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Abstract—With gigahertz-level bandwidth, terahertz (THz)
holds promise for achieving exceptionally high transmission rates
in prospective sixth-generation (6G) communications. However,
considerable loss poses an obstacle to THz communication.
To compensate for this, massive multiple-input-multiple-output
(MIMO) based beamforming is utilized to promote directional
power with narrow beams in communication. In dynamic en-
vironments, the frequent adjustment of narrow beams results
in fast time-varying channel state information (CSI), which
constrains the application of the THz communication systems.
While traditional deterministic-based and statistical-based chan-
nel tracking methods address different aspects of this issue,
they suffer from balancing accuracy and complexity in the THz
dynamic environments. To solve this problem, based on the
cluster distribution of THz time-varying channel, we propose
a novel hybrid channel tracking method that uses deterministic
physical motion variation law to extract the cluster subspace, and
then statistical Markov evolution models are applied within it.
To achieve this, an integrated clustering and estimation method,
clustering subspace matching pursuit (CSMP) is proposed for
obtaining the channel clusters prior. Then based on above
hybrid tracking method design, we propose a virtual cluster sub-
space turbo-approximate message passing (VCS-TAMP). Finally,
several simulation results validate that our proposal achieves
great improvement in both accuracy and computational time
performance.

Index Terms—Terahertz, massive MIMO, channel tracking.

I. INTRODUCTION

TERAHERTZ (THz) band, spanning from 0.1 THz to 10
THz, offers gigahertz-level bandwidth to support massive

connectivity [1], ultimate wireless virtual reality (VR) [2]
and other huge-capacity demanded applications in envisioned
sixth-generation (6G) communication [3]. Despite its band-
width potential, THz communications still face severe path
loss challenges due to its high-frequency loss and atmospheric
absorption in air [4]. Based on massive MIMO systems,
beamforming technologies have been widely employed to
enhance THz directional transmission gain and compensate for
the path loss [5], [6]. However, beamforming makes the THz
beam much narrower than ever [7], leading to frequent adjust-
ments to align with moving users in dynamic environments.
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This rapid beam change results in channel state information
(CSI) fast time-varying [8], which presents challenges for
reliable demodulation in THz communication. To solve this
problem, a dynamic CSI prediction technology named channel
tracking has been proposed nowadays [9]. Channel tracking
methods usually comprise two primary phases, initialization
and tracking. Initialization mirrors static channel estimation,
establishing priors for subsequent tracking. In the latter track-
ing phase, the temporal correlation priors are applied to design
relative algorithms. With these dynamic prior, channel track-
ing methods can significantly enhance accuracy and reduce
computational overhead compared to static channel estimation
[10]–[12]. Considering the accuracy and computation time
requirement in THz dynamic environments, channel tracking
has been a key technology to unlocking the vast spectrum
resource for THz massive MIMO communication [13].

A. Literature Review

As research progresses, channel tracking studies can be cate-
gorized into two main methods based on their different channel
evolution models to predict the channel: statistical tracking
(ST) methods employing Markov models, and deterministic
tracking (DT) methods utilizing physical models.

For statistical tracking methods, the THz time-varying chan-
nel in dynamic environments is described by the Markov pro-
cess model and then tracked through some prior information-
modified algorithms [14], [15]. These methods commonly
predict the channel itself and require minimal environmental
information, which exhibits strong generalization capabilities.
Reference [16] introduced a two-dimensional Markov model
(2D-MM) to capture the joint time-space sparsity channel,
and a dynamic turbo-orthogonal approximate message passing
(D-TOAMP) algorithm was proposed for channel tracking.
Reference [17], [18] extended 2D-MM to 3D on/off-grid space
considering both azimuth and elevation. Besides, it also pro-
posed relative 3D-dynamic turbo-AMP (3D-DTAMP) to track
the dynamic channels. Though the above statistical channel
tracking methods can achieve extremely high accuracy per-
formance, they treated the transition probabilities as constants
under the steady Markov transition assumption, which may no
longer hold in THz time-varying channel [19], [20]. Especially
in dynamic environments mixed with both line-of-sight (LoS)
and non-line-of-sight (NLoS), even neighboring time slots
may feature vastly different channels, posing challenges for
computation time and even convergence.

The deterministic tracking (DT) method considers the chan-
nel as a deterministic signal well-defined by the environment.
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This method extracts relevant practical parameters from the
received signal and tracks them with electromagnetic and
kinematic equations. Reference [21] focused on LoS condition
in THz communication and proposed an angular iterative equa-
tion to aid channel tracking. Reference [22] considered NLoS
paths as well. Reference [22] utilized the mirror temporal
correlation to simplify the dynamic AoA variation law on scat-
tering NLoS path tracking. In a more grand scene, reference
[23] proposed an iterative angle and Doppler channel tracking
variation law in space-air-ground integrated THz networks.
Although the above methods have achieved improvements
in time consumption performance while ensuring acceptable
accuracy, tracking the channel through AoA, delay, and other
physical parameters ignores some more complex features such
as scattering, rotation, and vibrations, which is the reason for
their limited tracking accuracy performance. Moreover, this
method relies highly on the environment prior, such as LoS
only [21], the known motion [22], [24], navigation prior [23].
Without matched priors in the THz dynamic environments,
these methods usually had accuracy degradation.

In summary, traditional channel tracking methods struggle
to strike a balance between accuracy and time computation in
the context of practical THz massive MIMO communication
systems. To the best of our knowledge, the channel tracking
for THz massive MIMO communication systems in dynamic
environments has not been well addressed so far.

B. Motivation and Contribution

To address this issue, exploring the underlying prior infor-
mation within the THz channel is crucial. In the geometry-
based statistical model (GBSM), THz channels are split into
inter-cluster and intra-cluster two part [25], [26], modeled
using deterministic ray tracing and distribution generation
techniques respectively. Therefore, GBSM offers a precise
description of THz channels with minimal parameters. Inspired
by this, we attempt to combine ST and DT into a hybrid one.
However, developing the Hybrid Tracking (HT) method poses
some new challenges, and our main work and contributions
are summarized as follows:

1) To integrate the Markov channel evolution model with
the physical one, we introduce a novel hybrid channel
evolution model to capture the THz time-varying chan-
nels. Through clustered CSI, the channel is modeled
using hidden support and value vectors. The channel
support is divided into different parts. Deterministic
support, whose evolution model is derived from ray
modeling and kinematics equations, extends to form
subspace channels. In the subspace, statistical evolu-
tion modeling, employing a Markov process, captures
complex motion and scattering phenomena, robustly
representing channel variations. And simulation also
shows our proposed channel variation model owns a
much lower outage probability under perfect CSI.

2) To solve the problem of obtaining the above-mentioned
deterministic supports, we propose a clustering subspace
matching pursuit (CSMP) to obtain the clustered CSI in
initialization. As traditional estimation methods struggle

to acquire clustered CSI effectively, leading to inac-
curate clustered CSI for later tracking phase. Through
computing cluster residuals to select atoms, CSMP inte-
grates both channel estimation and clustering so that the
channel label and value are estimated simultaneously.
The simulation result also supports that our proposal
improves both estimation and clustering performance
compared with traditional methods.

3) To enhance channel tracking performance while min-
imizing time consumption for THz massive MIMO
communication systems, we devise a virtual cluster
subspace-turbo orthogonal approximate message pass-
ing (VCS-TAMP) algorithm. The VCS-TAMP approach
conducts parallel processing across subspace channels.
This strategy not only reduces problem complexity to
the subspace within each cluster but also improves
tracking accuracy based on more consistent channel
characteristics within clusters.

In contrast to the aforementioned contributions, the remain-
ing sections of this paper have been reorganized for clarity and
simplicity. In section II, we first introduce our communication
model. Then hybrid channel evolution model is introduced in
section III. The hybrid channel tracking scheme and relative
algorithms are described in section IV. Several simulations and
numeric validation results are presented in section V. Finally,
our work is summarized in section VI.

Notation: In this paper, bold uppercase and lowercase let-
ters stand for matrices and vectors, respectively. Superscripts
(X)

T , (X)
H , (X)

−1 denote the transposition, Hermitian and
inverse of X. The vector version of a matrix is noted as vec,
obtained by stacking columns into a single-column vector,
whose reverse process is devec. Estimation of (X) is denoted
as ˆ(X). The symbol ⊗ stands for the Kronecker product of
two matrices.

II. SYSTEMS MODEL

In this paper, we consider a typical uplink tracking pro-
cess between single-antenna users and the base station (BS)
equipped with an Nr-antenna uniform linear array (ULA)
within an Ns-symbol time slot in orthogonal frequency di-
vision multiplex (OFDM) system. With orthogonal symbols,
our following analysis focuses on one specific user. When the
user transmits orthogonal symbols vector x ∈ CNs×1 to the
BS, the received signal Y ∈ CNRF×Ns is expressed as:

Y = WhxT +Wn, (1)

where W ∈ CNRF×Nr is BS combining matrix, h ∈ CNr×1 is
THz channel vector, n ∈ CNr×Ns is addictive Gaussian white
noise matrix. According to the propagation model in reference
[25], [26], the channel h is formulated as:

h =

Ni∑
i=1

Nli∑
l=1

gi,lα(θi,l)e
−j2πfmτi,l , (2)

where fm represents subcarrier spacing, parameters
gi,l, τi,l, θi,l are channel gain, delay, and AoA of l-th
path within ith cluster respectively. When antenna unit
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Fig. 1. Uplink channel tracking procedure of THz massive MIMO communication systems in dynamic environments.

spacing is set at half-wavelength, the steering vector α(θ) is
as:

α(θ) =
[
1, e−jπ sin θ · · · , e−j(Nr−1)π sin θ

]
. (3)

To better illustrate the tracking problem in the following parts,
equation (1) is reformulated into :

y = (Wh)⊗X+ ñ = (W ⊗X)h+ ñ, (4)

where y = vec(Y), and ñ = vec(Wn) and h is the vector
to be estimated. Due to THz narrow beams and the high path
loss, the THz channel shows inherent joint sparsity on the
delay-angular (DA) domain of THz massive MIMO channels
[27]. Sparse channel h̃ ∈ CNrNs×1 is obtained using the
transformation:

h = (FNr
⊗ΠNs

)h̃, (5)

where FNr ∈ CNr×Nr is a Nr-order discrete fourier transform
(DFT) matrix, Π =

[
1, · · · , e−j2πfmτNs

]
is 1×Ns-size delay

transform vector and τm = m/B with B denoting the total
bandwidth in THz communication systems.

Considering different time slots, the estimation problem in
equation (4) can be extended to the sparse channel tracking
problem as:

y(t) = Φh̃(t) + ñ, (6)

where Φ = (W ⊗X) (FNr
⊗ΠNs

) = (WFNr
) ⊗ (XΠNs

)
is transformation measurement matrix. Because NRF ≪ Nr

always holds in THz massive MIMO communication systems,
recovery of sparse channel vector is a typical compressed
sensing (CS) problem. Therefore, we aimed to obtain a ro-
bust estimation of the time-varying channel h̃(t) through CS
estimation technologies with some prior passed from previous
time slots in this paper.

III. THE HYBRID CHANNEL EVOLUTION MODEL

To capture the time-varying THz channel in dynamic envi-
ronments, we present a hybrid channel evolution model con-
sisting of four key components: subspace channel establish-
ment, deterministic evolution modeling, subspace statistical
support evolution modeling, and value evolution modeling.

A. Establishment of subspace channels

we arrange the highest-power center path channel support
of each cluster as deterministic support vector Ω(t), whose
element is a 2D array (mi, ni). The i-th element in the
deterministic support vector is determined by:

Ω(t) (i) =
(
mod(I

(t)
i,L, Ns),mod(I

(t)
i,L

/
Ns, Nr)

)
. (7)

Given the cluster distribution characteristics of THz time-
varying channel, other paths within the i-th cluster are situated
in a 2D subspace S

(t)
i around the center Ω(t)(i), with delay

and AoA expanding grid numbers ϵτ and ϵθ as Fig.2. There-
fore, we can construct a subspace for i-th cluster channel as:

h
(t)
i = h̃(t) (Si) (8)

The subspace channel h(t)
i is modeled through hidden support

vector b(t)
i and hidden value vector v(t)

i as [15]:

h
(t)
i = b

(t)
i · v(t)

i , (9)

The subspace channel joint probability distribution is as fol-
lows:

p
(
h
(t)
i ,b

(t)
i ,v

(t)
i

)
= p

(
h
(t)
i |b(t)

i ,v
(t)
i

)
p
(
b
(t)
i

)
p
(
v
(t)
i

)
,

(10)
where the conditional prior channel vector is:

p
(
h
(t)
i |b(t)

i ,v
(t)
i

)
=

T∏
t=1

δ

(
h
(t)
i − b

(t)
i · v(t)

i

)
. (11)

Therefore, the whole channel evolution model concludes three
parts Ω(t), p

(
b
(t)
i

)
and p

(
v
(t)
i

)
for subspace channel, which

is introduced in following parts.

B. Deterministic Support Evolution Model

Physical parameter [r
(t)
i , θ

(t)
i ]T on channel is derived

through the on-grid deterministic channel characteristics as:{
r
(t)
i = ∆λ ·mi

θ
(t)
i = sin−1 (∆ω · ni)

, (mi, ni) ∈ Ω(t), (12)
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Fig. 2. Subspace channel variation in consecutive time slots.

where ∆ω = 1/Nr is the normalized angle spacing, ∆λ =
C/B is the wavelength spacing with light speed C. As the
analysis of NLoS scenarios is considerably more complex, in
the following parts, we will initially introduce the evolution
model LoS channels and then discuss how to incorporate
NLoS considerations into the LoS framework. The entire
process is illustrated in Algorithm 1.

1) LOS condition: Because the LoS channel directly links
the BS and users, the physical location of the user P(t)

u in the
rectangular coordinate systems is promptly derived from the
motion state of the LoS channel:

P(t)
u =

(
r
(t)
L cos θ

(t)
L , r

(t)
L sin θ

(t)
L

)
. (13)

Thanks to THz ultra-wide bandwidth, moving of users between
consecutive time slots can be as linear [21]. Current velocity
is approximated as consecutive time difference as:

V
(t)
L ≈ 1

T

(
P(t)

u −P(t−1)
u

)
, (14)

which can be decomposed by projecting on radial and tangen-
tial unit vectors as Vr and Vθ respectively. So the increment
of relative distance and AoA is predicted as:

∆r
(t)
L = r

(t)
L − r

(t−1)
L cos

(
θ
(t)
L − θ

(t−1)
L

)
,

∆θ
(t)
L =

r
(t−1)
L

r
(t)
L

sin
(
θ
(t)
L − θ

(t−1)
L

)
.

(15)

Therefore, the variation and predicted result of main support
is formulated as:

Ω̂(t+1) (L) =

r(t)L +∆r
(t)
L

∆λ
,
sin
(
θ
(t)
L +∆θ

(t)
L

)
∆ω

 . (16)

2) NLOS condition: In Fig.1, NLoS channels distance r
(t)
i

are divided into r
(t)
si and r

(t)
ui two parts by scatters. As

user position has been predicted, we can use cosine theorem
techniques to predict the scatter distance r̂

(t+1)
si . With the

obtained AoA angle equaling the scatterer physical angle,
the relationship among distance r

(t)
L , r(t)si , and r

(t)
ui satisfy the

cosine theorem as:(
r(t)ui

)2
=
(
r
(t)
L

)2
+
(
r(t)si

)2
− 2r

(t)
L r(t)si cos θDi , (17)

Algorithm 1 Deterministic Support Evolution

1: INPUT: Deterministic channel support Ω(t−1), Ω(t).
2: OUTPUT: Predicted channel Ω̂(t+1).

3: Transform channel motion state at time slot t and t − 1
through equation(12).

4: For i = 1 : Ni

5: If i = L Do:
6: Calculate ∆r

(t)
L ,∆θ

(t)
L through (15).

7: Predict Ω̂(t+1) (L) through equation (16).
8: Else % NLoS condition
9: Calculate r

(t−1)
si , r

(t)
si through (18).

10: Update [r
(t)
si , θ

(t)
si ]

T and [r
(t−1)
si , θ

(t−1)
si ]T .

11: Calculate ∆r
(t)
si ,∆θ

(t)
si through (15).

12: r̂
(t+1)
si = r

(t)
si +∆r

(t)
si .

13: Calculating r̂
(t+1)
i through (19).

14: θ̂
(t+1)
i = θ

(t)
i +∆θ

(t)
si .

15: Ω̂(t+1) (i) =

 r̂
(t+1)
i

∆λ
,
sin
(
θ̂
(t+1)
i

)
∆ω

.

16: End If
17: End For

where θ
(t)
Di

= θ
(t)
i − θ

(t)
L is the AoA shift between LoS and

i-th NLoS cluster center path. Substituting r
(t)
ui = r

(t)
i − r

(t)
si

into equation (17), the calculated closed form of r(t)si is as:

r(t)si =

(
r
(t)
i

)2
−
(
r
(t)
L

)2
2r

(t)
i − r

(t)
L cos θ

(t)
Di

. (18)

After obtaining r
(t)
si , we determine the scatters’ position.

This scatterers’ position is also predicted through equation
(15). Then to get predicted CSI, we reintroduce the predicted
scatter positions into (17) and predict r̂(t+1)

i as:

r̂
(t+1)
i = r̂(t+1)

si

(
1 +

√
1− 2κ

(t+1)
i cos θ

(t+1)
Di

+
(
κ
(t+1)
i

)2)
,

(19)
where κ

(t+1)
i = r̂

(t+1)
L /r̂

(t+1)
si is the user-scatterers distance

ratio. After that, the predicted channel support is obtained
and the complete deterministic support evolution model is
summarized in Algorithm 1.

C. Subspace Statistical Evolution Model

As Fig.2 shown, cluster subspace hidden support b(t)
i is the

combination of delay and AoA, their joint channel support
probability is given by

p
(
b
(t)
i

)
= p

(
b
(t)
i |d(t)

i ,a
(t)
i

)
p
(
d
(t)
i

)
p
(
a
(t)
i

)
, (20)

where di, ai are the delay and AoA support vector with ϵτ
and ϵθ elements respectively. For the sake of simplicity, we
make the vectors in the subsequent discussion can be indexed
in this 2D support which satisfies:

b(t,m,n) = b(t) (m+ (n− 1)× ϵτ ) . (21)
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And other relative subspace vector mentioned in the following
section is presented similarly.

As the center path has been predicted by deterministic
support, message passing starting from the central sub-path
can speed up following the convergence of the algorithm.
Our proposed subspace statistical support evolution model
computes delay and AoA support probability from the central
path to the marginal path as equation(22), where χ ∈ Cϵχ×1

can be either di ∈ Cϵτ×1 or ai ∈ Cϵθ×1. And according
to the reference [17], the conditional probability with known
d
(t,m)
i ,a

(t,n)
i is given by:

p
(
b
(t,m,n)
i |d(t,m)

i ,a
(t,n)
i

)
= d

(t,m)
i · a(t,n)i

γb
(t,m,n)
i (1− γ)

b
(t,m,n)
i +

(
1− d

(t,m)
i a

(t,n)
i

)
δ
(
b
(t,m,n)
i

)
,

(23)
where γ is a hyper-parameter determining the probability of
the overall support vector supports when the independent delay
and AoA supports.

D. Subspace Value Variation Law

It is crucial to not only model the channel support but also to
track their value changes over time. Due to the complexities
of the THz time-varying channel in dynamic environments,
the distribution of values for different paths can be intricate.
Therefore, we assume that hidden value elements within the
subspace are independent but follow a Gaussian Markov
process over time due to their smooth value change as:

v
(t+1)
i = (1− β)

(
v
(t)
i − µ̄i

)
+ βw + µ̄i, (24)

where µ̄i represents the mean value, w is the noise, β ∈ [0, 1]
is time related parameters.The formula has a mean value µ̄i,
a complex Gaussian noise w ∼ CN (0, σ2

w), and a time-related
parameter β that ranges from 0 to 1. When β = 0, the channel
value is static. When β = 1, the channel follows the i.i.d.
Gaussian distribution over time. For values of β between 0
and 1, the conditional probability is determined by formula:

p

(
v
(t+1)
i |v(t)

i

)
∼ CN (v

(t+1)
i , (1− β)v

(t)
i + βµ̄i, β

2σ2
w).

(25)
Therefore, we have developed a hybrid channel evolution

model based on our previous discussions. This model predicts
the central path of each cluster deterministically and examines
the subspace channel path changes through the probability
distribution of hidden support vectors and value vectors within
a subspace. In the upcoming section, we will provide a detailed
overview of the hybrid channel tracking method based on this
model.

Algorithm 2 Hybrid Channel Tracking

1: INPUT:
[
y(1), · · · ,y(T )

]
, Φ, Nc, ϵθ, ϵτ .

2: OUTPUT:
[
ĥ(1), · · · , ĥ(T )

]
.

3: When t ≤ t′ % Initialization phase
4:

[
ĥ(t), Ω̂(t)

]
= CSMP

(
y(t),Φ, Nc, ϵτ , ϵθ

)
5: End When

6: When t ≥ t′ + 1 % Tracking phase
7: Obtain Ω̂(t) based on Ω̂(t−1), Ω̂(t−2) in Algorithm 1.
8: For i = 1 : Ni

9: S
(t)
i = (mi,1 − ϵτ : mi,1 + ϵτ , ni,1 − ϵθ : ni,1 + ϵθ) .

10: Φ
(t)
i = Φ(:,m+ (n− 1)×Ns), (m,n) ∈ Si

11: End For

12: Par-For i = 1 : Ni

13: While not convergence do
14: Update h

(t)
i,Apost

and v
(t)
i,Apost

in (33).

15: Update h
(t)
i,Aext

and v
(t)
i,Aext

in (35).
16: h

(t)
i,Bpri

= h
(t)
i,Aext

, v
(t)
i,Bpri

= v
(t)
i,Aext

.
17: Message passing as Step 1-4 in section IV-C.
18: Update h

(t)
i,Bpost

and v
(t)
i,Bpost

in (36).

19: Update h
(t)
i,Bext

and v
(t)
i,Bext

in (38).
20: End While
21: ĥ

(t)
i = h

(t)
i,Bext

.

22: Ω(t)(i) = argmax
(m,n)

(
ĥ
(t)
i

)
.

23: End Par-For

24: Combine channel as equation (39).
25: End When

IV. THZ SPARSE CHANNEL TRACKING

This section outlines the four parts of our proposed hy-
brid channel tracking method. First, we introduce the CSMP
method to obtain the initial clustered CSI and deterministic
support in part.A. Then in part.B, We describe the main mod-
ules of the VCS-TAMP channel tracking algorithm, followed
by explaining the message-passing procedure in part.C. The
whole above process is summarized in Algorithm 2.

A. Initial Clustering CSI Obtaining

The CSMP algorithm is based on the SP method and works
by first projecting cluster residuals onto the measurement
matrix and then calculating the correlation as:

e(k) = ΦHr(k), (26)

p
(
χ

(t)
i

)
= p

(
χ

(1,ϵχ)
i

) 2ϵχ+1∏
m=ϵχ+1

p
(
χ

(1,m)
i |χ(1,m−1)

i

) 1∏
m=ϵχ−1

p
(
χ

(1,m)
i |χ(1,m+1)

i

)

×
T∏

t=2

[
p
(
χ

(t,ϵχ)
i

) 2ϵχ+1∏
m=ϵχ+1

p

(
χ

(t,m)
i

∣∣∣∣χ(t−1,m−1)
i ,χ

(t,m−1)
i

) 1∏
m=ϵχ−1

p

(
χ

(t,m)
i

∣∣∣∣χ(t−1,m+1)
i ,χ

(t,m+1)
i

)]
.

(22)
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Fig. 3. Descending order of channel power with cluster distribution.

where superscript (·)(k) is the iteration round in algorithm.
After this, matched atoms are then combined to determine
channel support as:

I′ = I(k−1) ∪ argmax
(
e(k),

[
Nl1 , · · · , NlNi

])
, (27)

where I is the channel support, argmax here is the function
to take the largest Nli atoms in all column vector of e. These
atoms are then reevaluated using the LS descending rule:

I(k) = argmax

((
ΦH

I′ ΦI′

)−1

ΦI′y
(t), Nc

)
, (28)

where Nc is the sparsity level and represents the total number
of paths to be estimated.

After the selection process, atoms are grouped into different
clusters based on the descending power as Fig.3. Because we
define the highest power path as the center path in a cluster,
each atom must either become a new cluster center or join
an existing cluster as depicted when we cluster them in de-
scending order of power. Considering the properties mentioned
above, the first highest-power atom is always selected as a
cluster center and added into Ω(t). For the following ones, if
it satisfies the conditions:

min
i

|(m,n)−Ω(t)(i)| ≤ (ϵτ , ϵθ) , (29)

where (m,n) is the elements in transformed I, the path is
labeled with cluster Ω(t). Otherwise, the support is seen as
a new cluster center and will be added into Ω(t)(i) as well.
Therefore, all estimated paths will have corresponding labels
after this fast clustering. Based on different labels, channel
support I(k) is separated into different cluster channel support,
which is denoted as

[
I
(k)
1 , · · · , I(k)Ni

]
. Therefore, the i-th cluster

channel is calculated as:

h
(k)
i =

(
ΦH

IiΦIi

)−1

ΦIiy
(t). (30)

Though cluster channel
[
h
(k)
1 , · · · ,h(k)

Ni

]
have been esti-

mated, obtaining cluster residual ri still needs the complemen-
tary techniques. Complementary support of Ii is Ic = I(k)\I(k)i

and complementary channel h(k)
c is estimated as:

h(k)
c =

(
ΦH

IcΦIc

)−1

ΦIcy
(t). (31)

Once obtaining the complementary channel, we can restore the
remaining cluster received signal y(k)

i = y(t) −ΦIch
(k)
c with

the cluster residual r(k)i = y
(k)
i −ΦIih

(k)
i in the next iteration.

And then we can obtain the labeled estimated channel.

Algorithm 3 Clustering Subspace Matching Pursuit

1: INPUT: y(t), Φ, Nc, ϵτ , ϵθ.
2: OUTPUT: estimated labeled channel ĥ(t), center path

support Ω(t).
3: Initialization: r(1) = y, I = ∅, Ic = ∅, Ni = 1, k = 1.
4: While r not uniform converge Do:
5: e(k) = ΦHr(k).
6: Update channel support I(k) through (27) and (28).
7:

[
m(k),n(k)

]
=
[
mod(I(k), Ns),mod(I(k)

/
Ns, Nr)

]
.

8: For (m,n) ∈
[
m(k),n(k)

]
9: If equation (29) holds: Label ĥ(t) with Ω(t)(i).

10: Else: Append element (m,n) to vector Ω(t).
11: End For
12: Update N

(k)
i , [N (k)

l1
, · · · , N (k)

lNi
] through channel labels.

13: Obtain cluster support [I(k)1 , · · · , I(k)Ni
] through labels.

14: For i = 1 : Ni

15: Ic = I(k) \ I(k)i

16: h
(k)
c =

(
ΦH

IcΦIc

)−1

ΦIcy
(t)

17: y
(k)
i = y(t) −ΦIch

(k)
c

18: h
(k)
i =

(
ΦH

IiΦIi

)−1

ΦIiy
(y)

19: r
(k)
i = y

(k)
i −ΦIih

(k)
i

20: End For
21: k = k + 1
22: r(k) =

[
r
(k)
1 , · · · , r(k)Ni

]
23: End While
24: For i = 1 : Ni

25: ĥ(t,m,n) = h
(k)
i , (m,n) ∈ I(k)

26: End For

Considering the minor alterations in the subspace channel,
the probability transfer parameters q

0/1→1/0

χi,S/T
in the subsequent

message passing stage can be trained using the EM method.
However, we focus on channel tracking in this paper and the
detailed training methods can be found in reference [16].

B. Main Modules of VCS-TAMP

The proposed VCS-TAMP algorithm comprises two es-
sential modules, module A and B, which are presented in
Figure 4. Module A shrinks the codebook space and acts
as a subspace LMMSE estimator, forwarding the estimated
value and variance to module B. Module B uses the structured
prior on the DA domain to evolve the channel towards a
sparser form and pass the message back to module A. These
loops are executed for all clusters, which create several turbo-
type estimators to ensure that all subspace channels converge.
After achieving convergence for all subspace channels, these
estimated results are combined to generate the final tracking
channel.

1) Module A LMMSE Estimation: Once obtaining Ω(t),
different cluster subspaces Si is established as equation (9).
According to reference [15], the subspace codebook is pre-
sented as:

Φi = Φ (:,m+ (n− 1)× ϵτ ) , (m,n) ∈ Si. (32)
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Fig. 4. Modules of the proposed VCS-AMP algorithm.

The subspace LMMSE result is given as1:

h
(t)
i,Apost

= h
(t)
i,Apri

+
v
(t)
i,Apri

v
(t)
i,Apri

+ σe

ΦH
i

(
y(t) −Φih

(t)
i,Apri

)
,

v
(t)
i,Apost

= v
(t)
i,Apri

− NRFNs

(2ϵτ + 1)(2ϵθ + 1)

v
(t)
i,Apri

v
(t)
i,Apri

+ σe

.

(33)
And the relationship between the posterior and the prior is as:

CN (ĥ(t),h
(t)
Apost

, v
(t)
Apost

)

∝ CN (ĥ(t),h
(t)
Apri

, v
(t)
Apri

) · CN (ĥ(t),h
(t)
Aext

, v
(t)
Aext

).
(34)

After that, the extrinsic message can be calculated through:

h
(t)
i,Aext

= v
(t)
i,Aext

h
(t)
i,Apost

v
(t)
i,Apost

−
h
(t)
i,Apri

v
(t)
i,Apri

 ,

v
(t)
i,Aext

=

 1

v
(t)
i,Apost

− 1

v
(t)
i,Apri

−1

.

(35)

2) Module B DA MMSE Estimator: Receiving the extrinsic
mean and variance from the model A, the input of module is
with mean h

(t)
i,Bpri

= h
(t)
i,Aext

and variance v
(t)
i,Bpri

= v
(t)
i,Aext

.
In module B, the message passing MMSE is executed by
exploiting the proposed channel evolution model. Then the
posterior mean and variance of each element is updated as:

h
(t)
i,Bpost

=

∫
ĥ
(t)
i · p

(
ĥ
(t)
i |h(t)

i,Bpri

)
,

v
(t)
i,Bpost

= V ar
(
ĥ
(t)
i |h(t)

i,Bpri

)
,

(36)

1Because our goal is to obtain the estimated results rather than utilizing
cluster residuals to select matched atoms. Even though yi is not separated
here, a robust result can still be obtained using LMMSE.

where p
(
ĥ
(t)
i |h(t)

i,Bpri

)
is the conditional probability. Ac-

cording to the sum-product rule, the conditional probability
satisfies:

p
(
ĥ
(t)
i |h(t)

i,Bpri

)
∝ ν

(t)
πi→hi

· ν(t)ci→hi
. (37)

The message ν
(t)
ci→hi

is the input message of module B
and ν

(t)
πi→hi

is obtained through the message passing method
whose whole procedure is summarized in next section IV-C.
Then the module B updates the extrinsic mean and covariance
that are resent to module A for iteration as:

h
(t)
i,Bext

= v
(t)
i,Bext

h
(t)
i,Bpost

v
(t)
i,Bpost

−
h
(t)
i,Bpri

v
(t)
i,Bpri


v
(t)
i,Bext

=

 1

v
(t)
i,Bpost

− 1

v
(t)
i,Bpri

−1

.

(38)

When all subspace channels where i = 1, · · · , Ni get
tracked, the different subspace channels are combined as:

ĥ(t,m,n) = ĥ
(t)
i , (m,n) ∈ Si. (39)

C. Message Passing in VCS-TAMP

As the factor graph shown in Fig.5, the message passing
procedure is divided into four main steps to obtain ν

(t)
πi→hi

.

1) Step 1 (Message passing to value factor): First, the
message follows the path h

(t)
i,Bpri

→ c
(t)
i → ĥ

(t)
i → π

(t)
i → v

(t)
i .

Without additional node, the exact message passed to value
variable node ν

(t)
πi→vi is:

ν(t)πi→vi
= ρ

(t)
i,out·CN

(
v
(t)
i ,h

(t)
i,Bpri

, v
(t)
i,Bpri

)
+
[
1− ρ

(t)
i,out

]
· CN

(
0,h

(t)
i,Bpri

, v
(t)
i,Bpri

)
,

(40)
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Fig. 5. Factor graph in the module B message passing procedure.

where ρ
(t)
i,out is the out possibility from node π

(t)
i . But because

the value element becomes invisible when its support is zero,
this message is modified for the next effect passing according
to reference [18] as:

ν(t)πi→vi
= CN

(
v
(t)
i ,µ

(t)
i,in, v

(t)
i,in

)
, (41)

where the mean and variance satisfy the power threshold
constraint:

(
µ

(t)
i,in, v

(t)
i,in

)
=


(
1

ϵ
h
(t)
i,Bpri

,
1

ϵ2
v
(t)
i,Bpri

)
,ρ

(t)
i,out < Th,(

h
(t)
i,Bpri

, v
(t)
i,Bpri

)
,ρ

(t)
i,out ≥ Th.

(42)
where ϵ is a small value close to zero. When the output
possibility is low, the large variance makes the message at
this time slot blocked as:

µ
(t+1)
i,ac = (1− β)

(
v
(t)
i,in · v(t)i,ac

v
(t)
i,in + v

(t)
i,ac

)(
µ

(t)
i,ac

v
(t)
i,ac

+
µ

(t)
i,in

v
(t)
i,in

)
+ βµ̄i,

v
(t+1)
i,ac = (1− β)2

(
v
(t)
i,in · v(t)i,ac

v
(t)
i,in + v

(t)
i,ac

)
+ β2w2.

(43)
and the output message passed to the next time slot is almost
the same as the more confident previous message. As this

process is executed in all time slots, the message passed back
to the node π

(t)
i is:

ν(t)πi→vi
= CN

(
v
(t)
i ,µ

(t)
i,ac, v

(t)
i,ac

)
. (44)

2) Step 2 (Message passing to delay support): After that,
the message is passed over the path π

(t)
i → b

(t)
i → u

(t)
i → d

(t)
i

to use the delay Markov sparse structure.
• The message ν

(t)
hi→πi

is combined with a dynamic message
from time slot (t − 1) and the message from factor node πi

to variable node bi is as:

ν
(t)
πi→bi

= ρ
(t)
bi,in

· δ
(
b
(t)
i − 1

)
+

(
1− ρ

(t)
bi,in

)
· δ

(
b
(t)
i

)
, (45)

where

ρ
(t)
bi,in

=

1 +
CN

(
0,h

(t)
i,Bpri

, v
(t)
i,Bpri

)
CN

(
0,h

(t)
i,Bpri

− µ
(t)
i,ac, v

(t)
i,Bpri

+ v
(t)
i,ac

)
−1

.

(46)
• Because no other input message, the message ν

(t)
bi→ui

is
same as received one ν

(t)
πi→bi

.
• The message passed from the factor node to the delay
support node needs to transform the message into a reduced-
dimension delay message. So the received message node here
is denoted with matrix D

(t)
i ∈ C(2ϵτ+1)×(2ϵθ+1) as:

ν
(t)
ui→Di

= ρ
(t)
Di,in

· δ
(
D

(t)
i − 1

)
+
(
1− ρ

(t)
Di,in

)
· δ

(
D

(t)
i

)
, (47)
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γ
(t,m±1)
χi,f

=
q0→1
χi,S

ρ
(t,m)
χi,in

γ
(t,m)
χi,f

+ q1→1
χi,S

[
1− ρ

(t,m)
χi,in

] [
1− γ

(t,m)
χi,f

]
ρ
(t,m)
χi,in

γ
(t,m)
χi,f

+
[
1− ρ

(t,m)
χi,in

] [
1− γ

(t,m)
χi,f

] , (50)

γ
(t,m±1)
χi,b

=
q1→0
χi,S

[
1− ρ

(t,m)
χi,in

] [
1− γ

(t,m)
χi,f

]
+
(
1− q1→0

χi,S

)
ρ
(t,m)
χi,in

γ
(t,m)
χi,f(

q0→0
χi,S

+ q1→0
χi,S

) [
1− ρ

(t,m)
χi,in

] [
1− γ

(t,m)
χi,f

]
+
(
q1→1
χi,s

+ q0→1
χi,s

)
ρ
(t,m)
χi,in

γ
(t,m)
χi,f

, (51)

γ
(t,m±1)
χi,f

=
q
(1,1)→1
χi,ST ρ

(t,m±1)
χi,ac + q

(1,0)→1
χi,ST

[
1− ρ

(t,m±1)
χi,ac

]
1 +

[(
ρ
(t,m)
χi,in

)−1

− 1

] [(
γ
(t,m)
χi,f

)−1

− 1

] +
q
(0,1)→1
χi,ST ρ

(t,m±1)
χi,ac + q

(1,0)→0
χi,ST

(
1− ρ

(t,m±1)
χi,ac

)
1 +

{[(
ρ
(t,m)
χi,in

)−1

− 1

] [(
γ
(t,m)
χi,f

)−1

− 1

]}−1 , (52)

γtemp±
χi

=

[
1− ρ

(t,m)
χi,in

− γ
(t,m)
χi,b

] [
q
(0,1)→1
χi,ST ρ

(t,m±1)
χi,ac + q

(0,0)→1
χi,ST

(
1− ρ

(t,m±1)
χi,ac

)]
+ ρ

(t,m±1)
χi,ac γ

(t,m)
χi,b[

1− ρ
(t,m)
χi,in

− γ
(t,m)
χi,b

] [
q
(1,0)→0
χi,ST ρ

(t,m±1)
χi,ac + q

(0,0)→1
χi,ST

(
1− ρ

(t,m±1)
χi,ac

)]
+ ρ

(t,m±1)
χi,ac γ

(t,m)
χi,b

, (53)

ρ(t+1,m,n)
χi,ac

=
γ
(t,m,n)
χi,f

γ
(t,m,n)
χi,b

ρ
(t,m,n)
χi,in

γ
(t,m,n)
χi,f

γ
(t,m,n)
χi,b

ρ
(t,m,n)
χi,in

+
[
1− γ

(t,m,n)
χi,f

] [
1− γ

(t,m,n)
χi,b

] [
1− ρ

(t,m,n)
χi,in

] , (54)

ρ
(t,m,n)
Ai,in

=
γ
(t)
bi

ρ
(t,m,n)
bi,in

ρ
(t,m,n)
Di,out

+
[
1− γ

(t)
bi

] [
1− ρ

(t,m,n)
bi,in

]
ρ
(t,m,n)
Di,out

+
[
1− ρ

(t,m,n)
bi,in

] [
1− ρ

(t,m,n)
Di,out

]
γ
(t)
bi

ρ
(t,m,n)
bi,in

ρ
(t,m,n)
Di,out

+
[
1− γ

(t)
bi

] [
1− ρ

(t,m,n)
bi,in

]
ρ
(t,m,n)
Di,out

+
[
1− ρ

(t,m,n)
bi,in

] [
1− ρ

(t,m,n)
Di,out

]
+
[
1− ρ

(t,m,n)
bi,in

] . (55)

where ρ
(t)
Di,in

=
ρ
(t)
Di,tmp

1+ρ
(t)
Di,tmp

−ρ
(t)
bi

, with parameter

ρ
(t)
Di,tmp = γ

(t)
bi

ρ
(t)
bi,in

ρ
(t)
Ai,out

+
(
1− γ

(t)
bi

)(
1− ρ

(t)
bi,in

)
· ρ(t)

Ai,out
+

(
1− ρ

(t)
bi,in

)(
1− ρ

(t)
Ai,out

)
.

(48)

Then ρ
(t)
Di,in

is transformed to ρ
(t)
di,in

through summing differ-
ent element with same delay support mark:

ρ
(t,m)
di,in

=

∏
n ρ

(t,m,n)
Di,in∏

n ρ
(t,m,n)
Di,in

+
∏

n

(
1− ρ

(t,m,n)
Di,in

) . (49)

Therefore, the message passed to the delay support variable
node is ν

(t)
ui→di

= ρ
(t)
di,in

.
• So we can update the delay support message ρ

(t)
di,out

ac-
cording aforementioned subspace statistical channel evolution
model with substituting the di into temp notation χi, which
is summarized as Algorithm 4, where the related equation is
in (50)-(53).
• After calculating the forward and backward passing mes-

sage, the message passed to the delay support message next
time slot is:

ν
(t+1)
di→∆di

= ρ(t)
χi,ac

δ
(
d
(t)
i − 1

)
+

(
1− ρ

(t)
di,ac

)
δ
(
d
(t)
i

)
, (56)

where ρ
(t+1)
di,ac

is obtained in equation (54) with substituting
the di into χi as well.

3) Step 3 (Message passing to AoA support): The message
backtrack through d

(t)
i → u

(t)
i → a

(t)
i to capture the structured

sparsity on AoA domain as:
• In the returning path, the reduced-dimension message will
be split into higher dimensions on node ui as:

ν
(t)
di→ui

= ρ
(t)
Di,out

·δ
(
D

(t)
i − 1

)
+
(
1− ρ

(t)
Di,out

)
·δ
(
D

(t)
i

)
, (57)

Algorithm 4 Subspace DA Support Estimation.

1: INPUT: ρ(t)
χi,in

,ρ
(t)
χi,ac.

2: OUTPUT: ρ(t)
χi,out

.
3: When t = (t′ + 1):
4: γ

(t,ϵχ)
χi,f

= γc; γ
(t,1)
χi,b

= γm; γ
(t,2ϵτ+1)
χi,b

= γm.

5: For m = ϵτ : 1, obtain γ
(t,m−1)
χi,f

as (50).

6: For m = ϵτ : 2ϵτ + 1, obtain γ
(t,m+1)
χi,f

as (50).

7: For m = 1 : ϵτ − 1, obtain γ
(t,m+1)
χi,b

as (51).

8: For m = 2ϵ+ 1 : ϵ+ 1, obtain γ
(t,m−1)
χi,b

as (51).
9: Else When t > (t′ + 1)

10: γ
(t,ϵτ )
χi,c = q0→1

χi,T

(
1− ρac

χi

)
+
(
1− q1→0

χi,T

)
ρac
Di

.

11: γ
(t,1)
χi,b

= 0, γ
(t,2ϵτ+1)
χi,b

= 0.

12: For m = ϵτ : 1, obtain γ
(t,m−1)
χi,f

as (52).

13: For m = ϵτ : ϵτ + 1, obtain γ
(t,m+1)
χi,f

as (52).

14: For m = 1 : ϵτ − 1, obtain γ
(t,m+1)
χi,f

= 1

1+γtemp+
χi

,

where γtemp+
χi

is as (53).
15: For m = 2ϵτ + 1 : ϵτ , obtain γf

χi
(t,m − 1) =

1

1+γtemp−
χi

, where γtemp−
χi

is as (53).

16: Calculates ρout
χi

=
γf

χi
·γb

χi

γf
χi

·γb
χi

+(1−γf
χi)·(1−γb

χi
)

.

17: End When

where

ρ
(t,m,n)
Di,out

=
ρ
(t,m)
di,out

ρ
(t,m)
di,out

+
[
1− ρ

(t,m)
di,out

] ∏
n′ ̸=n

[(
ρ
(t,m,n)
Di,in

)−1

− 1

] .
(58)
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• Then the message passed from node u
(t)
i to the AoA node

a
(t)
i is as:

ν(t)
ui→ai

= ρ
(t)
Ai,in

· δ
(
d
(t)
i − 1

)
+

(
1− ρ

(t)
Ai,in

)
· δ

(
d
(t)
i

)
, (59)

with ρ
(t,m,n)
Ai,in

in (55). It is reduced again similarly as:

ρ
(t,m)
ai,in

=

∏
m ρ

(t,m,n)
Ai,in∏

m ρ
(t,m,n)
Ai,in

+
∏

m

(
1− ρ

(t,m,n)
Ai,in

) . (60)

• Then we can obtain ρ
(t)
ai,out similarly through Algorithm 4

substituting the ai into temp notation χi. The message passed
to the next time slot is:

ν
(t+1)
ai→∆ai

= ρ(t)
ai,acδ

(
a
(t)
i − 1

)
+
(
1− ρ(t)

ai,ac

)
δ
(
a
(t)
i

)
,

(61)
which obtains ρ(t+1)

ai,ac
through substituting the ai into χi in

equation (54).

4) Step 4 (Message passed to estimated channel): The
message is finally passed back over the path a

(t)
i → u

(t)
i →

b
(t)
i → π

(t)
i → h

(t)
i , and the details steps are as follows:

• The message v
(t)
ai→ui = ρ

(t)
ui,out is first transformed into DA-

structured form message through equation:

ν(t)
ai→ui

= ρ
(t)
Ai,out

δ
(
a
(t)
i − 1

)
+

(
1− ρ

(t)
Ai,out

)
δ
(
a
(t)
i − 1

)
,

(62)
where

ρ
(t,m,n)
Ai,out

=
ρ
(t)
ai,out

ρ
(t,m)
ai,out

+
[
1− ρ

(t,m)
ai,out

] ∏
m′ ̸=m

[(
ρ
(t,m′,n)
Ai,in

)−1

− 1

]
(63)

.
• And then the message is trace back to node b

(t)
i as:

ν
(t)
ui→bi

= ρ
(t)
bi,out

δ
(
b
(t)
i − 1

)
+

(
1− ρ

(t)
bi,out

)
δ
(
b
(t)
i − 1

)
,

(64)
with combined possibility ρ

(t,m,n)
bi,out

= ρ
(t,m,n)
Di,out

ρ
(t,m,n)
Ai,out

γ
(t)
bi

.
• Without additional message from other factors, the message
passes to factor node π

(t)
i is the same as the input, which is

denoted as ν
(t)
bi→πi

= ν
(t)
ui→bi

.
• Finally the message is passed back to estimated node ĥ

(t)
i ,

and can be denoted as:

ν
(t)
πi→hi

= ρ
(t)
bi,out

CN
(
ĥ
(t)
i ,µ

(t)
i,ac, v

(t)
i,ac

)
+

(
1− ρ

(t)
bi,out

)
δ
(
b
(t)
i − 1

)
.

(65)

V. SIMULATION

In our simulation, the frequency is set at 300GHz to signif-
icantly distinguish THz from millimeter waves, the bandwidth
is 2GHz to avoid the effect of beam splitting, and the number
of antenna and RF chains are 128 and 8 respectively. The
indoor dynamic channel model in reference [25] is adapted
to generate the initial scattering ray of our simulation. Other
simulation parameters are shown in Table.I.

TABLE I
TABLE OF SIMULATION PARAMETERS

Parameters Values
Carrier Frequency 300 GHz

Bandwidth 2 GHz
BS Antenna Number and RF chain (128,8)

Number Pilots 64
Channel Model THz channel model [25]

Cluster number and inta-cluster paths (3,1∼20)
(ϵτ , ϵθ) (6,6)
Nc 40

User and Scatter Velocity (5m/s, 2.5m/s)
Initialization and Tracking Frame (10,1000)

Monte-Carlo Iteration 100
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Fig. 6. The NMSE performance against the SNR in the initialization phase.

A. CSMP Performance Analysis

The main purpose is to obtain clustered CSI through
channel estimation for future tracking in the initialization
phase. Tracking accuracy and clustering ability are important
and computation time simulation is omitted here because
the initialization frame is much less than the true tracking
frame. So normalized mean squared error (NMSE) is applied
to compare different estimation method accuracy, and it is
calculated as:

NMSE =

∥∥∥ĥ(t) − h(t)
∥∥∥2∥∥h(t)

∥∥2 . (66)

The baseline concludes some classic channel estimation
methods with the same algorithm structure, greedy-series
structured-OMP [28] and the classic subspace-series SP [29],
CoSaMP [30] subspace algorithms of the same structure.
The NMSE of different methods is presented in Fig.6. When
the signal-to-noise ratio (SNR) is low, due to the inaccurate
obtained clustered CSI, the advantages of our proposal are not
obvious because nearly all algorithms show poor estimation
performance. But when SNR gets improved, the clustered
channel becomes much more accurate and CSMP can ef-
fectively maintain cluster CSI and reduce the probability of
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Fig. 8. Estimation result snapshot with sparsity-level 40 at SNR 15dB.

mismatches. Therefore, it can be much better NMSE when
SNR is greater than 5dB.

The internal evaluation Calinski-Harabasz index (CHI) cal-
culated as reference [31] in Fig.7 is applied to validate the
clustering performance. As CHI is the ratio between inter-
cluster variance and intra-cluster variation, a better clustering
algorithm should have a higher CHI. The aforementioned
channel estimation methods are combined with traditional K-
means clustering [32] to compare with the proposed CSMP
method. Consistent with the trend of NMSE performance
changes against SNR, the CHI of different algorithms are
almost the same when the SNR ratio is low. However, as
SNR continues to increase, the CHI of the CSMP algorithm
is greatly improved. A snapshot is shown in Fig.8 with a
sparsity level set at 40 to more intuitively present the clustering
distribution of the estimated result channel.

B. Hybrid Channel Tracking Performance Analysis

In this part, before comparing the time average NMSE
(TNMSE) of different channel tracking methods, the robust-
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Fig. 9. Relative angle error for different evolution models under perfect CSI

ness of the proposed deterministic channel evolution model is
validated as Fig.9. Compared with traditional THz determin-
istic channel tracking study [21], [22], our proposed channel
evolution model has a lower probability of link interruption
under 5 degrees beamwidth given in reference [33] robust
mode. In addition, our proposed DA channel variation has a
smaller variance in both LoS and NLoS conditions, which is
crucial for the following tracking.

The accuracy and time complexity of different THz channel
tracking methods are compared. The baseline includes two
ST methods and two DT methods. For the first ST methods
[15], it ignores the DA-MM structure for channel evolution
and assumes different channel support element is independent
identical distribution (i.i.d). Another ST baseline is to modify
it with 2D-MM proposed in [16]. For DT methods, we select
the tracking methods in reference [21], [22] to track the
channel with different LoS-only and LoS/NLoS mixed channel
evolution models respectively. With all of the above baselines,
we can compare our proposal with ST and DT in both model-
matched or unmatched conditions.

In Fig.10, TNMSE is applied to compare the accuracy:

TNMSE =
1

T − t′

T∑
t=t′+1

∥∥∥ĥ(t) − h(t)
∥∥∥2∥∥h(t)

∥∥2 . (67)

It can be seen whether the model matches have a significant
impact on DT compared with ST and HT. Without an effective
model, DT method can not obtain effective results which
is even worse than most estimation methods. This confirms
the poor generalization ability of the deterministic scheme
mentioned earlier, which relies on the analysis of environmen-
tal prior information. For ST having stronger generalization
ability, whether model matching has a lighter impact on the
tracking TNMSE performance result. The TNMSE perfor-
mance of our proposed surpasses traditional ST mode orig-
inates from our segmentation of clusters subspace. Because
the channels within the cluster usually have more consistent
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statistical characteristics, the MMSE estimation variance in
message passing satisfies:

v
(t)
i ≪ v(t), i = 1, · · · , Nc. (68)

This not only improves the accuracy of channel estimation
greatly, but also promotes convergence time of the message
passing part in HT as Fig.11.

In Fig.11, our proposed achieve amazing improvement com-
pared with other tracking scheme, which even faster than DT
method. Comparing using equations to evolve all path, fast-
converging partially parameterized HT can improve systems
efficiency. Besides, as different cluster channel are almost
independent, the scale of the tracking problem has also been
reduced to within a cluster subspace rather than the full
channel which accounts for the computation performance.

In summary, our approach provides a more flexible architec-
ture for channel tracking by combining the advantages of de-
terministic and statistical tracking schemes, which can achieve
a good improvement in both performance and complexity.

VI. CONCLUSION

In this paper, we investigated the hybrid channel tracking
for THz massive MIMO systems in dynamic environments.
To capture the temporal correlation of the THz channel, a
hybrid channel evolution model is developed based on THz
channel cluster characteristics. Based on the proposed model,
our hybrid channel tracking method solves the clustered CSI
acquisition problem in initialization and following utilizes the
cluster CSI in tracking to promote both accuracy and time
consumption performance.

For details, we use complementary technology to hold the
cluster information in CSMP, which achieves better estimation
performance and clustering results than the traditional ones.
The estimated subspace path has more consistent statistical
characteristics, and VCS-TAMP can give accuracy with great
promotion. Besides, VCS-TAMP greatly shrinks the codebook
to subspace size, and has parallelized the traditional AMP
estimation frame for the different clusters, which makes time
consumption of our proposed is quite low. Analytical and
numerical results have shown that the proposed achieved a
superior performance than previous work. In the future, more
work can be excavated, such as the combination of beam splits,
near-field effects, and so on other unideal characteristics in the
THz massive MIMO.
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