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Exploit an out-of-bounds write vulnerability in 

general-purpose applications has become a current 

research focus. Given the large scale of code in 

programs, selecting appropriate memory objects 

for exploitation is challenging. In the letter, we 

propose a corrupted data propagation-guided 

fuzzing method. By tracking the propagation 

process of corrupted data among memory objects, 

we propose a multi-level fuzzing schedule to 

search the execution paths. Experimental results 

show that our proposed method, EMOFuzz, can 

effectively identify exploitable objects under 

various overflow lengths, significantly enhancing 

the efficiency of exploitability analysis. 

Introduction: Software vulnerabilities are a crucial area of 

study in cybersecurity, with out-of-bound (OOB) write 

being a significant component [1,2]. In the process of 

researching vulnerabilities, the focus and challenge for 

researchers are how to exploit bugs to compromise the 

target program and gain higher privileges. 

The process of exploiting a vulnerability often relies on the 

combination of exploit primitives [3]. Common primitives 

include arbitrary address reading (AAR), arbitrary address 

writing (AAW), and control flow hijacking (CFH). The 

exploit process usually involves combining these 

primitives to achieve a specific exploitation goal. The key 

to constructing an exploit primitive lies in rewriting critical 

objects of the program after triggering the vulnerability. 

For example, in the statement memcpy(des, src), if the 

corrupted data of a vulnerability controls the des pointer, it 

becomes possible to write data to any address, achieving an 

AAW primitive. Therefore, researching how to influence 

critical memory objects in the program through flawed data, 

to reach an exploitable state (AAW, AAR, and CFH), is 

crucial for vulnerability exploitation [15]. 

Current methods for identifying exploitable objects of 

OOB write bugs primarily focus on the Linux kernel [4, 5]. 

These approaches concentrate on certain special objects, 

such as structures containing function pointers or objects 

with variable lengths [6]. However, in the case of general-

purpose applications, which often have a large amount of 

code, complex logic, and significant variations in 

development styles, no effective analysis method is 

proposed to identify exploitable objects for memory 

vulnerabilities. Therefore, developing a method for 

analyzing exploitable objects for general-purpose 

programs, to assist in assessing the exploitability of OOB 

vulnerability, becomes a hot topic and a challenge in 

research. 

In general-purpose programs within complex execution 

logic, after a vulnerability is triggered, it is often difficult 

to directly influence a memory object to reach an 

exploitable state, which makes the identification of 

exploitable objects challenging. In most cases, after 

rewriting a memory object via triggering bug, the flawed 

data propagates and spreads among memory objects, 

changing the program's state. For instance, as shown in 

Figure 1, after the vulnerability is triggered, object A is 

firstly affected, and then object A influences object B, 

which in turn affects the pointer des. When the program 

executes the statement memcpy(des, B), AAW occurs. In 

this process, the program reaches an exploitable state by 

rewriting memory object A, making it an exploitable object. 

Considering the complexity of corrupted data propagation 

due to the program's complex logic, tracking the 

propagation of the flawed data is key to identifying the 

exploitable object. 
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Fig 1 An example of achieving AAW by triggering vulnerability. 

This letter adopts a data flow perspective to explore 

exploitable objects of OOB write bugs in general-purpose 

applications, thereby providing support for exploitability 

analysis. Initially, the letter utilizes static value flow tool to 

instrument the target program, constructing a weighted 

value flow graph. Subsequently, we integrate dynamic taint 

analysis, and develop a fine-grained model for propagation 

process of corrupted data. Following this, a fuzzing method 

is designed, using the extent of flawed data spread as a 

guidance to efficiently explore the exploitable memory 

objects. The contributions of this paper include two parts: 

⚫ Constructing a hybrid static-dynamic model for fine-

grained analysis of corrupted data propagation, 

tracking the spread of corrupted data among memory 

objects, and evaluating the propagation impact. 

⚫ Proposing a corrupted data propagation-oriented 

fuzzing methodology, which can identify exploitable 

objects by efficiently explore the program execution 

paths. 

System Design: The overall framework of our proposed 

method EMOFuzz is shown in Figure 2. Initially, we carry 

out instrumentation within static analysis tool and generate 

a Weighted Variable Flow Graph [7]. Based on that, a taint 

data propagation model is constructed to analyze the 

spreading process of corrupted data. Following this, we 

propose a flowed data-oriented fuzzing method. Through a 

multi-level fuzzing schedule, it searches for potential 

exploitable objects in the target program. 
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Fig 2  System overview of proposed method. 

It is worth mentioning that one important assumption for 

our method is that the memory objects can be affected by 

the bugs through specific methods, such as heap layout 

manipulation [8,9]. In this way, after triggering a 

vulnerability, it becomes possible to drive the program into 

an exploitable state by affecting these critical objects. 

Corrupted Data Propagation Model: To figure out the 

propagation process of corrupted data among memory 

objects and evaluate the effects, we construct a model 

combined static and dynamic method, which also provides 

support for fuzzing. 

Firstly, this letter leverages the Static Value Flow (SVF) [7] 

framework for instrumenting the target program in LLVM 

level. SVF is a common data flow analysis framework that 

effectively supports cross-module and cross-procedure 

data flow analysis in large-scale programs. Given source 

code, we leverage SVF to construct a Value Flow Graph 

(VFG), which shows the data flow relationships among 

variables. For example, Figure 3 is part of VFG, where each 

node represents a variable or expression of the program, 

and each edge denotes the data flow relationship. In Figure 

3, the variable %3 influences variable %10 through the 

getelementptr, and variable %10 further affects the 

variable %11. 

 

Fig 3 Part of value flow graph of applications. 

In the VFG, the node possesses varying potential for spread. 

To assess the effects of propagation more accurately, we 

have advanced from the basic VFG to construct a Weighted 

Value Flow Graph (WVFG). Propagation potential refers 

to the extent to which a tainted variable node might affect 

other nodes. For example, in Figure 3, if variable %3 is 

tainted, variables %4 and %10 might also be tainted. 

Similarly, if variable %10 is tainted, variable %11 might be 

tainted as well. Therefore, the propagation potential of 

node %3 is 2, while that of node %10 is 1. Nodes with 

higher propagation potential are more significant for the 

spread of tainted data, as they are likely to facilitate wider 

dissemination once tainted. Based on the basic VFG, we 

quantify the propagation potential of each node according 

to the number of outgoing edges, thus resulting in the 

WVFG.  

In OOB write bugs, the flawed data area varies as different 

overflow length, resulting in different exploitable memory 

objects. Therefore, to accurately assess the exploitability of 

a bug, we explored the exploitable objects under the 

influence of corrupted data within varying lengths. To 

finely track the propagation process of the corrupted data, 

we employed dynamic taint analysis, using the Dataflow 

Sanitizer [10] for online taint analysis. Additionally, to 

detect whether the flawed data has propagated to an 

exploitable position, we need to monitor important nodes 

during program execution. We employ Dataflow Sanitizer 

for dynamic runtime detection and conduct inspections at 

various critical points during the program's execution. The 

specific detection rules are outlined in Table 1. 

Table 1. Detection rules of LLVM instructions for exploitable 
program state. 

Instructions Rules Exploitable State 

load %a, %b Address of %b is tainted AAW 

store %a, %b Address of %b is tainted AAR 

call func  Address of func ptr is tainted CFH 

Corrupted Data-oriented Fuzzing: Based on the analysis of 

propagation process, we developed a fuzzing method to 

efficiently explore the exploitable objects for OOB write 

bugs in general-purpose applications. Considering the large 

code scale and complex logical constraints of programs, 

methods such as symbol execution are inefficient and may 

suffer from constraint explosion [11]. Therefore, we 

adopted a search-based approach to explore the execution 

paths in programs. 

The more extensively corrupted data propagate, the more 

likely the program reaches an exploitable state. Therefore, 

we use the extent of flawed data propagation to guide the 

fuzzer. Based on the corrupted data propagation model, we 

define the extent of corrupted data propagation. For a saved 

seed, if it can taint 𝑚  more nodes, and the propagation 

potential of each node is 𝑝1  to 𝑝𝑚 , then the propagation 

extent of the seed (𝑃𝐸𝑆) is described in (1). 

𝑃𝐸𝑆 =
𝑚

2
+ ∑ 𝑝𝑖

𝑚
𝑖=1                             (1) 

To ensure thorough exploration of the program execution 

space [12,14], we also maintained code coverage as metric. 

Hence, we designed a multi-level fuzzing schedule by 

integrating both code coverage and 𝑃𝐸𝑆. In terms of seed 

saving, we preserved seeds that discover new tainted nodes 

or trigger a new path. As for seed mutation strategy, we use 

random mutation algorithm and select seeds within a 

greedy algorithm. Regarding seed scoring, we evaluate 

each seed within a new scoring strategy, which is further 

illustrated in Algorithm 1. 
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Algorithm 1. Calculate the score of seed during fuzzing. 

 

Experiments: To validate the effectiveness of our tool 

EMOFuzz, we designed a series of experiments to verify 

the results of identification exploitable objects. We selected 

5 OOB write bugs from several general-purpose programs. 

Under various overflow lengths, we conduct 3 fuzzing tests, 

within each fuzzing last for 24 hours. All the experiments 

were set up on Ubuntu 18.04 LTS, with an Intel(R) Xeon(R) 

Gold 6254 CPU @ 3.10GHz and 1TB of RAM. The 

experimental results are shown in Table 2. 

Table 2 illustrates that EMOFuzz can effectively identifies 

exploitable objects for out-of-bounds write bugs, it can find 

out exploitable objects for all bugs within 24 hours fuzzing 

campaign. Generally, the more bytes the data are tainted, 

the more potential exploitable objects EMOFuzz can 

identify. Specially, as for CVE-2021-3156, which is heap 

overflow occurs in sudo program, within publicly available 

exploits. EMOFuzz identified a new exploitable object, 

sudo_hook_entry for exploit, which could lead to an AAW 

for sudo. As for gpac-issue-1317, we failed to find any 

exploitable objects initially until we increased the tainted 

length to 128 bytes. 

Table 2. Experimental results of identifying exploitable objects by 
fuzzer. 

Bug ID Program 
Overflow 

Lena 

# of Taint 

Nodeb 

# of Exp. 

Obj.c 

CVE-2021-3156 sudo 

2 5 0 

4 5 1 

8 5 1 

16 20 1 

32 71 1 

CVE-2019-20162 gpac 

2 298 1 

4 352 3 

8 288 3 

16 337 4 

32 1052 4 

issue-1317 gpac 

2 226 0 

4 282 0 

8 256 0 

16 376 0 

32 884 0 

128 2547 3 

CVE-2022-26967 gpac 

2 798 3 

4 677 3 

8 617 3 

16 594 4 

32 1057 4 

CVE-2020-6851 openjpeg 

2 16 0 

4 34 1 

8 149 1 

16 897 2 

32 1549  2    
a It means the overflow length of the vulnerability. 
b It means the number of corrupted nodes of WVFG. 
c It means the number of identified potential exploitable objects. 

 

Fig 4  Comparison of number of tainted nodes by EMOFuzz and 
AFL. The red line represents fuzzing process of EMOFuzz while 
blue line represents that of AFL.  (16) means the tainted length is 
16 bytes. 

To compare EMOFuzz with other state-of-the-art, we 

chose the widely used coverage-guided fuzzing tool AFL 

[13]. We selected five sets from Table 1 and compare the 

ability of in propagating tainted data. Specific results are 

drawn in Figure 4. As shown in Figure 4, in the 24-hour 

experiment, EMOFuzz demonstrated a stronger capability 

to propagate flawed data than AFL, within an average 

improvement of 31%. Therefore, it is more likely to 

identify exploitable memory objects. 

Conclusion: In conclusion, this letter introduces EMOFuzz, 

an innovative corrupted data propagation-guided fuzzing 

method, specifically designed to address OOB write bugs 

in general-purpose applications. EMOFuzz is effective in 

identifying vital memory objects, thereby significantly 

enhancing the assessment of bug exploitability, and aiding 

in the development of effective exploits. 
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