References
Aubert, C. et al. (2021) ‘Evaluation of the use of drones to monitor a diverse crocodylian assemblage in West Africa’, Wildlife Research , 49(1), pp. 11–23. Available at: https://doi.org/10.1071/WR20170.
Barbedo, J.A.G. and Vieira Koenigkan, L. (2018) ‘Perspectives on the use of unmanned aerial systems to monitor cattle’, Outlook on Agriculture , 47(3), pp. 214–222. Available at: https://doi.org/10.1177/0030727018781876.
Barr, J.R. et al. (2020) ‘Drone Surveys Do Not Increase Colony-wide Flight Behaviour at Waterbird Nesting Sites, But Sensitivity Varies Among Species’, Scientific Reports , 10(1), p. 3781. Available at: https://doi.org/10.1038/s41598-020-60543-z.
Baxter, P.W.J. and Hamilton, G. (2018) ‘Learning to fly: integrating spatial ecology with unmanned aerial vehicle surveys’, Ecosphere , 9(4), p. e02194. Available at: https://doi.org/10.1002/ecs2.2194.
Brack, I.V., Kindel, A., de Oliveira, L.F.B., et al. (2023) ‘Optimally designing drone-based surveys for wildlife abundance estimation with N-mixture models’, Methods in Ecology and Evolution , 14(3), pp. 898–910. Available at: https://doi.org/10.1111/2041-210X.14054.
Brack, I.V., Kindel, A., Berto, D.O., et al. (2023) ‘Spatial variation on the abundance of a threatened South American large herbivore using spatiotemporally replicated drone surveys’,Biodiversity and Conservation , 32(4), pp. 1291–1308. Available at: https://doi.org/10.1007/s10531-023-02553-7.
Brack, I.V., Kindel, A. and Oliveira, L.F.B. (2018) ‘Detection errors in wildlife abundance estimates from Unmanned Aerial Systems (UAS) surveys: Synthesis, solutions, and challenges’, Methods in Ecology and Evolution , 9(8), pp. 1864–1873. Available at: https://doi.org/10.1111/2041-210X.13026.
Brunton, E.A., Leon, J.X. and Burnett, S.E. (2020) ‘Evaluating the Efficacy and Optimal Deployment of Thermal Infrared and True-Colour Imaging When Using Drones for Monitoring Kangaroos’, Drones , 4(20). Available at: https://doi.org/10.3390/DRONES4020020.
Buckland, S.T. et al. (2001) Introduction to distance sampling: estimating abundance of biological populations . Oxford University Press. Available at: https://doi.org/10.3/JQUERY-UI.JS.
Bushaw, J.D., Ringelman, K.M. and Rohwer, F.C. (2019) ‘Applications of Unmanned Aerial Vehicles to Survey Mesocarnivores’, Drones , 3(1), p. 28. Available at: https://doi.org/10.3390/drones3010028.
Chabot, D. and Bird, D.M. (2015) ‘Wildlife research and management methods in the 21st century: Where do unmanned aircraft fit in?’,Journal of Unmanned Vehicle Systems , 3(4), pp. 137–155. Available at: https://doi.org/10.1139/juvs-2015-0021.
Chabot, D., Stapleton, S. and Francis, C.M. (2022) ‘Using Web images to train a deep neural network to detect sparsely distributed wildlife in large volumes of remotely sensed imagery: A case study of polar bears on sea ice’, Ecological Informatics , 68, p. 101547. Available at: https://doi.org/10.1016/J.ECOINF.2021.101547.
Christie, K.S. et al. (2016) ‘Unmanned aircraft systems in wildlife research: current and future applications of a transformative technology’, Frontiers in Ecology and the Environment , 14(5), pp. 241–251. Available at: https://doi.org/10.1002/fee.1281.
Chudzinska, M. et al. (2021) ‘AgentSeal: Agent-based model describing movement of marine central-place foragers’, Ecological Modelling , 440. Available at: https://doi.org/10.1016/J.ECOLMODEL.2020.109397.
Cleguer, C. et al. (2021) ‘A Novel Method for Using Small Unoccupied Aerial Vehicles to Survey Wildlife Species and Model Their Density Distribution’, Frontiers in Marine Science , 8, p. 640338. Available at: https://doi.org/10.3389/fmars.2021.640338.
Codling, E.A., Plank, M.J. and Benhamou, S. (2008) ‘Random walk models in biology’, Journal of The Royal Society Interface , 5, pp. 813–834. Available at: https://doi.org/10.1098/RSIF.2008.0014.
Corcoran, E. et al. (2021) ‘Automated detection of wildlife using drones: Synthesis, opportunities and constraints’, Methods in Ecology and Evolution , 12(6), pp. 1103–1114. Available at: https://doi.org/10.1111/2041-210X.13581.
Corcoran, E., Denman, S. and Hamilton, G. (2021) ‘Evaluating new technology for biodiversity monitoring: Are drone surveys biased?’,Ecology and Evolution , 11(11), pp. 6649–6656. Available at: https://doi.org/10.1002/ece3.7518.
De Kock, M.E. et al. (2021) ‘Zoometric data extraction from drone imagery: The Arabian oryx (Oryx leucoryx)’, Environmental Conservation , 48(4), pp. 295–300. Available at: https://doi.org/10.1017/S0376892921000242.
Duchesne, T., Fortin, D. and Rivest, L.-P. (2015) ‘Equivalence between Step Selection Functions and Biased Correlated Random Walks for Statistical Inference on Animal Movement’, PLOS ONE , 10(4), p. e0122947. Available at: https://doi.org/10.1371/JOURNAL.PONE.0122947.
Duffy, J.P. et al. (2018) ‘Location, location, location: considerations when using lightweight drones in challenging environments’, Remote Sensing in Ecology and Conservation , 4(1), pp. 7–19. Available at: https://doi.org/10.1002/RSE2.58.
Dujon, A.M. et al. (2021) ‘Machine learning to detect marine animals in UAV imagery: effect of morphology, spacing, behaviour and habitat’, Remote Sensing in Ecology and Conservation , 7(3), pp. 341–354. Available at: https://doi.org/10.1002/rse2.205.
Elmore, J.A. et al. (2023) ‘Evidence on the efficacy of small unoccupied aircraft systems (UAS) as a survey tool for North American terrestrial, vertebrate animals: a systematic map’, Environmental Evidence , 12.
Ezat, M.A., Fritsch, C.J. and Downs, C.T. (2018) ‘Use of an unmanned aerial vehicle (drone) to survey Nile crocodile populations: A case study at Lake Nyamithi, Ndumo game reserve, South Africa’,Biological Conservation , 223, pp. 76–81. Available at: https://doi.org/10.1016/j.biocon.2018.04.032.
Frazier, A.E. and Singh, K.K. (eds) (2021) Fundamentals of Capturing and Processing Drone Imagery and Data . Boca Raton, FL: CRC Press.
Gilbert, A.D. et al. (2021) ‘Visibility Bias of Waterbirds During Aerial Surveys in the Nonbreeding Season’, Wildlife Society Bulletin , 45(1), pp. 6–15. Available at: https://doi.org/10.1002/wsb.1150.
Gonzalez, L.F. et al. (2016) ‘Unmanned Aerial Vehicles (UAVs) and Artificial Intelligence Revolutionizing Wildlife Monitoring and Conservation’, Sensors , 16(97). Available at: https://doi.org/10.3390/S16010097.
Grimm, V. et al. (2020) ‘The ODD Protocol for Describing Agent-Based and Other Simulation Models: A Second Update to Improve Clarity, Replication, and Structural Realism’, Journal of Artificial Societies and Social Simulation , 23(2). Available at: https://doi.org/10.18564/JASSS.4259.
Grimm, V. and Railsback, S.F. (2005) Individual-based Modeling and Ecology . New Jersey, U.S.A: Princeton University Press.
Guerrasio, T. et al. (2022) ‘Assessing the precision of wild boar density estimations’, Wildlife Society Bulletin , p. e1335. Available at: https://doi.org/10.1002/WSB.1335.
Hamilton, O.N.P. et al. (2018) ‘Accounting for uncertainty in duplicate identification and group size judgements in mark-recapture distance sampling’, Methods in Ecology and Evolution , 9, pp. 354–362. Available at: https://doi.org/10.1111/2041-210X.12895.
Harris, J.M. et al. (2019) ‘Use of Drones in Fishery Science’,Transactions of the American Fisheries Society , 148, pp. 687–697. Available at: https://doi.org/10.1002/TAFS.10168.
Hartmann, W.L., Fishlock, V. and Leslie, A. (2021) ‘First guidelines and suggested best protocol for surveying african elephants (Loxodonta africana) using a drone’, Koedoe , 63(1). Available at: https://doi.org/10.4102/koedoe.v63i1.1687.
Hodgson, A., Peel, D. and Kelly, N. (2017) ‘Unmanned aerial vehicles for surveying marine fauna: assessing detection probability’,Ecological Applications , 27(4), pp. 1253–1267. Available at: https://doi.org/10.1002/eap.1519.
Hodgson, A.J., Kelly, N. and Peel, D. (2023) ‘Drone images afford more detections of marine wildlife than real-time observers during simultaneous large-scale surveys’, PeerJ , 11, p. e16186. Available at: https://doi.org/10.7717/peerj.16186.
Hodgson, J.C. et al. (2016) ‘Precision wildlife monitoring using unmanned aerial vehicles’, Scientific Reports , 6(1), p. 22574. Available at: https://doi.org/10.1038/srep22574.
Hodgson, J.C. et al. (2018) ‘Drones count wildlife more accurately and precisely than humans’, Methods in Ecology and Evolution , 9(5), pp. 1160–1167. Available at: https://doi.org/10.1111/2041-210X.12974.
Hoegh, A., van Manen, F.T. and Haroldson, M. (2021) ‘Agent-Based Models for Collective Animal Movement: Proximity-Induced State Switching’,Journal of Agricultural, Biological and Environmental Statistics , 26(4), pp. 560–579. Available at: https://doi.org/10.1007/s13253-021-00456-0.
Hone, J. (2008) ‘On bias, precision and accuracy in wildlife aerial surveys’, Wildlife Research , 35, pp. 253–257. Available at: https://doi.org/10.1071/WR07144.
Jones, L.R. et al. (2020) ‘Validating an Unmanned Aerial Vehicle (UAV) Approach to Survey Colonial Waterbirds’, Waterbirds , 43(3–4). Available at: https://doi.org/10.1675/063.043.0304.
Junda, J., Greene, E. and Bird, D.M. (2015) ‘Proper flight technique for using a small rotary-winged drone aircraft to safely, quickly, and accurately survey raptor nests’, Journal of Unmanned Vehicle Systems , 3(4), pp. 222–236. Available at: https://doi.org/10.1139/juvs-2015-0003.
Kammermeyer, K.E. and Marchinton, R.L. (1977) ‘Seasonal Change in Circadian Activity of Radio-Monitored Deer’, The Journal of Wildlife Management , 41(2), pp. 315–317. Available at: https://doi.org/10.2307/3800612.
Kay, S.L. et al. (2017) ‘Quantifying drivers of wild pig movement across multiple spatial and temporal scales’, Movement Ecology , 5. Available at: https://doi.org/10.1186/S40462-017-0105-1/FIGURES/6.
Koh, L.P. and Wich, S.A. (2012) ‘Dawn of Drone Ecology: Low-Cost Autonomous Aerial Vehicles for Conservation’, Tropical Conservation Science , 5(2), pp. 121–132. Available at: https://doi.org/10.1177/194008291200500202.
Krause, D.J. et al. (2021) ‘Drones Minimize Antarctic Predator Responses Relative to Ground Survey Methods: An Appeal for Context in Policy Advice’, Frontiers in Marine Science , 8. Available at: https://www.frontiersin.org/articles/10.3389/fmars.2021.648772 (Accessed: 28 April 2023).
Krishnan, B.S. et al. (2023) ‘Fusion of visible and thermal images improves automated detection and classification of animals for drone surveys’, Scientific Reports , 13(1), p. 10385. Available at: https://doi.org/10.1038/s41598-023-37295-7.
Lachman, D. et al. (2020) ‘Drones provide a better method to find nests and estimate nest survival for colonial waterbirds: a demonstration with Western Grebes’, Wetlands Ecology and Management , 28. Available at: https://doi.org/10.1007/s11273-020-09743-y.
Lenzi, J. et al. (2023) ‘Artificial intelligence for automated detection of large mammals creates path to upscale drone surveys’,Scientific Reports , 13(1), p. 947. Available at: https://doi.org/10.1038/s41598-023-28240-9.
Lewis, J.S. and Rachlow, J.L. (2011) ‘Activity Patterns of Black Bears in Relation to Sex, Season, and Daily Movement Rates’, Western North American Naturalist , 71(3), pp. 388–395. Available at: https://doi.org/10.3398/064.071.0306.
Linchant, J. et al. (2015) ‘Are unmanned aircraft systems (UAS) the future of wildlife monitoring? A review of accomplishments and challenges’, Mammal Review , 45, pp. 239–252. Available at: https://doi.org/10.1111/mam.12046.
Linchant, J. et al. (2018) ‘UAS imagery reveals new survey opportunities for counting hippos’, PLOS ONE , 13(11), p. e0206413. Available at: https://doi.org/10.1371/journal.pone.0206413.
Lyons, M.B. et al. (2019) ‘Monitoring large and complex wildlife aggregations with drones’, Methods in Ecology and Evolution , 10, pp. 1024–1035. Available at: https://doi.org/10.1111/2041-210X.13194.
Martin, J. et al. (2012) ‘Estimating Distribution of Hidden Objects with Drones: From Tennis Balls to Manatees’, PLOS ONE , 7(6), p. e38882. Available at: https://doi.org/10.1371/JOURNAL.PONE.0038882.
Massé, A. and Côté, S.D. (2013) ‘Spatiotemporal variations in resources affect activity and movement patterns of white-tailed deer (Odocoileus virginianus ) at high density’, Canadian Journal of Zoology , 91(4), pp. 252–263. Available at: https://doi.org/10.1139/cjz-2012-0297.
McEvoy, J.F., Hall, G.P. and McDonald, P.G. (2016) ‘Evaluation of unmanned aerial vehicle shape, flight path and camera type for waterfowl surveys: Disturbance effects and species recognition’, PeerJ , (4), p. e1831. Available at: https://doi.org/10.7717/PEERJ.1831/SUPP-1.
McMahon, M.C., Ditmer, M.A. and Forester, J.D. (2022) ‘Comparing unmanned aerial systems with conventional methodology for surveying a wild white-tailed deer population’, Wildlife Research , 49(1), pp. 54–65. Available at: https://doi.org/10.1071/WR20204.
Merrill, S.B. and Mech, L.D. (2003) ‘The Usefulness of GPS Telemetry to Study Wolf Circadian and Social Activity’, Wildlife Society Bulletin (1973-2006) , 31(4), pp. 947–960.
Nathan, R. et al. (2008) ‘A movement ecology paradigm for unifying organismal movement research’, Proceedings of the National Academy of Sciences , 105(49), pp. 19052–19059. Available at: https://doi.org/10.1073/PNAS.0800375105.
Olsoy, P.J. et al. (2018) ‘Unmanned aerial systems measure structural habitat features for wildlife across multiple scales’,Methods in Ecology and Evolution , 9, pp. 594–604. Available at: https://doi.org/10.1111/2041-210X.12919.
Olsoy, P.J. et al. (2020) ‘Mapping foodscapes and sagebrush morphotypes with unmanned aerial systems for multiple herbivores’,Landscape Ecology , 35, pp. 921–936. Available at: https://doi.org/10.1007/S10980-020-00990-1/TABLES/5.
Raoult, V. et al. (2020) ‘Operational Protocols for the Use of Drones in Marine Animal Research’, Drones , 4(4), p. 64. Available at: https://doi.org/10.3390/drones4040064.
Samuel, M.D.. et al. (1992) ‘Estimation of Wildlife Population Ratios Incorporating Survey Design and Visibility Bias’, The Journal of Wildlife Management , 56(4), pp. 718–725.
Sasse, D.B. (2003) ‘Job-related mortality of wildlife workers in the United States’, Wildlife Society Bulletin , 31(4), pp. 1015–1020.
Silvy, N.J. (ed.) (2020) The Wildlife Techniques Manual: Volume 1: Research . JHU Press.
Steinhorst, R.. K. and Samuel, M.D.. (1989) ‘Sightability Adjustment Methods for Aerial Surveys of Wildlife Populations’, Biometrics , 45, pp. 415–425.
Sudholz, A. et al. (2022) ‘A comparison of manual and automated detection of rusa deer (’, Wildlife Research , 49(1), pp. 46–53. Available at: https://doi.org/10.1071/WR20169.
Sykora-Bodie, S.T. et al. (2017) ‘Quantifying Nearshore Sea Turtle Densities: Applications of Unmanned Aerial Systems for Population Assessments’, Scientific Reports , 7(1), p. 17690. Available at: https://doi.org/10.1038/s41598-017-17719-x.
Van Rossum, G. and Drake, F.L. (2009) Python 3 Reference Manual . Scotts Valley, CA: CreateSpace.
Vermeulen, C. et al. (2013) ‘Unmanned Aerial Survey of Elephants’, PLOS ONE , 8(2), p. e54700. Available at: https://doi.org/10.1371/JOURNAL.PONE.0054700.
Wang, D., Shao, Q. and Yue, H. (2019) ‘Surveying Wild Animals from Satellites, Manned Aircraft and Unmanned Aerial Systems (UASs): A Review’, Remote Sensing , 11(11), p. 1308. Available at: https://doi.org/10.3390/rs11111308.
Webb, S.L. et al. (2010) ‘Measuring fine-scale white-tailed deer movements and environmental influences using GPS collars’,International Journal of Ecology [Preprint]. Available at: https://doi.org/10.1155/2010/459610.
Witczuk, J. et al. (2018) ‘Exploring the feasibility of unmanned aerial vehicles and thermal imaging for ungulate surveys in forests - preliminary results’, International Journal of Remote Sensing , 39(15–16), pp. 5504–5521. Available at: https://doi.org/10.1080/01431161.2017.1390621.