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Cesar Aybar , David Montero , Simon Donike , Freddie Kalaitzis , Luis Gómez-Chova

Abstract—In recent years, there has been a growing interest in
using image super-resolution (SR) techniques in remote sensing.
These techniques aim to reconstruct high-resolution (HR) im-
agery from low-resolution (LR) sources. Despite the development
of sophisticated SR methodologies, determining what constitutes
‘good’ SR is still a matter of debate. Present-day literature often
presents SR models through a strong computer vision perspective,
heavily relying on synthetic datasets. Moreover, commonly used
metrics often prioritize attributes that do not necessarily cor-
respond to improvements in spatial resolution. To address this
challenge, we present OpenSR-test, a comprehensive benchmark
designed exclusively for evaluating SR of remote sensing images.
Our framework incorporates specific quality metrics and curated
cross-sensor datasets, each spanning various scale factors with
consistent metadata. Utilizing OpenSR-test, we evaluate state-of-
the-art SR algorithms from a remote sensing perspective. The
OpenSR-test framework and datasets are publicly available at
https://esaopensr.github.io/opensr-test/.

Index Terms—super-resolution, benchmarking, deep learning,
datasets, Sentinel-2, NAIP, SPOT.

I. INTRODUCTION

Optical remote sensing is a valuable source of information
that predominantly uses satellite sensors to gather data of the
Earth’s surface. The resolution of these sensors is determined
by their ability to distinguish changes over time (i.e. temporal
resolution), different wavelengths of the electromagnetic spec-
trum (i.e. spectral resolution), and spatially separated objects
(i.e. spatial resolution). Depending on the application, remote
sensing users may require higher resolution in one or more
of these dimensions. For instance, in crop monitoring, a high
temporal resolution may be preferred to track crop phenology
and harvesting, while in the case of building delineation, a
very high spatial resolution may be preferred to capture the
fine details of individual structures. However, remote sensing
sensors do not always provide the required resolution due to
technical and economic constraints.

In scenarios where spatial high-resolution images are not
available, super-resolution (SR) algorithms emerge as a promi-
nent solution [1]. SR is inherently an inverse problem, as
it reconstructs the original high-resolution (HR) image from
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its degraded low-resolution (LR) counterpart. Moreover, it is
characterized as an ill-posed problem, given the one-to-many
relation between LR and possible HR representations. Over
recent years, substantial research efforts have been dedicated
to the super-resolution of natural images, particularly by
employing deep-learning methods [1]. Current research has
been directed towards developing more efficient architectures
that integrate local and global features [2], obtaining more
realistic degradation kernels [3], producing SR images over
different scales [4], and proposing ingenious loss functions [5].

Despite significant advancements, a crucial question re-
mains in the remote sensing community: Can SR methods
designed for natural images be effectively applied to satellite
imagery? These SR methods use artificially degraded images
through basic bicubic or bilinear interpolation as input. This
approach circumvents the need for ‘real’ LR images and
results in LR-HR pairs that are spatially and spectrally con-
sistent [3]. However, this approach may overlook the unique
characteristics of the satellite sensors, potentially introducing a
domain bias between synthetically generated and real LR ob-
servations. To mitigate this issue, recent advancements in SR
methods have included simultaneous image fusion and SR pro-
cesses [6], though these have shown limitations in preserving
reflectance coherence, as recently noted in [5]. Alternatively,
some studies have explored implementing harmonized cross-
sensor SR approaches. Nevertheless, the preparation of train-
ing datasets for these approaches faces significant limitations
due to the required preprocessing, including spatial alignment,
removal of cloud-contaminated pixels, spatial coregistration,
and radiometric adaptation [7], which ultimately constrains the
dataset size and, consequently, the scalability of the model.

Another concern is the need for quality metrics explicitly
designed for measuring the ground-resolved distance (GRD),
a key indicator of spatial image resolution. While previous
studies have often relied on pixel-wise metrics, like PSNR, and
perceptual metrics, such as SSIM and LPIPS [8], these metrics
have limitations. On the one hand, pixel-wise metrics can be
too sensitive to spatial translations and local reflectance dis-
parities unrelated to the super-resolution problem [9]. On the
other hand, perceptual metrics are not specifically intended for
super-resolution. They assess the general image quality based
on human perception standards. Therefore, these metrics may
not be the most accurate solution for domain-specific contexts
like remote sensing, which requires specialized expertise [10].

This letter introduces a benchmark for comprehensively
evaluating super-resolution in optical remote sensing images:
OpenSR-test. The benchmark comprises three distinct curated
cross-sensor datasets with varying scale factors. In addition,
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Fig. 1. Workflow for dataset generation: image selection (yellow blocks), harmonization (green blocks), and human inspection (purple block). For each LR-HR
pair within each dataset, we report one spatial quality metric (QA1) and one spectral quality metric (QA2).

we introduce a set of tailored quality metrics based on a remote
sensing super-resolution protocol. To evaluate the proposed
approach, we showcase its use by detailing the accuracy
assessments of three state-of-the-art SR methods and conduct-
ing an in-depth analysis of the resulting metrics. Finally, we
conclude the letter by underscoring the importance that robust
validation practices can play in shaping the future of SR in
the remote sensing field.

II. CROSS-SENSOR MULTI-SCALE DATASETS

One of the primary goals of OpenSR-test is to prepare
cross-sensor multi-scale datasets with the maximum possible
consistency between LR and HR image pairs. We selected
Sentinel-2 Level-2A (10m bands) as the input LR imagery and
three different pre-processed image sources to define the target
HR domain: NAIP (2.5m), SPOT (2.5m), and VENµS (5m).
The entire process can be divided into three steps, as depicted
in Fig. 1: selection of potential LR-HR pairs, harmonization,
and visual inspection. For the LR-HR pair selection, we
discarded all the LR-HR pairs that were not acquired on the
same day to ensure similar atmospheric conditions. LR-HR
pairs with cloud cover in the LR image were automatically
discarded using a cloud detection algorithm trained on the
CloudSEN12 dataset [11].

The harmonization phase comprises two key tasks: improv-
ing spatial collocation and radiometric matching. For spatial
alignment assessment, ground control points between each
LR and HR image pair are automatically identified using
the LightGlue and DISK algorithms [12], [13]. Following the
approach outlined in SEN2VENµS [7], we exclude any erro-
neous correspondence of points with a displacement greater
than 30 meters (3 pixels). The remaining points are used for
calculating the mean square collocation error (quality flag
QA1 in Fig. 1). After collocating the LR-HR images, any
image pair with a QA1 > 0.75 is removed from the dataset.
For radiometric harmonization, we apply histogram matching
individually for each band and then compute the average
spectral angle distance (SAD) between the LR-HR images
(quality flag QA2 in Fig. 1). LR-HR pairs with a QA2 > 5 are
not considered.

Finally, to ensure the optimal quality of the dataset, we
carefully inspect the remaining LR-HR pairs through a manual
review process. Any LR-HR pairs containing saturated or
defective pixels, or other noticeable inconsistencies detected
through visual inspection are excluded. The final datasets are
accessible on HuggingFace at https://huggingface.co/datasets/
isp-uv-es/opensr-test. Furthermore, for each LR-HR pair in
the datasets, we report the spatial (QA1) and spectral (QA2)
errors. The mean values of these quality metrics are presented
in Table I for the three datasets (the lower the better).

TABLE I
DATASETS AVAILABLE IN OpenSR-test. THE HR AND LR PAIRS CONSIST
OF 4 BANDS: RED, GREEN, BLUE, AND NEAR INFRARED. THE WIDTH OF
THE GAUSSIAN DEGRADATION KERNEL IS ESTIMATED BY COMPARING

THE LR AND DOWNSAMPLED HR IMAGES.

HR source Number HR patch Scaling Gauss. kernel Quality flags
imagery of scenes size (pix.) factor width (m) QA1 ↓ QA2 ↓

NAIP [14] 30 1024 ×4 5.50 0.33 1.30
SPOT 6/7 [6] 12 512 ×4 5.75 0.44 1.21
VENµS [7] 59 512 ×2 2.10 0.26 1.57

III. A PROTOCOL FOR REMOTE SENSING IMAGE SR
EVALUATION

The second main goal of this work is to quantify the
quality of SR images. Quantifying the quality of synthesized
images is a well-known problem in remote sensing. Twenty-
five years ago, Wald et al. [15] introduced a set of properties
that an ideal pansharpening algorithm must satisfy to ensure its
practical utility. Since then, numerous adaptations have been
introduced, leveraging this protocol to tackle a comprehensive
range of image enhancement issues, even transcending those
related to multispectral data [16], [17]. However, there is still
no formal quality assessment protocol for super-resolution
in remote sensing. Wald’s protocol specifies two core qual-
ity properties that algorithms must satisfy: consistency and
synthesis. Consistency entails that the LR image can be
recovered by degrading the reconstructed (SR) image, although
the degradation strategy is usually unknown. Synthesis, on
the other hand, states that a reconstructed (SR) image must
preserve the characteristics of the original LR image at an
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Fig. 2. A high-level summary of our workflow to estimate the consistency, synthesis, and correctness metrics. We propose three metrics to evaluate consistency
and three more to assess synthesis and correctness. The dotted lines represent the optional harmonization step conducted before the triple distance process.
The red line (dLR↔HR) is used to normalize the distances dSR↔LR and dSR↔HR..

increased spatial resolution. Inspired by Wald’s protocol, we
propose a set of properties that can serve as guidelines for
designing super-resolution methods, metrics, and datasets, as
presented in the previous section.

SR images derived from LR images must satisfy the fol-
lowing three properties:

Consistency property. Any SR image, when degraded
(downsampled) to the original LR spatial resolution, SRdown,
must maintain consistent reflectance values and spatial align-
ment with its LR counterpart. Testing this property can be
challenging because the degradation model to generate LR
(i.e., SRdown) from SR is typically unknown. However,
assuming that the high-frequency characteristics between SR
and HR should be similar, a degradation model learned from
HR to LR might be employed to degrade SR.

Synthesis Property. Any SR image must improve the effec-
tive spatial resolution. In addition, the SR model must preserve
the low-frequency details from the original LR image. If this
condition is met, the metric of synthesis can be quantified by
measuring the distance between the SR image and a reference
image above the Nyquist frequency. The reference image can
be obtained by simply upsampling the LR image (see next
section). The larger the distance between the SR and the
LR reference image, the more effective the gain in spatial
resolution and detail representation.

Correctness property. Any SR model must avoid halluci-
nations and omissions. Hallucinations are related to generating
high-frequency features that do not align with the real ones
present in the HR image. On the other hand, omissions denote
the missing high-frequency features that the SR image failed
to capture. One practical approach to evaluate the correctness
property is to measure the distances between the SR image
to the HR and LR images, as we present in the next section.

IV. SR QUALITY METRICS

The third objective of the OpenSR-test framework is to
introduce specialized quality metrics that fulfill the described
protocol for remote sensing image SR. The proposed quality

metrics for SR can be computed at various aggregation levels:
individual pixels, patches, or entire images; and are catego-
rized into three distinct groups attending to the described
Consistency, Synthesis, and Correctness properties (Fig. 2).

In the realm of consistency, our framework introduces three
distinct metrics, which are delineated in purple in Fig. 2:
reflectance, spectral, and spatial consistency. The core ob-
jective here is to evaluate the fidelity with which the SR
image retains the intrinsic properties of the LR image. To
facilitate this assessment, we downsample the SR image to the
exact spatial resolution as the LR image, producing SRdown.
We generate SRdown using bilinear interpolation by default,
applying an anti-aliasing filter and then resampling. Firstly,
the reflectance metric is quantified using the mean absolute
error. This metric focuses on determining the extent to which
the super-resolution process affects the reflectance values.
Secondly, the spectral metric aims to ascertain the SR model’s
capability in preserving the LR image’s spectral signatures,
an essential factor in maintaining the spectral quality of the
image. To compute this metric, we employ the spectral angle
distance. Finally, the spatial consistency metric is derived by
calculating the mean absolute error between the matching
points identified by LightGlue in both SR and LR images.
This measure is crucial for assessing the spatial alignment and
structural integrity of the SR image relative to the LR image.

Before the synthesis and correctness estimation, the
OpenSR-test framework performs two sequential steps:

1) The LR image is upsampled to match the HR spatial
resolution, creating LRup. Users can choose different
methods, but bilinear interpolation is the default.

2) The SR image undergoes a harmonization process
(SRharm) to handle systematic errors identified during
consistency inspection. The process includes correcting
the reflectance values using histogram matching and per-
forming spatial alignment using ground control points.
These control points are obtained by applying LightGlue
in the SR-HR pair.

With the three images standardized (i.e. three points in a
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Fig. 3. Visual representation of the three fundamental components within the correctness metric evaluation. The L1 norm defines the metric space. The
first diagram in the figure delineates the improvement space (im), the second delineates the omission space (om), and the third depicts the hallucination
space (ha). In all metrics, a value closer to zero indicates better accomplishment. Each diagram displays three stars representing the SR models’ correctness
evaluation. Refer to the results section for further information on the SR model setup. The gray areas depict regions where the Euclidean triangle inequality
is not satisfied, i.e., where there are no possible solutions. .

high-dimensional space defining a triangle), we proceed to
distance estimation, as depicted in Fig. 2. First, we calculate
the distance between SRharm and LRup, and call it dSR↔LR.
This distance provides insights into the divergence of the SR
image from the naive upsampled LR image (omission). Next,
we calculate the distance between SR and HR, referred to
as dSR↔HR. This particular distance evaluates the extent to
which the SR image aligns with the content of the reference
HR image (improvement). Finally, we calculate the distance
between LRup and HR, referred to as dLR↔HR. This distance
indicates the amount of high-frequency information present in
the HR image but absent in the LR image.

The default setting for distance calculations in the OpenSR-
test is the L1 norm. However, users have the option to choose
from eight different distance metrics: L2 norm, SAD, Per-
centage Bias, Inverted Peak Signal-to-Noise Ratio, Kullback-
Leibler divergence, and LPIPS. We normalize dSR↔LR and
dSR↔HR by the reference distance dLR↔HR. This normaliza-
tion results in relative distances, which we define as omission
(dom) and improvement (dim) dimensions, respectively. The
dom dimension measures the total gain in high-frequency
information and is used to quantify the synthesis property.

Regarding correctness, the primary objective is to classify
and quantify how much of the high-frequency representation
is an improvement (SR close to HR), omissions (SR close
to LR), or hallucinations (SR far from both LR and HR).
The OpenSR-test framework reports the percentage of pixels
classified within these categories. Using the dom and dim we
estimate the omission (om), improvement (im), and halluci-
nation (ha) scores using the following equations (Fig. 3):

H = dim + dom − 1 (1)

om = dom + dim(1 − e−γomH) (2)

im = dim + dom(1 − e−γimH) (3)

ha = e−γhadimdom (4)

The parameters γom, γim, and γha govern the respective
domains of the omission, improvement, and hallucination
scores. We set γ to 0.8 for both the om and im scores, and to

0.4 for the ha score. These values were determined empirically
based on the consensus of three remote sensing experts. The
scores for om, im, and ha are used to categorize data units as
hallucinations, omissions, or improvements based on the score
that registers the minimum value. Refer to Fig. 3 for a visual
representation of these dimensions.

V. RESULTS

A. Experimental Setup
We compare three pre-trained SR models using different

datasets and architectures to showcase the effectiveness of
our benchmark. One of the models, SR4RS [18], employed
Sentinel-2 images, while the other two models, diffuser and
SuperImage, were trained using natural images. The evaluation
metrics reported in our comparison only considered the red,
green, and blue bands to ensure consistency across all SR
model configurations.

Despite the extensive literature on remote sensing super-
resolution, our experiment did not include other SR models
because only SR4RS provides open access to both the weight
parameters and the code of their trained models. Pre-trained
models available in the SUPER-RES [5] and WorldStrat [6]
projects were omitted as they focus on multi-image super-
resolution, whereas OpenSR-test is designed explicitly for
single-image super-resolution.

B. Overall Performance Comparison
The comparative performance analysis of the three super-

resolution models, presented in Table II, offers a detailed
assessment across the OpenSR-test datasets, including NAIP,
SPOT, and VENµS.

From a consistency perspective, the SuperImage and SR4RS
instances display an acceptable balance in preserving spatial,
reflectance, and spectral characteristics across all evaluated
datasets. This indicates its suitability for remote-sensing down-
stream tasks. On the other hand, the diffusers model exhibits
significant alterations in reflectance and spectral values, along
with spatial displacements greater than 1 pixel at low res-
olution (10 meters), which may suggest a degree of local
geometric distortion.
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TABLE II
BENCHMARK COMPARISON OF SR MODELS. DOWNWARD ARROWS (↓) DENOTE METRICS IN WHICH LOWER VALUES ARE PREFERABLE, AND UPWARD

ARROWS (↑) INDICATE METRICS IN WHICH HIGHER VALUES REFLECT BETTER PERFORMANCE.

Consistency Synthesis Correctness
reflectance ↓ spectral ↓ spatial ↓ high-frequency ↑ ha ↓ om ↓ im ↑

NAIP
SuperImage 0.008 7.286 0.131 0.003 0.117 0.784 0.098
SR4RS 0.016 3.471 1.156 0.010 0.869 0.077 0.054
diffusers 0.463 12.437 2.88 0.013 0.905 0.055 0.040

SPOT
SuperImage 0.009 3.512 0.062 0.006 0.160 0.794 0.046
SR4RS 0.039 3.232 1.151 0.023 0.834 0.115 0.051
diffusers 0.417 11.730 0.817 0.014 0.686 0.251 0.063

VENµS
SuperImage 0.009 8.687 0.099 0.003 0.403 0.380 0.217
SR4RS 0.014 3.394 1.122 0.012 0.971 0.017 0.012
diffusers 0.467 13.303 0.806 0.009 0.933 0.043 0.024

From a synthesis perspective, SR4RS and diffusers models
exhibit close scores. This outcome aligns with expectations,
as generative models like SR4RS and diffusers tend to intro-
duce more high-frequency energy into images compared to
discriminative models such as SuperImage. Notably, SuperIm-
age introduces approximately two times less high-frequency
information, indicating a more conservative approach.

Lastly, in terms of correctness, the generative models
(SR4RS and diffuser) demonstrate a higher incidence of hal-
lucinations across all datasets (Fig. 3). These models tend
to introduce artifacts that, while visually appealing, do not
accurately correlate with the HR data. Conversely, the Super-
Image model tends more towards the omission space (Fig. 3),
implying that the added high-frequencies are similar to the
LRup image. While this approach results in fewer hallucina-
tions, it may also lead to the exclusion of finer details, which
is the primary motivation for utilizing an SR algorithm. A
trade-off between hallucinations and omissions highlights the
importance of a balanced approach in remote sensing super-
resolution algorithms.

Finally, a particular characteristic can be noted in the
VENµS dataset, where all algorithms tend to show higher
hallucination values (Table II). Visual analysis indicates that
the VENµS imagery appears smoother when compared to
the SR results of the three SR networks. This observation is
supported by comparing the degradation kernel widths (Table
I); specifically, the kernel width of VENµS is less than half
that of NAIP and SPOT, i.e. the effective spatial resolution
of VENµS images appears to be lower than 5 m. Since
the correctness metrics are based on comparing distances, if
the reference HR is inadequate, the results will always lean
towards hallucination.

VI. CONCLUSIONS

This letter presents the OpenSR-test, a novel and compre-
hensive benchmark tailored for SR of optical remote sensing
images. Designed around three foundational properties, the
OpenSR-test provides a more precise interpretation of SR per-
formance than traditional metrics, and provides three curated
cross-sensor datasets covering various scales. The OpenSR-test
framework can be seamlessly extended to tackle other image
synthesis problems such as cloud removal, image dehazing, or
SAR-optical fusion. We hope our work will encourage further
research in the field of SR performance assessment.
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