doi.org/10.1093/cercor/bhq007
Batista, A. P., & Andersen, R. A. (2001). The parietal reach region codes the next planned movement in a sequential reach task. Journal of neurophysiology85 (2), 539–544. https://doi.org/10.1152/jn.2001.85.2.539
Battaglia-Mayer, A., Ferraina, S., Mitsuda, T., Marconi, B., Genovesio, A., Onorati, P., Lacquaniti, F., & Caminiti, R. (2000). Early coding of reaching in the parietooccipital cortex. Journal of neurophysiology83 (4), 2374–2391. https://doi.org/10.1152/jn.2000.83.4.2374
Berchicci, M., Russo, Y., Bianco, V., Quinzi, F., Rum, L., Macaluso, A., Committeri, G., Vannozzi, G., & Di Russo, F. (2020). Stepping forward, stepping backward: a movement-related cortical potential study unveils distinctive brain activities. Behavioural brain research388 , 112663. https://doi.org/10.1016/j.bbr.2020.112663
Bianco, V., Perri, R. L., Berchicci, M., Quinzi, F., Spinelli, D., & Di Russo, F. (2020). Modality-specific sensory readiness for upcoming events revealed by slow cortical potentials. Brain structure & function225 (1), 149–159. https://doi.org/10.1007/s00429-019-01993-8
Bianco, V., Berchicci, M., Quinzi, F., Perri, R. L., Spinelli, D., & Di Russo, F. (2020). Females are more proactive, males are more reactive: neural basis of the gender-related speed/accuracy trade-off in visuo-motor tasks. Brain structure & function225 (1), 187–201. https://doi.org/10.1007/s00429-019-01998-3
Bozzacchi, C., Giusti, M. A., Pitzalis, S., Spinelli, D., & Di Russo, F. (2012). Awareness affects motor planning for goal-oriented actions. Biological psychology89 (2), 503–514. https://doi.org/10.1016/j.biopsycho.2011.12.020
Breveglieri, R., Galletti, C., Dal Bò, G., Hadjidimitrakis, K., & Fattori, P. (2014). Multiple aspects of neural activity during reaching preparation in the medial posterior parietal area V6A. Journal of cognitive neuroscience26 (4), 878–895. https://doi.org/10.1162/jocn_a_00510
Breveglieri, R., Galletti, C., Monaco, S., & Fattori, P. (2008). Visual, somatosensory, and bimodal activities in the macaque parietal area PEc. Cerebral cortex18 (4), 806–816. https://doi.org/10.1093/cercor/bhm127
Breveglieri, R., Galletti, C., Gamberini, M., Passarelli, L., & Fattori, P. (2006). Somatosensory cells in area PEc of macaque posterior parietal cortex. The Journal of neuroscience26 (14), 3679–3684. https://doi.org/10.1523/jneurosci.4637-05.2006
Caspari, N., Arsenault, J. T., Vandenberghe, R., & Vanduffel, W. (2018). Functional Similarity of Medial Superior Parietal Areas for Shift-Selective Attention Signals in Humans and Monkeys. Cerebral cortex28 (6), 2085–2099. https://doi.org/10.1093/cercor/bhx114
Connolly, J. D., Andersen, R. A., & Goodale, M. A. (2003). FMRI evidence for a ’parietal reach region’ in the human brain. Experimental brain research153 (2), 140–145. https://doi.org/10.1007/s00221-003-1587-1
Culham, J. C., Danckert, S. L., DeSouza, J. F., Gati, J. S., Menon, R. S., & Goodale, M. A. (2003). Visually guided grasping produces fMRI activation in dorsal but not ventral stream brain areas. Experimental brain research153 (2), 180–189. https://doi.org/10.1007/s00221-003-1591-5
Cui, H., & Andersen, R. A. (2007). Posterior parietal cortex encodes autonomously selected motor plans. Neuron56 (3), 552–559. https://doi.org/10.1016/j.neuron.2007.09.031
Crammond D. J. (1997). Motor imagery: never in your wildest dream. Trends in neurosciences20 (2), 54–57. https://doi.org/10.1016/s0166-2236(96)30019-2
Dalla Volta, R., Fasano, F., Cerasa, A., Mangone, G., Quattrone, A., & Buccino, G. (2015). Walking indoors, walking outdoors: an fMRI study. Frontiers in psychology6 , 1502. https://doi.org/10.3389/fpsyg.2015.01502
Deecke L. (2012). There are conscious and unconscious agendas in the brain and both are important-our will can be conscious as well as unconscious. Brain sciences2 (3), 405–420. https://doi.org/10.3390/brainsci2030405
Dennett, D. (2005). Sweet Dreams: Philosophical Obstacles to a Science of Consciousness; MIT Press: Cambridge, A, USA.
Desmurget M., Reilly K.T., Richard N., Szathmari A., Mottolese C., and Sirigu A. (2009). Movement intention after parietal cortex stimulation in humans. Science  324, 811–813. 10.1126/science.1169896
Di Russo, F., Berchicci, M., Bianco, V., Perri, R. L., Pitzalis, S., & Mussini, E. (2021). Modulation of anticipatory visuospatial attention in sustained and transient tasks. Cortex135 , 1–9. https://doi.org/10.1016/j.cortex.2020.11.007
Di Russo, F., Berchicci, M., Bozzacchi, C., Perri, R. L., Pitzalis, S., & Spinelli, D. (2017). Beyond the ”Bereitschaftspotential”: Action preparation behind cognitive functions. Neuroscience and biobehavioral reviews78 , 57–81. https://doi.org/10.1016/j.neubiorev.2017.04.019
Di Russo, F., M, B., V, B., Rl, P., S, P., F, Q., & D, S. (2019). Normative event-related potentials from sensory and cognitive tasks reveal occipital and frontal activities prior and following visual events. NeuroImage196 , 173–187. https://doi.org/10.1016/j.neuroimage.2019.04.033
Evans, C., Milner, A. D., Humphreys, G. W., & Cavina-Pratesi, C. (2013). Optic ataxia affects the lower limbs: evidence from a single case study. Cortex49 (5), 1229–1240. https://doi.org/10.1016/j.cortex.2012.07.008
Evans, B. D., & Stringer, S. M. (2012). Transformation-invariant visual representations in self-organizing spiking neural networks. Frontiers in computational neuroscience6 , 46. https://doi.org/10.3389/fncom.2012.00046
Fattori, P., Kutz, D. F., Breveglieri, R., Marzocchi, N., & Galletti, C. (2005). Spatial tuning of reaching activity in the medial parieto-occipital cortex (area V6A) of macaque monkey. The European journal of neuroscience22 (4), 956–972. https://doi.org/10.1111/j.1460-9568.2005.04288.x
Fattori, P., Breveglieri, R., Marzocchi, N., Filippini, D., Bosco, A., & Galletti, C. (2009). Hand orientation during reach-to-grasp movements modulates neuronal activity in the medial posterior parietal area V6A. The Journal of neuroscience29 (6), 1928–1936. https://doi.org/10.1523/jneurosci.4998-08.2009
Faul, F., Erdfelder, E., Buchner, A., & Lang, A. G. (2009). Statistical power analyses using G*Power 3.1: tests for correlation and regression analyses. Behavior research methods, 41 (4), 1149–1160. https://doi.org/10.3758/brm.41.4.1149
Filippini, M., Breveglieri, R., Hadjidimitrakis, K., Bosco, A., & Fattori, P. (2018). Prediction of Reach Goals in Depth and Direction from the Parietal Cortex. Cell reports23 (3), 725–732. https://doi.org/10.1016/j.celrep.2018.03.090
Flanders, M. (2009). Voluntary Movement. In: Binder, M.D., Hirokawa, N., Windhorst, U. (eds) Encyclopedia of Neuroscience. Springer, Berlin, Heidelberg. https://doi.org/10.1007/978-3-540-29678-2_6413
Galletti, C., Gamberini, M., & Fattori, P. (2022). The posterior parietal area V6A: An attentionally-modulated visuomotor region involved in the control of reach-to-grasp action. Neuroscience and biobehavioral reviews , 141 , 104823. https://doi.org/10.1016/j.neubiorev.2022.104823
Gamberini, M., Dal Bò, G., Breveglieri, R., Briganti, S., Passarelli, L., Fattori, P., & Galletti, C. (2018). Sensory properties of the caudal aspect of the macaque’s superior parietal lobule. Brain structure & function223 (4), 1863–1879. https://doi.org/10.1007/s00429-017-1593-x
Grill-Spector, K., Kourtzi, Z., & Kanwisher, N. (2001). The lateral occipital complex and its role in object recognition. Vision research41 (10-11), 1409–1422. https://doi.org/10.1016/s0042-6989(01)00073-6
Hadjidimitrakis, K., Bertozzi, F., Breveglieri, R., Galletti, C., & Fattori, P. (2017). Temporal stability of reference frames in monkey area V6A during a reaching task in 3D space. Brain structure & function222 (4), 1959–1970. https://doi.org/10.1007/s00429-016-1319-5
Impieri, D., Gamberini, M., Passarelli, L., Rosa, M. G. P., & Galletti, C. (2018). Thalamo-cortical projections to the macaque superior parietal lobule areas PEc and PE. The Journal of comparative neurology526 (6), 1041–1056. https://doi.org/10.1002/cne.24389
Inouchi, M., Matsumoto, R., Taki, J., Kikuchi, T., Mitsueda-Ono, T., Mikuni, N., Wheaton, L., Hallett, M., Fukuyama, H., Shibasaki, H., Takahashi, R., & Ikeda, A. (2013). Role of posterior parietal cortex in reaching movements in humans: clinical implication for ’optic ataxia’. Clinical neurophysiology124 (11), 2230–2241. https://doi.org/10.1016/j.clinph.2013.05.011
Frey, S. H., Vinton, D., Norlund, R., & Grafton, S. T. (2005). Cortical topography of human anterior intraparietal cortex active during visually guided grasping. Brain research. Cognitive brain research23 (2-3), 397–405. https://doi.org/10.1016/j.cogbrainres.2004.11.010
Hoffmann, S., & Falkenstein, M. (2008). The correction of eye blink artefacts in the EEG: a comparison of two prominent methods. PloS one3 (8), e3004. https://doi.org/10.1371/journal.pone.0003004
Jung, T. P., Makeig, S., Humphries, C., Lee, T. W., McKeown, M. J., Iragui, V., & Sejnowski, T. J. (2000). Removing electroencephalographic artifacts by blind source separation. Psychophysiology37 (2), 163–178.
Kline, A., Pittman, D., Ronsky, J., & Goodyear, B. (2020). Differentiating the Brain’s involvement in Executed and Imagined Stepping using fMRI. Behavioural brain research394 , 112829. https://doi.org/10.1016/j.bbr.2020.112829
Kornhuber, H.H., Deecke, L.(1965). Hirnpotentialänderungen bei Willkürbewegungen und passiven Bewegungen des Menschen: Bereitschaftspotential und reafferente Potentiale. Pflügers Arch.  284, 1–17. https://doi.org/10.1007/BF00412364
Kuang, S., Morel, P., & Gail, A. (2016). Planning Movements in Visual and Physical Space in Monkey Posterior Parietal Cortex. Cerebral cortex , 731–747. https://doi.org/10.1093/cercor/bhu312
Lau, H. C., Rogers, R. D., Haggard, P., & Passingham, R. E. (2004). Attention to intention. Science, 303 (5661), 1208-1210.
Lindner A., Iyer A., Kagan I., and Andersen R. A (2010). Human posterior parietal cortex plans where to reach and what to avoid. J. Neurosci. 30 , 11715–11725. https://10.1523/jneurosci.2849-09.2010
Luck, S. J., & Gaspelin, N. (2017). How to get statistically significant effects in any ERP experiment (and why you shouldn’t). Psychophysiology54 (1), 146–157. https://doi.org/10.1111/psyp.12639
Malach, R., Reppas, J. B., Benson, R. R., Kwong, K. K., Jiang, H., Kennedy, W. A., Ledden, P. J., Brady, T. J., Rosen, B. R., & Tootell, R. B. (1995). Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. Proceedings of the National Academy of Sciences of the USA92 (18), 8135–8139. https://doi.org/10.1073/pnas.92.18.8135
Maltempo, T., Pitzalis, S., Bellagamba, M., Di Marco, S., Fattori, P., Galati, G., Galletti, C., & Sulpizio, V. (2021). Lower visual field preference for the visuomotor control of limb movements in the human dorsomedial parietal cortex. Brain structure & function226 (9), 2989–3005. https://doi.org/10.1007/s00429-021-02254-3
Mele (2007). Decisions, Intentions, Urges, and Free Will: Why Libet Has Not Shown What He Says He Has, Causation and Explanation, Joseph Keim Campbell, Michael O’Rourke, Harry S. Silverstein Molenberghs, P., Mesulam, M. M., Peeters, R., & Vandenberghe, R. R. (2007). Remapping attentional priorities: differential contribution of superior parietal lobule and intraparietal sulcus. Cerebral cortex , 17 (11), 2703–2712. https://doi.org/10.1093/cercor/bhl179
Nann, M., Cohen, L. G., Deecke, L., & Soekadar, S. R. (2019). To jump or not to jump - The Bereitschaftspotential required to jump into 192-meter abyss. Scientific reports9 (1), 2243. https://doi.org/10.1038/s41598-018-38447-w
Nguyen, V. T., Breakspear, M., & Cunnington, R. (2014). Reciprocal interactions of the SMA and cingulate cortex sustain premovement activity for voluntary actions. The Journal of neuroscience, 34 (49), 16397–16407. https://doi.org/10.1523/jneurosci.2571-14.2014
Pascual-Marqui, R. D., Michel, C. M., & Lehmann, D. (1994). Low resolution electromagnetic tomography: a new method for localizing electrical activity in the brain. International journal of psychophysiology18 (1), 49–65. https://doi.org/10.1016/0167-8760(84)90014-x
Pascual-Marqui R. D. (2002). Standardized low-resolution brain electromagnetic tomography (sLORETA): technical details. Methods and findings in experimental and clinical pharmacology24 Suppl D , 5–12.
Perri, R. L., Berchicci, M., Spinelli, D., & Di Russo, F. (2014). Individual differences in response speed and accuracy are associated to specific brain activities of two interacting systems. Frontiers in behavioral neuroscience8 , 251. https://doi.org/10.3389/fnbeh.2014.00251
Pilacinski, A., Wallscheid, M., & Lindner, A. (2018). Human posterior parietal and dorsal premotor cortex encode the visual properties of an upcoming action. PloS one13 (10), e0198051. https://doi.org/10.1371/journal.pone.0198051
Pitzalis S., Sereno M.I., Committeri G., Fattori P., Galati G., Tosoni A., et al. (2013). The human homologue of macaque area V6A. Neuroimage  82, 517–530. https://doi.org/10.1016/j.neuroimage.2013.06.026
Pitzalis, S., Serra, C., Sulpizio, V., Committeri, G., de Pasquale, F., Fattori, P., Galletti, C., Sepe, R., & Galati, G. (2020). Neural bases of self- and object-motion in a naturalistic vision. Human brain mapping41 (4), 1084–1111. https://doi.org/10.1002/hbm.24862
Pitzalis, S., Serra, C., Sulpizio, V., Di Marco, S., Fattori, P., Galati, G., & Galletti, C. (2019). A putative human homologue of the macaque area PEc. NeuroImage202 , 116092. https://doi.org/10.1016/j.neuroimage.2019.116092
Pitzalis, S., Fattori, P., & Galletti, C. (2015). The human cortical areas V6 and V6A. Visual neuroscience32 , E007. https://doi.org/10.1017/S0952523815000048
Piserchia, V., Breveglieri, R., Hadjidimitrakis, K., Bertozzi, F., Galletti, C., & Fattori, P. (2017). Mixed body/hand reference frame for reaching in 3D space in macaque parietal area PEc. Cerebral cortex, 27 (3), 1976-1990.
Shibasaki H. (2012). Cortical activities associated with voluntary movements and involuntary movements. Clinical neurophysiology, 123 (2), 229–243. https://doi.org/10.1016/j.clinph.2011.07.042
Shibasaki, H., & Hallett, M. (2006). What is the Bereitschaftspotential? Clinical neurophysiology, 117 (11), 2341–2356. https://doi.org/10.1016/j.clinph.2006.04.025
Sirigu, A., Duhamel, J. R., Cohen, L., Pillon, B., Dubois, B., & Agid, Y. (1996). The mental representation of hand movements after parietal cortex damage. Science273 (5281), 1564–1568. https://doi.org/10.1126/science.273.5281.1564
Snyder, L. H., Batista, A. P., & Andersen, R. A. (1998). Change in motor plan, without a change in the spatial locus of attention, modulates activity in posterior parietal cortex. Journal of neurophysiology79 (5), 2814–2819. https://doi.org/10.1152/jn.1998.79.5.2814
Snyder, L. H., Batista, A. P., & Andersen, R. A. (2000). Intention-related activity in the posterior parietal cortex: a review. Vision research40 (10-12), 1433–1441. https://doi.org/10.1016/s0042-6989(00)00052-3
Sulpizio, V., Neri, A., Fattori, P., Galletti, C., Pitzalis, S., & Galati, G. (2020). Real and Imagined Grasping Movements Differently Activate the Human Dorsomedial Parietal Cortex. Neuroscience434 , 22–34. https://doi.org/10.1016/j.neuroscience.2020.03.019
Sulpizio, V., Fattori, P., Pitzalis, S., & Galletti, C. (2023). Functional organization of the caudal part of the human superior parietal lobule. Neuroscience and biobehavioral reviews153 , 105357. https://doi.org/10.1016/j.neubiorev.2023.105357
Teixeira, S., Machado, S., Velasques, B., Sanfim, A., Minc, D., Peressutti, C., Bittencourt, J., Budde, H., Cagy, M., Anghinah, R., Basile, L. F., Piedade, R., Ribeiro, P., Diniz, C., Cartier, C., Gongora, M., Silva, F., Manaia, F., & Silva, J. G. (2014). Integrative parietal cortex processes: neurological and psychiatric aspects. Journal of the neurological sciences338 (1-2), 12–22. https://doi.org/10.1016/j.jns.2013.12.025
Tosoni A., Pitzalis S., Committeri G., Fattori P., Galletti C., and Galati G. (2015). Resting-state connectivity and functional specialization in human medial parieto-occipital cortex. Brain Structure &. Function. 220, 3307–3321.https://doi.org/10.1007/s00429-014-0858-x
Vandenberghe, R., Gitelman, D. R., Parrish, T. B., & Mesulam, M. M. (2001). Functional specificity of superior parietal mediation of spatial shifting. NeuroImage14 (3), 661–673. https://doi.org/10.1006/nimg.2001.0860
Vesia, M., Yan, X., Henriques, D. Y., Sergio, L. E., & Crawford, J. D. (2008). Transcranial magnetic stimulation over human dorsal-lateral posterior parietal cortex disrupts integration of hand position signals into the reach plan. Journal of neurophysiology100 (4), 2005–2014. https://doi.org/10.1152/jn.90519.2008
Wheaton, L. A., Nolte, G., Bohlhalter, S., Fridman, E., & Hallett, M. (2005). Synchronization of parietal and premotor areas during preparation and execution of praxis hand movements. Clinical neurophysiology, 116 (6), 1382–1390. https://doi.org/10.1016/j.clinph.2005.01.008
Wheaton, L. A., Shibasaki, H., & Hallett, M. (2005). Temporal activation pattern of parietal and premotor areas related to praxis movements. Clinical neurophysiology, 116 (5), 1201–1212. https://doi.org/10.1016/j.clinph.2005.01.001
Whitlock J. R. (2014). Navigating actions through the rodent parietal cortex. Frontiers in human neuroscience8 , 293. https://doi.org/10.3389/fnhum.2014.00293
Witt, J. K. (2011). Action’s Effect on Perception. Current Directions in Psychological Science , 20(3), 201-206. https://doi.org/10.1177/0963721411408770