
ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el 1

Identifying Exploitable
Memory Objects for Out-of-
Bound Write Vulnerabilities

Runhao Li1, Bin Zhang1, and Chaojing Tang1
1 National University of Defense Technology, Changsha, 410072, China

Email: lirunhao@nudt.edu.cn.

Exploit an out-of-bounds write vulnerability in

general-purpose applications has become a current

research focus. Given the large scale of code in

programs, selecting appropriate memory objects

for exploitation is challenging. In the letter, we

propose a corrupted data propagation-guided

fuzzing method. By tracking the propagation

process of corrupted data among memory objects,

we propose a multi-level fuzzing schedule to

search the execution paths. Experimental results

show that our proposed method, EMOFuzz, can

effectively identify exploitable objects under

various overflow lengths, significantly enhancing

the efficiency of exploitability analysis.

Introduction: Software vulnerabilities are a crucial area of

study in cybersecurity, with out-of-bound (OOB) write

being a significant component [1,2]. In the process of

researching vulnerabilities, the focus and challenge for

researchers are how to exploit bugs to compromise the

target program and gain higher privileges.

The process of exploiting a vulnerability often relies on the

combination of exploit primitives [3]. Common primitives

include arbitrary address reading (AAR), arbitrary address

writing (AAW), and control flow hijacking (CFH). The

exploit process usually involves combining these

primitives to achieve a specific exploitation goal. The key

to constructing an exploit primitive lies in rewriting critical

objects of the program after triggering the vulnerability.

For example, in the statement memcpy(des, src), if the

corrupted data of a vulnerability controls the des pointer, it

becomes possible to write data to any address, achieving an

AAW primitive. Therefore, researching how to influence

critical memory objects in the program through flawed data,

to reach an exploitable state (AAW, AAR, and CFH), is

crucial for vulnerability exploitation [15].

Current methods for identifying exploitable objects of

OOB write bugs primarily focus on the Linux kernel [4, 5].

These approaches concentrate on certain special objects,

such as structures containing function pointers or objects

with variable lengths [6]. However, in the case of general-

purpose applications, which often have a large amount of

code, complex logic, and significant variations in

development styles, no effective analysis method is

proposed to identify exploitable objects for memory

vulnerabilities. Therefore, developing a method for

analyzing exploitable objects for general-purpose

programs, to assist in assessing the exploitability of OOB

vulnerability, becomes a hot topic and a challenge in

research.

In general-purpose programs within complex execution

logic, after a vulnerability is triggered, it is often difficult

to directly influence a memory object to reach an

exploitable state, which makes the identification of

exploitable objects challenging. In most cases, after

rewriting a memory object via triggering bug, the flawed

data propagates and spreads among memory objects,

changing the program's state. For instance, as shown in

Figure 1, after the vulnerability is triggered, object A is

firstly affected, and then object A influences object B,

which in turn affects the pointer des. When the program

executes the statement memcpy(des, B), AAW occurs. In

this process, the program reaches an exploitable state by

rewriting memory object A, making it an exploitable object.

Considering the complexity of corrupted data propagation

due to the program's complex logic, tracking the

propagation of the flawed data is key to identifying the

exploitable object.

OOBW
Memory

Object A

Memory

Object B
... AAW

memcpy(des, B)

Fig 1 An example of achieving AAW by triggering vulnerability.

This letter adopts a data flow perspective to explore

exploitable objects of OOB write bugs in general-purpose

applications, thereby providing support for exploitability

analysis. Initially, the letter utilizes static value flow tool to

instrument the target program, constructing a weighted

value flow graph. Subsequently, we integrate dynamic taint

analysis, and develop a fine-grained model for propagation

process of corrupted data. Following this, a fuzzing method

is designed, using the extent of flawed data spread as a

guidance to efficiently explore the exploitable memory

objects. The contributions of this paper include two parts:

⚫ Constructing a hybrid static-dynamic model for fine-

grained analysis of corrupted data propagation,

tracking the spread of corrupted data among memory

objects, and evaluating the propagation impact.

⚫ Proposing a corrupted data propagation-oriented

fuzzing methodology, which can identify exploitable

objects by efficiently explore the program execution

paths.

System Design: The overall framework of our proposed

method EMOFuzz is shown in Figure 2. Initially, we carry

out instrumentation within static analysis tool and generate

a Weighted Variable Flow Graph [7]. Based on that, a taint

data propagation model is constructed to analyze the

spreading process of corrupted data. Following this, we

propose a flowed data-oriented fuzzing method. Through a

multi-level fuzzing schedule, it searches for potential

exploitable objects in the target program.

2 ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el

Fig 2 System overview of proposed method.

It is worth mentioning that one important assumption for

our method is that the memory objects can be affected by

the bugs through specific methods, such as heap layout

manipulation [8,9]. In this way, after triggering a

vulnerability, it becomes possible to drive the program into

an exploitable state by affecting these critical objects.

Corrupted Data Propagation Model: To figure out the

propagation process of corrupted data among memory

objects and evaluate the effects, we construct a model

combined static and dynamic method, which also provides

support for fuzzing.

Firstly, this letter leverages the Static Value Flow (SVF) [7]

framework for instrumenting the target program in LLVM

level. SVF is a common data flow analysis framework that

effectively supports cross-module and cross-procedure

data flow analysis in large-scale programs. Given source

code, we leverage SVF to construct a Value Flow Graph

(VFG), which shows the data flow relationships among

variables. For example, Figure 3 is part of VFG, where each

node represents a variable or expression of the program,

and each edge denotes the data flow relationship. In Figure

3, the variable %3 influences variable %10 through the

getelementptr, and variable %10 further affects the

variable %11.

Fig 3 Part of value flow graph of applications.

In the VFG, the node possesses varying potential for spread.

To assess the effects of propagation more accurately, we

have advanced from the basic VFG to construct a Weighted

Value Flow Graph (WVFG). Propagation potential refers

to the extent to which a tainted variable node might affect

other nodes. For example, in Figure 3, if variable %3 is

tainted, variables %4 and %10 might also be tainted.

Similarly, if variable %10 is tainted, variable %11 might be

tainted as well. Therefore, the propagation potential of

node %3 is 2, while that of node %10 is 1. Nodes with

higher propagation potential are more significant for the

spread of tainted data, as they are likely to facilitate wider

dissemination once tainted. Based on the basic VFG, we

quantify the propagation potential of each node according

to the number of outgoing edges, thus resulting in the

WVFG.

In OOB write bugs, the flawed data area varies as different

overflow length, resulting in different exploitable memory

objects. Therefore, to accurately assess the exploitability of

a bug, we explored the exploitable objects under the

influence of corrupted data within varying lengths. To

finely track the propagation process of the corrupted data,

we employed dynamic taint analysis, using the Dataflow

Sanitizer [10] for online taint analysis. Additionally, to

detect whether the flawed data has propagated to an

exploitable position, we need to monitor important nodes

during program execution. We employ Dataflow Sanitizer

for dynamic runtime detection and conduct inspections at

various critical points during the program's execution. The

specific detection rules are outlined in Table 1.

Table 1. Detection rules of LLVM instructions for exploitable
program state.

Instructions Rules Exploitable State

load %a, %b Address of %b is tainted AAW

store %a, %b Address of %b is tainted AAR

call func Address of func ptr is tainted CFH

Corrupted Data-oriented Fuzzing: Based on the analysis of

propagation process, we developed a fuzzing method to

efficiently explore the exploitable objects for OOB write

bugs in general-purpose applications. Considering the large

code scale and complex logical constraints of programs,

methods such as symbol execution are inefficient and may

suffer from constraint explosion [11]. Therefore, we

adopted a search-based approach to explore the execution

paths in programs.

The more extensively corrupted data propagate, the more

likely the program reaches an exploitable state. Therefore,

we use the extent of flawed data propagation to guide the

fuzzer. Based on the corrupted data propagation model, we

define the extent of corrupted data propagation. For a saved

seed, if it can taint 𝑚 more nodes, and the propagation

potential of each node is 𝑝1 to 𝑝𝑚 , then the propagation

extent of the seed (𝑃𝐸𝑆) is described in (1).

𝑃𝐸𝑆 =
𝑚

2
+ ∑ 𝑝𝑖

𝑚
𝑖=1 (1)

To ensure thorough exploration of the program execution

space [12,14], we also maintained code coverage as metric.

Hence, we designed a multi-level fuzzing schedule by

integrating both code coverage and 𝑃𝐸𝑆. In terms of seed

saving, we preserved seeds that discover new tainted nodes

or trigger a new path. As for seed mutation strategy, we use

random mutation algorithm and select seeds within a

greedy algorithm. Regarding seed scoring, we evaluate

each seed within a new scoring strategy, which is further

illustrated in Algorithm 1.

ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el 3

Algorithm 1. Calculate the score of seed during fuzzing.

Experiments: To validate the effectiveness of our tool

EMOFuzz, we designed a series of experiments to verify

the results of identification exploitable objects. We selected

5 OOB write bugs from several general-purpose programs.

Under various overflow lengths, we conduct 3 fuzzing tests,

within each fuzzing last for 24 hours. All the experiments

were set up on Ubuntu 18.04 LTS, with an Intel(R) Xeon(R)

Gold 6254 CPU @ 3.10GHz and 1TB of RAM. The

experimental results are shown in Table 2.

Table 2 illustrates that EMOFuzz can effectively identifies

exploitable objects for out-of-bounds write bugs, it can find

out exploitable objects for all bugs within 24 hours fuzzing

campaign. Generally, the more bytes the data are tainted,

the more potential exploitable objects EMOFuzz can

identify. Specially, as for CVE-2021-3156, which is heap

overflow occurs in sudo program, within publicly available

exploits. EMOFuzz identified a new exploitable object,

sudo_hook_entry for exploit, which could lead to an AAW

for sudo. As for gpac-issue-1317, we failed to find any

exploitable objects initially until we increased the tainted

length to 128 bytes.

Table 2. Experimental results of identifying exploitable objects by
fuzzer.

Bug ID Program
Overflow

Lena

of Taint

Nodeb

of Exp.

Obj.c

CVE-2021-3156 sudo

2 5 0

4 5 1

8 5 1

16 20 1

32 71 1

CVE-2019-20162 gpac

2 298 1

4 352 3

8 288 3

16 337 4

32 1052 4

issue-1317 gpac

2 226 0

4 282 0

8 256 0

16 376 0

32 884 0

128 2547 3

CVE-2022-26967 gpac

2 798 3

4 677 3

8 617 3

16 594 4

32 1057 4

CVE-2020-6851 openjpeg

2 16 0

4 34 1

8 149 1

16 897 2

32 1549 2
a It means the overflow length of the vulnerability.
b It means the number of corrupted nodes of WVFG.
c It means the number of identified potential exploitable objects.

Fig 4 Comparison of number of tainted nodes by EMOFuzz and
AFL. The red line represents fuzzing process of EMOFuzz while
blue line represents that of AFL. (16) means the tainted length is
16 bytes.

To compare EMOFuzz with other state-of-the-art, we

chose the widely used coverage-guided fuzzing tool AFL

[13]. We selected five sets from Table 1 and compare the

ability of in propagating tainted data. Specific results are

drawn in Figure 4. As shown in Figure 4, in the 24-hour

experiment, EMOFuzz demonstrated a stronger capability

to propagate flawed data than AFL, within an average

improvement of 31%. Therefore, it is more likely to

identify exploitable memory objects.

Conclusion: In conclusion, this letter introduces EMOFuzz,

an innovative corrupted data propagation-guided fuzzing

method, specifically designed to address OOB write bugs

in general-purpose applications. EMOFuzz is effective in

identifying vital memory objects, thereby significantly

enhancing the assessment of bug exploitability, and aiding

in the development of effective exploits.
© 2021 The Authors. Electronics Letters published by John Wiley

& Sons Ltd on behalf of The Institution of Engineering and

Technology

This is an open access article under the terms of the Creative

Commons Attribution License, which permits use, distribution

and reproduction in any medium, provided the original work is

properly cited.

Received: xx January 2021 Accepted: xx March 2021

doi: 10.1049/ell2.10001

References

1. Brumley D, Poosankam P, Song D, et al. Automatic patch-
based exploit generation is possible: Techniques and

4 ELECTRONICS LETTERS wileyonlinelibrary.com/iet-el

implications[C]//2008 IEEE Symposium on Security and
Privacy (sp 2008). IEEE, 2008: 143-157.

2. Avgerinos T, Cha S K, Rebert A, et al. Automatic exploit
generation[J]. Communications of the ACM, 2014, 57(2): 74-
84.

3. Bratus S, Locasto M E, Patterson M L. Exploit programming:
From buffer overflows to “weird machines” and theory of
computation[J]. 2011.

4. Chen W, Zou X, Li G, et al. {KOOBE}: towards facilitating
exploit generation of kernel {Out-Of-Bounds} write
vulnerabilities[C]//29th USENIX Security Symposium
(USENIX Security 20). 2020: 1093-1110.

5. Wu W, Chen Y, Xing X, et al. {KEPLER}: Facilitating control-
flow hijacking primitive evaluation for Linux kernel
vulnerabilities[C]//28th USENIX Security Symposium
(USENIX Security 19). 2019: 1187-1204.

6. Chen Y, Xing X. Slake: Facilitating slab manipulation for
exploiting vulnerabilities in the linux kernel[C]//Proceedings of
the 2019 ACM SIGSAC Conference on Computer and
Communications Security. 2019: 1707-1722.

7. Source Code Analysis with Static Value-Flow. https://svf-
tools.github.io/SVF/ 2023.

8. Heelan S, Melham T, Kroening D. Gollum: Modular and
greybox exploit generation for heap overflows in
interpreters[C]//Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security.
2019: 1689-1706.

9. Heelan S, Melham T, Kroening D. Automatic heap layout
manipulation for exploitation[C]//27th USENIX Security
Symposium (USENIX Security 18). 2018: 763-779.

10. DATAFLOWSANITIZER.
https://clang.llvm.org/docs/DataFlowSanitizer 2023

11. Baldoni R, Coppa E, D’elia D C, et al. A survey of symbolic
execution techniques[J]. ACM Computing Surveys (CSUR),
2018, 51(3): 1-39.

12. Aschermann C, Schumilo S, Blazytko T, et al. REDQUEEN:
Fuzzing with Input-to-State Correspondence[C]//NDSS. 2019,
19: 1-15.

13. American fuzzy lop https://lcamtuf.coredump.cx/afl/ 2023.
14. Masahiro Yamada and Jani Nikula. 2019. kcov:code coverage

for fuzzing. https://github.com/torvalds/linux/blob/master/
Documentation/dev-tools/kcov.rst

15. Bao T, Wang R, Shoshitaishvili Y, et al. Your exploit is mine:
Automatic shellcode transplant for remote exploits[C]//2017
IEEE Symposium on Security and Privacy (SP). IEEE, 2017:
824-839.

