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Key Points: 7 

 Hydraulic conductivity distributions are needed to represent parameter uncertainty and 8 

heterogeneity in stochastic groundwater models 9 

 A method using pilot and anchor points is demonstrated for a groundwater model at a site 10 

contaminated with high explosives 11 

 Parameter distribution development includes setting a distributional goal, data collection, 12 

weighting, and statistical analysis  13 
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Abstract 14 

We present a methodology that uses pilot and anchor points with probability distributions for 15 

saturated hydraulic conductivity in a groundwater contaminant transport model. This approach 16 

directly links locations with calibration target data (e.g., water levels and drawdown at 17 

monitoring wells) to the most relevant physical parameter(s) that drive behavior, in a way that 18 

promotes model parsimony. Distributions for hydraulic conductivity are developed for 19 

monitoring well locations with pumping tests in order to reflect the state of uncertainty in the 20 

local estimates; these locations are called anchor points. Pilot points are placed between 21 

monitoring wells, and because they have more uncertainty these are generally assigned wider 22 

distributions that reflect plausible hydraulic conductivity values for the geologic material in 23 

which they are located. Scaling issues are considered in the development of these distributions. 24 

Pilot points are not randomly or uniformly distributed in the domain; rather they are considered 25 

connectors between locations with data (anchor points) and placed strategically between them. 26 

For a given model realization, hydraulic conductivity values at both pilot and anchor points are 27 

sampled from their respective distributions and all remaining locations are derived using an 28 

interpolation scheme (e.g., kriging). This approach to hydraulic conductivity assignment honors 29 

location-specific data, geologic heterogeneity, and spatial patterns. Given that inverse analysis of 30 

high-dimensional models tends to be ill-posed and thus sensitive to initialization of parameters, 31 

the distribution development process plays a critical role in driving the outcome of model 32 

calibration.  33 

Plain Language Summary 34 

Hydraulic conductivity of materials is a key input to most groundwater models. A method is 35 

presented that generates data-based probability distributions for hydraulic conductivity in a 36 

groundwater model. Heterogeneity and uncertainty are represented using a rigorous and 37 

defensible distribution development process.  38 

1 Introduction 39 

Saturated hydraulic conductivity (K) is a measure of a porous material’s ability to 40 

conduct water under fully saturated conditions. It is specific to each combination of material and 41 

fluid properties (e.g., density, viscosity of water). For example, values of hydraulic conductivity 42 
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for clays and well-sorted gravel typically range from 10
-6

 to 10
-3

 ft/d and 10 to 10
3
 ft/d, 43 

respectively (Fetter, 1994). Hydraulic conductivity of materials is a key input to most flow and 44 

transport models, and often one of the most sensitive parameters. 45 

In homogenous, isotropic materials, K is the same in all directions. In contrast, K within 46 

geologic media is often directionally dependent due to the depositional history of the site. In this 47 

paper, the directional dependence, or anisotropy, of K is not discussed. However, the process for 48 

representing heterogeneity here is easily extendable to determining unique distributions for Kh 49 

and Kv (K in the horizontal and vertical directions, respectively); K with axes that relate to the 50 

direction of flow (e.g., longitudinal or transverse); or Kx, Ky, and Kz in a Cartesian coordinate 51 

system. 52 

Values of K in geologic media may show considerable spatial variability. Temporal 53 

variability in K is usually not an issue for the timescales used in most groundwater models, 54 

unless biotic or chemical reactions are present that contribute to significant modifications to the 55 

solid matrix. In addition to spatial variability, estimates of hydraulic conductivity may be subject 56 

to considerable uncertainty in estimation, depending on the methods used to determine them. 57 

Finally, hydraulic conductivity is scale-dependent (Clauser, 1992; Neuman, 1990; Schulze-58 

Makuch et al., 1999). The scale at which heterogeneity is represented in a model can have a 59 

significant impact on predicted contaminant transport (Carrera, 1993). These aspects of hydraulic 60 

conductivity make it difficult to determine appropriate values to use in modeling (Foster & 61 

Maxwell, 2019). Depending on the decision context for which the model will be used, the 62 

model’s structure must be designed to simulate appropriate hydraulic conductivities, and a 63 

defensible statistical approach is required to determine realistic draws for the associated input 64 

parameter(s) from a probabilistic distribution. 65 

There are three typical approaches used to assign hydraulic conductivity in groundwater 66 

models, with methods that may overlap between the three. All methods may be used in a 67 

deterministic or stochastic modeling framework, and each have strengths and weaknesses (de 68 

Marsily et al., 2005). An example of heterogeneous geologic materials is shown in Figure 1a, 69 

followed by depictions of three common approaches to hydraulic conductivity representation 70 

applied to this example in Figure 1b to 1d. 71 
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In the first approach, distributions of K values (isotropic or anisotropic) may be assigned 72 

to geologic zones represented in the model (Figure 1b, a “layered cake” conceptual model), 73 

where single draws for K are applied within each zone. At its extreme, a high-resolution, detailed 74 

facies model may be developed under this paradigm (de Marsily et al., 2005). This method may 75 

also be expanded to multiple interacting continua (Berkowitz, 2002) within a zone in order to 76 

capture smaller-scale transport processes, if necessary for modeling the geologic media.  77 

In the second approach (Figure 1c), geostatistical methods may be used to randomly 78 

generate heterogeneous K fields, with or without spatial covariance, where parameters may be 79 

used to differentiate between geologic media in a zoned model. The end result is a model domain 80 

with K heterogeneity at scales smaller than the strata represented in the model, e.g., (Rubin et al., 81 

2010; Tompson & Gelhar, 1990).  82 

A third approach, and the one that is described in this paper, uses values of K drawn from 83 

distributions for pilot and anchor points to generate a K field, e.g., (Certes & de Marsily, 1991; 84 

Doherty, 2003; LaVenue et al., 1995; LaVenue & Pickens, 1992; deMarsily, 1978; RamaRao et 85 

al., 1995). Distributions may be specific to the geologic materials depicted in the model, 86 

allowing for the representation of expected differences in properties between materials. 87 

Interpolation is used to fill in the model nodes between pilot and anchor points (Figure 1d). 88 

Optionally, boundaries between strata may also be enforced by regularization approaches that 89 

link pilot and anchor points within a material but not across materials (Doherty, 2003).  90 

 91 
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 92 

Figure 1. Typical approaches to representing hydraulic conductivity in hydrologic 93 

modeling.  (a) An example geologic cross-section. (b) Homogeneous K within layers or 94 

zones that define geologic strata. (c) Randomly generated fields with heterogeneity at scales 95 

smaller than the geologic strata. (d) Heterogeneous K field determined by interpolation 96 

between pilot and/or anchor points, drawn from distributions that are appropriate for the 97 

geologic materials.  98 

There is some overlap in nomenclature between approaches; note that the term “anchor 99 

point” is used in the random spatial fields method described in Rubin et al. (2010). In that case, 100 

the scale of the data (local or nonlocal) determines how the anchor points are treated. The pilot 101 

point method as outlined by Doherty (2003) does not use the term “anchor point,” but its use is 102 

promoted here as a way to differentiate between locations with hydraulic conductivity estimates 103 
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(where points are “anchored” to the data) and locations without them (pilot points). Pilot points 104 

are typically assigned wider distributions based broadly on their geologic unit or other spatial 105 

information. A discussion of the differences between the pilot point method described here and 106 

other methods using similar nomenclature is found in Rubin et al. (2010). Overlap between 107 

methods, such as using both pilot/anchor points as well as spatial random fields, is also done, 108 

e.g., (Lavenue & de Marsily, 2001; Murakami et al., 2010). 109 

The benefit of the pilot point/anchor point approach (Figure 1d) is that it provides a 110 

particular flexibility for model calibration that may be absent from the other two common 111 

approaches. If calibration target data include observations such as water levels, drawdown 112 

response to pumping or injection (as in a pump-and-treat system), or contaminant concentrations, 113 

including pilot points between anchor points allows the calibration to link observations by 114 

varying spatially-explicit properties that drive hydraulic response, groundwater flow, and 115 

contaminant migration. This allows the model to approach a desired level of parsimony which is 116 

neither overly simplistic nor, at the other extreme, over-fitted based on the sparse field data 117 

available (Hill, 2006). Although values estimated in a calibration using pilot points are unlikely 118 

to be extremely accurate to “true” property values at those locations (Moore & Doherty, 2006), 119 

due to upscaling, homogenization, etc., another strength of the pilot point approach is that it 120 

provides the modeler with a broad picture of the hydraulic conductivity field at the site, which 121 

may help inform the conceptual site model. 122 

Hydraulic conductivity “data” all represent estimates, not direct measurements, of the 123 

parameter. Estimates of hydraulic conductivity can be obtained in many ways, including: grain-124 

size analysis of sampled materials using methods such as Kozeny-Carman (Bear, 1972); 125 

laboratory-scale fluid flow experiments on aquifer materials (Klute, 1965); in-situ pumping or 126 

slug tests at well locations (Schwartz & Zhang, 2002); borehole geophysical tools (Maliva et al., 127 

2009); or estimates based on large-scale geophysical methods (Singha et al., 2007). Each type of 128 

estimate has an associated spatial scale and uncertainty that affects its applicability at the model 129 

scale.  130 

The pilot point/anchor point method is presented here with an example from modeling a 131 

plume of 1,3,5-trinitro-1,3,5-triazinane (known as Royal Demolition Explosive or RDX) 132 

groundwater contamination at a Los Alamos National Laboratory (LANL) site. Distributions are 133 
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developed for the two primary geologic materials that affect the plume in the aquifer, the Puye 134 

(Tpf) and Tschicoma (Tvt) formations. The older Tschicoma formation is comprised of dacite 135 

lava flows from the eastern Jemez Mountains (N3B, 2019) (Figure 2). The Puye formation is 136 

composed of alluvial-fan deposits sourced from rhyolitic dome complexes of the Tschicoma 137 

formation. While there are other geologic materials in the model domain shown in Figure 2, the 138 

plume is expected to remain within these two materials (N3B, 2020). Figure 2 also shows the 139 

mesh used for the RDX groundwater model, with the plume area in a zoom inset.  140 

After locating pilot and anchor points in the RDX groundwater model domain, the 141 

distribution development process follows a protocol designed to rigorously assess realistic 142 

parameter uncertainty (Brittingham et al., 2020; Gains-Germain et al., 2018; Higgs et al., 2017; 143 

Jordan et al., 2017). These steps are outlined in Section 2.0: setting a distributional goal, data 144 

collection and filtering, and statistical analysis. The results are summarized with discussion in 145 

Section 3.0. 146 

  147 
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Figure 2. RDX fate and transport model domain, mesh, geology, and approximate plume 148 

extent at the water table based on a modeled RDX 9.66 ppb contour from N3B (2020). 149 

Regional aquifer monitoring well locations are shown. The primary geologic units of 150 

interest for the RDX plume model are the Puye (Tpf) and Tschicoma (Tvt) formations. 151 

2 Methods 152 

2.1 Locating Pilot and Anchor Points 153 

In the method presented here, anchor points are first determined by selecting monitoring 154 

well locations with reliable hydraulic conductivity estimates. Not all monitoring well locations 155 

are necessarily anchor points if hydraulic conductivity estimates are not available at these wells. 156 

Next, pilot points are located between anchor points. If it is later found that the model calibration 157 

struggles to find a good match to field data, additional pilot points may be added to increase 158 

heterogeneity, but in this approach it is desired to represent the minimum amount of complexity 159 

needed to achieve a successful calibration and make useful predictions given the decision context 160 

(Hill, 2006). This method lends itself to encouraging parsimony, especially when combined with 161 

regularization (Doherty, 2003), by setting up pilot points as direct linkages between locations 162 

with observational data (e.g., water levels and drawdown due to pumping) that are calibrated in 163 

the model. While in theory every node that is not an anchor point could be a pilot point (to 164 

increase heterogeneity to the extreme), such an approach would vastly increase the number of 165 

parameters required and could lead to spurious heterogeneity that is not supported by the 166 

available information, related to model goals, or contributing to decision endpoints. More pilot 167 

points should be placed in areas of (a) suspected heterogeneity and (b) where observational data 168 

points are denser (Doherty, 2003). Moore & Doherty (2006) suggest the density of pilot points 169 

should be commensurate with the density of observations. Additional strategic methods for 170 

placing pilot points have been developed to improve the value of each pilot point location added 171 

(LaVenue & Pickens, 1992; Moore & Doherty, 2006; Yang et al., 2012). 172 

The pilot and anchor point locations for the RDX groundwater model are shown in Figure 173 

3. In each iteration of the calibration, the likelihood of candidate K values for pilot and anchor 174 

points are calculated using their respective distributions and the objective function. 175 
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 176 

Figure 3. Pilot point (gray) and anchor point (black) locations in the in the RDX 177 

groundwater model. Pilot and anchor points may be placed at different depths at the same 178 

location, e.g., pp16 and pp17. Additionally, a pilot point location (e.g. pp12) and anchor 179 

(CdV-R-15-3) may be at the same location at different depths.  180 

Candidate K values for pilot and anchor points are interpolated to assign K values to 181 

every remaining node in the domain. Kriging is an effective choice (de Marsily et al., 2005). The 182 

RDX model uses standard three-dimensional kriging with a spherical variogram (Cressie, 1988), 183 

as implemented in the MADS kriging package in Julia (https://github.com/madsjulia/Kriging.jl). 184 

The spherical variogram parameters, sigma and scale, are also allowed to vary in the RDX 185 

model, to allow calibration to help determine the best interpolation scheme within the framework 186 

of ordinary kriging. Outside the region with pilot and anchor points the K field becomes 187 

homogeneous and assigned the domain global mean value, which is a function of both the pilot 188 

point and anchor point values, and the kriging parameters. Three separate kriged fields across the 189 

model domain are ultimately developed for Kx, Ky, and Kz.  190 
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2.2 Distributional Goal 191 

Setting a goal for the distributions is one of the most fundamental and often overlooked 192 

steps of this process, because the distribution and methods must fit the model’s specific needs 193 

and spatial/temporal scales in order to serve the decision(s) that will be made based on results 194 

(Gains-Germain et al., 2018; Higgs et al., 2017). In this step of the distribution development, the 195 

modeling team must determine: (1) how the parameter uncertainty will be characterized in the 196 

model; (2) the spatial and temporal scales over which each distribution is applied; and (3) the 197 

sources of physical variability and uncertainty in the parameter K as they relate to the scales of 198 

the data and the model application. This process leads to (4) an explicit statement of the goal of 199 

statistical analysis, i.e., the outcome of the distribution development effort. 200 

In this example, for the LANL RDX groundwater model, the distributional goal is written 201 

as follows, given the steps above: 202 

(1) A value will be drawn from K (horizontal) and Kz (vertical) distributions to represent an 203 

average value of the parameter over a spatial extent (volume). Although a single K 204 

distribution is used for both Kx and Ky, the model calibrates x and y directions 205 

independently at all locations so final values may differ. For model calibration, an initial, 206 

minimum, and maximum value are required. The draws within that range are determined 207 

by the optimization algorithm. For uncertainty analysis and predictive modeling, 208 

developed distributions are used as priors in a Bayesian modeling framework. 209 

Distributions are needed for both pilot points and anchor points that represent an 210 

appropriate state of uncertainty, at the appropriate scale. 211 

(2) The spatial scale represented by a draw from the distribution is determined by pilot point 212 

density and kriging parameters, but is expected to be at a scale of similar order of 213 

magnitude to the spacing between monitoring well locations and pilot points (which itself 214 

may vary considerably based on the distances between monitoring wells). Temporally, 215 

draws from the distributions are used throughout the entire model run (tens to hundreds 216 

of years) under the assumption that material properties will stay near constant over time. 217 

(3) Sources of spatial variability in K are related to complex geologic depositional processes 218 

that generate preferential flow paths (high K zones) and areas that resist flow (low K 219 

zones) in subsurface sedimentary and volcanic materials at the site. It is expected that 220 
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heterogeneity in K exists at scales much smaller than the values as represented in the 221 

model by draws from the distribution. The spatial scale used in the model generally 222 

corresponds to that represented by pilot point density in concert with kriging parameters 223 

(as discussed below). Sources of uncertainty in K are due to the methods used to estimate 224 

their values, and the appropriateness of those estimates for the upscaling required for the 225 

model. 226 

(4) Probability distributions will be developed for pilot points in the model domain based on 227 

the available data for the geologic materials they are located within. Distributions will be 228 

developed for anchor points based on the available data at those locations. The values 229 

must represent the plausible ranges for average values at the appropriate spatial scale 230 

given the state of uncertainty in K values. 231 

2.3 Data Collection 232 

After the distributional goal is established, data gathering can begin. This may involve 233 

screening (the process of determining which data are relevant to the model, and prioritizing that 234 

information over all other possible sources of information). For example, if the model includes 235 

zones of gravel and sand, then data collection takes place for those two materials, and not for 236 

clays or other materials absent from the model. While this may seem obvious, sometimes the 237 

screening process warrants additional documentation to address why certain data have not been 238 

collected for completeness. For the LANL RDX groundwater model, screening meant seeking 239 

out data in the Puye and Tschicoma formations specifically. Later, additional filtering may be 240 

performed, as described in Section 2.4. 241 

While peer-reviewed journal articles are the gold standard for references in the data 242 

collection process, in many cases site-specific experimental data are found in reports or other 243 

types of publications. “Values used” in previous model efforts may be included in the database 244 

as a lower-quality source of information, as it may already include expert opinion, bias, or other 245 

unknown modification based on the other model’s goals. Nonetheless, values used in similar 246 

models are occasionally helpful to include in the database for comparison.  247 

The intention is to capture the most current state of knowledge about the parameter, with 248 

site- or material-specific information as much as possible, or using general information or 249 
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literature review papers for the material if specific data are unavailable. The data are collected 250 

into a database (e.g., a spreadsheet) that retains as much metadata as practical . The database 251 

identifies whether the sources represent primary experimental data, literature review, expert 252 

judgement, or values used in another model. The scale of measurement is included, where 253 

“small” represents core or laboratory scales, “intermediate” represents portions of a site but not 254 

the entire site, and “site” represents the entire site. For K estimates at LANL for the RDX site, 255 

most of the information falls into the first two scales (Table 1). 256 

The two primary small-scale measurement techniques used at the site both occur during 257 

the drilling of boreholes. The first method is to retrieve core samples that have enough integrity 258 

to perform particle-size analysis, which are then used to estimate hydraulic conductivities using 259 

the Kozeny-Carman relationship (Bear, 1972). 260 

This type of analysis was performed in the LANL Chromium project area, approximately 261 

6 km downgradient of the RDX project area, with samples obtained from sonic coreholes CrCH-262 

1, CrCH-2, CrCH-3, CrCH-4, and CrCH-5 (LANL, 2018). These data are included in the 263 

hydraulic database for completeness despite the small scale being potentially unrepresentative of 264 

the intermediate-scale hydraulic conductivities needed to match the scale of the model.  265 

The other small-scale technique of determining hydraulic conductivity is using borehole 266 

geophysical methods. Results obtained from Combinable Magnetic Resonance (CMR) analysis 267 

for the Puye in well R-26 in the RDX area (Kleinfelder, 2005) is included in the database. Slug 268 

testing would also be considered small-scale (Gh de Marsily et al., 2005), but slug test estimates 269 

are not commonly available at LANL wells. 270 

The “intermediate” scale data are obtained from standard aquifer testing practices at the 271 

LANL site. Pumping test analyses can be performed in a single-well format (the pumped well is 272 

also monitored for drawdown) or in a multi-well format (a nearby monitoring well is used for 273 

drawdown rather than, or in addition to, the pumped well itself). Both single- and multi-well tests 274 

are considered intermediate scale for the purposes of this analysis, although the volume of 275 

aquifer interrogated by any pumping test depends on the time frame and rate of pumping. Most 276 

of the LANL pumping test analyses are of the single-well format. In either case, drawdown 277 

versus time is plotted over the course of a pumping test and the recovery period is fit by one of 278 

many empirical or semi-analytical solutions for aquifer testing that exist in the literature. The 279 
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appropriateness of the selected method depends on assumptions in that method relative to the 280 

true behavior of the aquifer (e.g., homogeneity, isotropy, confinement, etc.) and the well 281 

characteristics (e.g., fully or partially penetrating). Not all well completion reports include 282 

hydraulic conductivity estimates; some only present transmissivity, which is related to hydraulic 283 

conductivity by K = T/b, where T is transmissivity and b is effective aquifer thickness (Schwartz 284 

& Zhang, 2002). Transmissivity estimates were not included in the database directly, but 285 

hydraulic conductivity estimated from transmissivities in the literature are included. 286 

Methods of fitting the time-series drawdown data that appear commonly in LANL well 287 

completion reports include Theis and the related Cooper-Jacob method for confined aquifers, the 288 

Hantush equation for partially-penetrating wells, and the Neuman method for unconfined 289 

aquifers (Schwartz & Zhang, 2002). The exact methods used vary between analysts and pumping 290 

test configurations in the well completion report collection at LANL. These analyses may 291 

introduce subjectivity if the fitting is performed by eye, or even when using semi-automated 292 

methods to minimize residuals. The time selected for curve-fitting along the drawdown or 293 

recovery process is also a factor in the appropriateness of the hydraulic conductivity estimate and 294 

its scale; in the case of single well tests, early-time drawdown data interrogates a smaller portion 295 

of the aquifer located closer to the well screen, and late-time data represents a larger volume of 296 

the aquifer system as pumping stresses reach further away from the well screen . 297 

Another intermediate-scale single well pumping test method is referred to as the specific 298 

capacity method. The specific capacity method described in McLin (2005), which estimates 299 

lower bounds for hydraulic conductivities, is typically used in this dataset. 300 

A reason that well K estimates may also be uncertain for appropriate use in the model 301 

that is unrelated to upscaling has to do with potential bias in location of the well screens. In some 302 

cases where K values are estimated from pumping tests, monitoring or infrastructure (pump and 303 

treat) wells may have had higher K strata targeted for their well screen. Therefore, the K 304 

estimates from pumping tests could overestimate an appropriate average value for the model 305 

volume over which they are applied. 306 

  307 
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Table 1. 308 

Summary Data for K Estimates in the Puye and Tschicoma Formations 309 

 310 

Formation Type N Scale Comments 

Puye Corehole grain-size analysis  4 Sm. From Puye formation downgradient 

of RDX site 

CMR 1 Sm. R-26 geophysical logging 

Pumping test analysis 34 Int. Curve-fitting using, e.g., Theis, 

Neuman, Hantush, etc. 

Specific capacity estimates 8 Int. Method of McLin (2005) 

Tschicoma Pumping test analysis 4 Int.  

Table 1. Summary of K estimates for Puye and Tschicoma formation well screens in the 311 

database collected for this analysis across the LANL site, including the RDX area. The 312 

number of independent estimates (N) represents the number of unique monitoring 313 

well/screen locations for each type of analysis. 314 

2.4 Filtering 315 

The data collection should aim to be comprehensive, although it may stay within the 316 

bounds of the screening identified earlier; the filtering step is used after evaluating all of the 317 

collected data for relevance, scale, and quality. Filtering may be thought of as applying a weight 318 

of zero to certain data in the database, while fractional “value” weights (between 0 and 1) may be 319 

used to address various aspects of data quality and relevance (Edwards, 1977). 320 

Exploratory data analysis (EDA) is a tool used to investigate any patterns present among 321 

the data. It is an essential process that helps guide the filtering and/or data weighting procedures 322 

to be performed. EDA can include making visualizations of the data for each material in the 323 

model, and generating summary tables of the data (counts, quantiles, measure of spread and 324 

central tendency, etc.). These plots and tables can help determine if and how selective to be 325 

about location (e.g., site-specific only versus general for the material), type of analysis (e.g., 326 

grain-size analysis versus pumping test estimates), quality, etc. 327 
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One of the challenges in developing hydraulic conductivity distributions for the RDX 328 

project area is that there are few wells and therefore few pumping test hydraulic conductivity 329 

estimates. A greater density of K estimates in the Puye formation is found downgradient at the 330 

LANL Chromium project area. The Puye formation is continuous and large in extent (Figure 2), 331 

and although the wells are far away they may still be representeative of the overall formation 332 

properties. The first example of using EDA to make filtering decisions is the comparison 333 

between RDX area and “other” nearby area K estimates (primarily the Chromium project area, 334 

but also other parts of the LANL site) in the Puye formation, shown in Figure 4a. 335 

336 
Figure 4. (a) RDX-area monitoring well K estimates compared to all other locations in the 337 

same geologic unit (Puye formation) and scale (intermediate) at the LANL site. (b) Small-338 

scale (corehole and geophysics) data compared to intermediate-scale K estimates (“int”) 339 

across the LANL site. 340 

Among the intermediate-scale Puye formation data, the median K estimate for RDX area 341 

samples is 6.0 ft/d (n = 74), while the “Other” area category median K estimate is 14.3 ft/d (n = 342 

100). This may be explained by the depositional environment causing spatial trending in the 343 

material properties (the RDX area is closer to the mountain block source of the alluvial fan 344 

deposits of the Puye formation). However, there are few K estimates in the RDX area compared 345 

to the site as a whole, so although the medians are different, based on the distributional goal of 346 

identifying the plausible range of K values for the model, all LANL-area estimates were 347 

included in the distribution at this time. This can be re-evaluated in future iterations of additional 348 

estimates for hydraulic conductivity of the Puye formation are made within the RDX project 349 
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area. There are no estimates in the database for the Tschicoma formation outside the RDX 350 

project area, so a similar comparison is unnecessary. 351 

Figure 4b shows a comparison between small- (“corehole”, from the sonic coreholes in 352 

the Chromium project area) and intermediate-scale K estimates across the entire LANL site. 353 

Inclusion of the small-scale data in the database, despite the mismatch between corehole data and 354 

the model usage scale of the parameter defined in the distributional goal, allows for an additional 355 

check on the K estimates from other methods. Among the LANL area Puye formation data, the 356 

corehole K estimates have a lower median than the intermediate-scale values from pumping tests 357 

and similar methods, which is consistent with the expected scale-dependence of hydraulic 358 

conductivity (Carrera, 1993; Clauser, 1992; Neuman, 1990; Schulze-Makuch et al., 1999). 359 

Other types of EDA may include plotting by location to determine spatial trends, 360 

comparing geologic units or subunits, interrogating metadata for measurement method 361 

assumptions, investigating correlations with other parameter values (e.g., porosity), and so on.  362 

The EDA on the LANL area K data led to the following filtering and weighting 363 

decisions: 364 

 All sitewide data in the Puye formation are used to inform the K distribution in Puye, as 365 

opposed to only Puye data near the RDX plume. 366 

 At the LANL site, there are identified subunits within the Puye formation (Broxton & 367 

Vaniman, 2005), but K estimates from all subunits were included in the Puye distribution. 368 

 Comparisons between the distributions of intermediate- and small-scale K estimates 369 

suggest that there are statistically significant differences between the medians of these 370 

populations. Intermediate scale data are value-weighted twice as high as small-scale data 371 

because of the representativeness to the scale of how K is used in the model. The 372 

weighting difference of a factor of 2 is arbitrary as it is not known how much more 373 

relevant intermediate-scale data are to the model scale than small-scale data. 374 
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2.5 Statistical Analysis 375 

Once filtering and/or weighting of the data are determined and applied from the previous 376 

step, the final set of retained, weighted data in the database is processed to generate a distribution 377 

that is appropriate for use in the model (as defined by the distributional goal, Section 2.2).  378 

At anchor point locations, unique distributions are developed using only the data 379 

provided for each individual well. For pilot points, where the distribution depends on the 380 

geologic group (Puye or Tschicoma), records are first averaged within a well location before 381 

fitting the distribution. This is because multiple K estimates from the same well screen are not 382 

considered independent: in the case of pumping test analyses, for instance, multiple reported K 383 

estimates may come from several attempts to fit the same drawdown or recovery data using 384 

different approaches. At other well locations, only one “best estimate” might be reported, based 385 

on which of the methods is assumed to be most valid. Thus, averaging all data for a well screen 386 

is performed to reduce potential bias towards wells with greater numbers of reported estimates 387 

and ensure that independence assumptions are met.  388 

Distributions for anchor points were fit using all available data for the well within the 389 

respective formation using the method of moments, with the exception of R-26, as discussed 390 

below (Figure 5a). The variance of the distribution estimated for an anchor point in this manner 391 

is representative of the variability in the applied measurement method(s) within an aquifer test 392 

analysis. The distributions are normal in log data space (log refers to log10 throughout this 393 

paper). 394 

The log-transformed means of the distributions for the Puye and Tschicoma formations 395 

were estimated by calculating the mean among the well averages for all wells available, and the 396 

standard deviation of the distribution for each formation was estimated by calculating the 397 

standard deviation among the well averages and dividing by the square root of the number of 398 

wells. The variance in the distribution for each geologic formation represents the variability 399 

between wells. Figure 5b shows the resulting distributions for all pilot points in the model. 400 

R-26 Screen 2 is assigned a very wide distribution because of considerable uncertainty 401 

reflected in the pumping test information at that location. While the pumping tests suggest an 402 

unusually low K estimate for that location (based on a recovery response analysis) compared to 403 

other Puye formation pumping tests, and it is also corroborated by the specific capacity lower-404 
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bound K estimates, there is some uncertainty about whether this is reflective of the aquifer 405 

system or if equipment malfunction is responsible for the low estimate. Additionally, estimates 406 

were made at R-26 during drilling using borehole geophysical methods that suggested 407 

considerably larger K estimates in some intervals in the borehole than the pumping test analyses 408 

at screen 2 (Kleinfelder, 2005), although, if there was no equipment error, this could reflect true 409 

vertical differences in hydraulic conductivity at this location. Therefore, the distribution for this 410 

“anchor” point was unusually wide, even wider than the generic geology distribution for the 411 

Puye formation used for pilot points, and is selected to be uniform rather than lognormal. While 412 

this location has no detectable RDX contamination, because it is the furthest upgradient at the 413 

RDX site, it plays a significant role in the model calibration by setting the hydraulic gradient 414 

across the plume area. All of these factors contribute to its wide allowable range in a uniform 415 

distribution. The upper screen at R-26 is not used as an anchor point in the model because it is 416 

unknown if screen 1 is representative of the regional aquifer or was completed in perched 417 

conditions (Kleinfelder, 2005). 418 

The 1
st
 and 99

th
 percentiles of the distributions shown in Figure 5 were selected as the 419 

allowable constraints for the calibration, as discussed below. For Puye, the range is 2.1 to 12 ft/d. 420 

For Tschicoma, the range is 0.88 to 104 ft/d. 421 
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 422 

Figure 5. Distributions for (a) anchor points at well/screen locations and (b) pilot points in 423 

the Puye and Tschicoma formations. The lower panel of (a) shows K estimates from the 424 

database. 425 

3 Results and Discussion 426 

The K distributions developed above were implemented for use in the RDX groundwater 427 

model calibration. The calibration and model methods are described in N3B (2020). Calibration 428 

targets include field data such as water levels and water level gradients (flow direction), RDX 429 

yearly average concentrations, and concentration trends over time. In the non-linear least-squares 430 

calibration performed using the Levenberg-Marquardt (LM) algorithm implemented in MADS 431 

(“MADS: Model Analysis & Decision Support,” n.d.), the K distributions provide the constraints 432 

(minimum and maximum) that the calibration is allowed to test for K at each pilot or anchor 433 

point location.  434 
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The mean of the distribution is used to initialize the pilot and anchor points in the model 435 

for the calibration, but any value throughout the range may be used depending on the history 436 

matching qualities of the parameter set. Since the calibration is sensitive to initialization 437 

parameters, the initial values determined by the distribution development are very important.  438 

When the calibration process is completed, a set of parameters (including K values at all 439 

pilot and anchor points) is found that minimizes the objective function. The kriged Kx field for 440 

the LM calibration result is shown in Figure 6. As described above, Kx and Ky are calibrated 441 

independently, although the same K distributions are used for both. 442 

 443 

Figure 6. Model layer 1 (top layer) Kx for the calibrated RDX groundwater model, in 444 

log10([ft/d]). 445 

An unusually low Kx value at R-26 PZ-2 is found in the model calibration and is 446 

consistent with the site data, as discussed above. R-58, on the high end of the anchor points 447 

based on site data, remains elevated after model calibration. In general, other than a few anchor 448 

points which represent outliers in the data set, the model calibration has achieved a fairly regular 449 

K field in the horizontal dimension. 450 
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A check was performed to see if the model calibration moved any K values to within 451 

10% of their constraints (bounding ranges). A calibrated value that is pinned to the edge of the 452 

allowable range suggests an area where additional focused attention may be necessary, because 453 

the LM optimization may prefer a value outside the bounds developed from the data. 454 

Considerable deviations would suggest that scaling issues, model structure, or other factors 455 

would require model values to be further from the data values in order to match the calibration 456 

target data. In the RDX groundwater model calibration, for Kx or Ky, 4% of pilot or anchor point 457 

locations were within 10% of the lower range limit, and 3% of locations were similarly near the 458 

upper range limit. None of the points were within 1% of the upper or lower limits.  459 

The next step in the model workflow after calibration is uncertainty analysis, which is 460 

used to expand the deterministic result from the calibration into a set of input parameters to run 461 

the model probabilistically (N3B, 2020). The uncertainty analysis is performed using the Markov 462 

Chain Monte Carlo (MCMC) sampler as implemented in MADS (“MADS: Model Analysis & 463 

Decision Support,” n.d.). This analysis produces 1018 model runs which are intended to capture 464 

the state of uncertainty in the parameters (including K) while still achieving acceptable history-465 

matching to the field data.  466 

Figure 7 shows a comparison of Kx and Ky posterior distributions (represented as 467 

histograms of MCMC-generated samples) for pilot points against the prior distributions (black 468 

line) for horizontal K for the Puye and Tschicoma formations. For the Puye formation pilot 469 

points, the modeled values after uncertainty analysis follow the distribution developed from the 470 

site data. In essence, the maximum a’posteriori estimates from the MCMC calibration are 471 

consistent with maximum likelihood estimates from the LM calibration. For the Tschicoma 472 

formation, there are only two pilot points, where each Kx and Ky cluster in a particular location 473 

in parameter space after the uncertainty analysis. One pilot point (pp40 in Figure 3) moved to the 474 

edge of the distribution during the LM calibration (98 ft/d) and remained near there during the 475 

MCMC. Taken together, the results for pilot points in the Puye and Tschicoma did not drive any 476 

re-evaluation of the model structure, but the pilot points near the extremes of the distribution will 477 

be re-analyzed in future iterations. 478 
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 479 

Figure 7: K values generated from the uncertainty analysis for pilot points in the model, for 480 

the Tschicoma (a) and Puye (b) formations. 481 

4 Conclusions 482 

The pilot point/anchor point method, coupled with statistical analysis for distribution 483 

development, is a rigorous approach to grounding a parsimonious numerical model in plausible 484 

site data for hydraulic conductivity while allowing the model calibration to explore the full range 485 

of uncertainty. The distribution development step is critical for the initialization of the parameter 486 

in the calibration, as well as defining plausible ranges that would trigger an investigation into 487 

why a model-calibrated value strays far from the site data. The approach is iterative, with each 488 

iteration based on the currently available state of knowledge about the parameter (K, in this 489 

case). Additional iterations may be performed if model calibration results or sensitivity analyses 490 

suggest that there would be additional benefit to further analysis of the underlying data set, or if 491 

new data become available.  492 

The pilot and anchor point method to spatial distribution of K values provides 493 

considerable flexibility that may be lost when using rigidly defined stratigraphic zones, which 494 

may have considerable overlap in hydraulic properties once uncertainty is included. The 495 

connection this method provides between site-specific knowledge (at anchor points), as well as 496 
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flexibility for calibration at pilot points (within the realm of plausible values for the geologic 497 

formation), is both defensible and practical for numerical modeling purposes. It optimizes the 498 

representation of upscaled physical processes within a parsimonious model framework. The 499 

method is easily extendable to other heterogeneous parameters and modeling applications. 500 

In the example presented here for a model of groundwater contamination with RDX, two 501 

geologic units are present in the plume area and their pilot and anchor point distributions reflect 502 

the K estimates collected in a database of LANL-area observations. The data collection spans a 503 

wider range of locations, geologic units, and scales than are likely to be representative, so a 504 

filtering/weighting step is performed. Based on the explicitly defined distributional goal, 505 

statistical analysis is performed to identify the distributions and 1
st
/99

th
 percentiles are used as 506 

constraints in model calibration. The resulting calibration found excellent matches to field data 507 

while staying within the bounds provided by the statistical analysis (N3B, 2020). This suggests 508 

that the K estimates from the site provided a plausible and defensible starting location for the 509 

model calibration (relative to other parameter values) with some adjustment allowed during 510 

calibration to account for model grid resolution, scale, simplifications, assumptions, and 511 

uncertainty. 512 

Future work on the use of the method for LANL-area groundwater models could include 513 

a second iteration on the RDX site data to evaluate which pilot and anchor points are particularly 514 

sensitive. Additional focused analysis can be performed on those literature data for hydraulic 515 

conductivity estimates to see if uncertainty may be narrowed.  516 

Another useful improvement in the application of the method to the RDX groundwater 517 

model would be making the distributions multivariate in Kx, Ky, and Kz. At present, the 518 

distributions are drawn independently, although the Kz distribution covers a significantly lower 519 

range of K values based on observed and estimated anisotropy at the site. Therefore, the model 520 

has a built-in mechanism for calibrating with Kz < Kx, Ky. However, the statistical analysis and 521 

model implementation could be updated by adjusting the distributional goal to include anisotropy 522 

correlation explicitly. 523 
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