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Abstract 

Water level data is critical for hydrologic model calibration. The extensive river 

camera networks, in conjunction with advanced deep learning techniques, form the 

foundation for the imaging-based monitoring of water level trends. However, limited 

annotated data and tedious local deployment restricts the applicability of deep learning 

models in new river scenarios. This study proposes a novel transferable deep learning 

framework by combining General AI with domain-specific models for water 

segmentation, and uses the static observer flooding index (SOFI) as the proxy for water 

level variations. The framework uses the Segment Anything Model (SAM), a generic 

computer vision model by Meta AI, for segmenting images into discrete while 

semantically unknown objects. A ResUnet model pre-trained on a non-local dataset 

simultaneously identifies pixels with the highest probability of being water, which are 

then overlaid onto the segmented images to specify the water object. The framework was 

applied to image sequences acquired from river cameras stationed at four locations in 

Tewkesbury, UK, for water segmentation and water level trend monitoring. The SOFI 

time series were calculated based on the segmented masks and underwent data quality 

control using an unsupervised clustering method. The obtained SOFI signal showed an 

average correlation of 0.83 with real water level fluctuations, significantly surpassing the 

single ResUnet model’s correlation of 0.54. The data provided by the framework was 

qualified for hydrologic model calibration referring to both error magnitudes and 

distribution patterns. Our study has thus moved toward an ease-of-use implementation of 

river cameras for transferable water level trend monitoring. 
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1. Introduction 

Hydrologic models commonly used in water resource management need at least some 

data to be adapted or calibrated for the target catchment (Silberstein, 2006). Observations 

(i.e., data) are, thus, required before these models can be used to predict floods and 

droughts, or the impacts of climate change (Wang et al., 2023). Among observations of 

different hydrological variables, observing water level is relatively more feasible, given 

its greater resilience to the complex instantaneous water flow movement. Moreover, the 

effectiveness of water level trends in calibrating hydrological models, even in the absence 

of specific scalar values for water levels, has already been validated in previous studies 

(Etter et al., 2020; Seibert & Vis, 2016). 

However, for many rivers, water level observations are unattainable due to the high 

costs associated with the installation and long-term maintenance of gauging stations 

(Fekete et al., 2012; Ruhi et al., 2018). Other observational approaches, such as remote 

sensing, can supplement the data from hydrometric networks and help to understand 

hydrological processes better and improve water resource management (Tauro et al., 

2018). Nevertheless, satellite and airborne optical techniques are limited to their daylight-

only application, susceptibility to obstruction by clouds and vegetation, and relatively 

long revisit intervals (Grimaldi et al., 2016; Yan et al., 2015). Acquiring high spatial-

temporal resolution water level data in real-time or long-term is, thus, still challenging. 

As computer vision develops, river cameras provides a novel path to collect water 

level data or characterize its trend (Spasiano et al., 2023). River cameras are generally 

consumer-grade field cameras powered by electricity grids or (backup) batteries, resulting 

in low costs on equipment, installation, and maintenance (Noto et al., 2022; Sabbatini et 

al., 2021). They are increasingly installed at ungauged locations for hydrological 

monitoring, offering extensive coverage of the river network (Gupta et al., 2022; Lo et 

al., 2015; Perks et al., 2020). These cameras continuously transmit live images from rivers 

and can store images locally or upload them to the cloud in real-time. The accumulation 

of image data has laid the foundation for the extraction of water level variation 

information in space and time. 

However, the challenges associated with obtaining high-resolution terrain data and 

detailed camera parameters make it difficult to directly deduce water level values from 

river camera images. An alternative approach to imaging-based water level monitoring 

involves segmenting water body within each image and calculating each image’s static 
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observer flooding index (SOFI), which indicates the proportion of water pixels among 

the total pixels (Moy De Vitry et al., 2019). The temporal changes in SOFI can 

approximately represent the water level trend, therefore, the core of the imaging-based 

monitoring within this pathway lies in accurate water segmentation. While some studies 

attempted to identify water pixels in images by frame-crossing pixel analyses, they often 

suffer from reliance on staff gauges or local environments (Bentir et al., 2018; W.-C. Liu 

et al., 2023). In comparison, deep learning offers a high level of automation and strong 

scalability, thus is increasingly applied (Eltner et al., 2018). For instance, Akiyama et al 

(2020) adopted a classic deep learning model, SegNet, for water segmentation and 

achieved favorable outcomes on a medium-sized river in Germany. Lopez-Fuentes et al 

(2017) used three deep learning model structures, including Fully Convolutional 

Networks, Fully Convolutional DenseNets, and Conditional Adversarial Networks, for 

water segmentation, and systematically compared their performances. Moreover, Erfani 

et al (2022) further designed a novel deep learning model using distinct paths to handle 

aquatic and non-aquatic regions for improved accuracy in water segmentation.  

Deep learning models are significantly influenced by the amount of training data. 

However, large-scale annotated river image data is still unavailable, limiting the potential 

transfer of trained models to new river scenes (i.e., locations unseen in the training 

dataset). Data augmentation involving rotation, cropping, and brightness adjustments can 

expand the dataset and enhance the model’s adaptability to local variations in lighting and 

camera movement (Wagner et al., 2023). Nonetheless, achieving transferability in entirely 

new scenes remains challenging. Transfer learning offers an available route to enhance 

model transferability by fine-tuning deep learning models on a small subset of annotated 

data from new monitoring sites (Akiyama et al., 2021; Eltner et al., 2021; Vandaele et al., 

2021). However, during the fine-tuning process, deep learning models often experience 

catastrophic forgetting (Kirkpatrick et al., 2017), wherein excessive focus on new data 

results in a notable drop in performance on the original dataset, rendering the model to be 

overly localized. Meanwhile, one-size-fits-all transfer learning strategies that 

accommodate diverse model architectures and application scenarios are still lacking 

(Weiss et al., 2016). Furthermore, manual data annotation for new scenes will consume 

extra manpower and time. A transferable deep learning-based water segmentation 

framework that necessitates minimal local adjustments and can be readily deployed in 

new river scenarios is called for. 

The emergence of General AI such as Segment Anything Model (SAM, Kirillov et al., 
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2023) for computer vision tasks are reshaping the application of deep learning, and also 

lay a groundwork for developing transferable water segmentation models. General AI 

enables the comprehension and preprocessing of images, significantly reducing the 

domain-specific knowledge (i.e., training data) required for downstream tasks. However, 

General AI cannot be independently used for handling specific tasks due to its generality. 

In this study, we employ a combination of General AI and domain-specific models for 

water segmentation on images captured by river cameras, aiming to balance the strengths 

and weaknesses of each model. This approach is intended to mitigate the necessity for 

localized adjustments, such as the manual annotation and model parameter fine-tuning, 

required in new river scenes. 

Overall, the main objective of this study is to developing a novel transferable deep 

learning-based water segmentation framework for monitoring the water level trend using 

river cameras. The framework was applied to four spots in Tewkesbury, UK. Its 

performance was compared with a single domain-specific deep learning model. 

Furthermore, an unsupervised clustering method, Density-Based Spatial Clustering of 

Applications with Noise (DBSCAN, Ester et al., 1996) was applied for data quality 

control on the extracted water mask sequences for each spot. Finally, SOFI was used as a 

qualitative index for monitoring the water level trend. 

The remainder of this paper is organized as follows: Section 2 elaborates on the 

framework for water segmentation and data quality control, along with the dataset used 

in this study. The detailed model results, and the evaluation of the model performance are 

presented in Section 3. Section 4 further discusses the superiority of the methods, the 

value of the extracted water level trend and the implications for future studies. Finally, 

the conclusions are given in Section 5. 

 

2. Methods and materials 

2.1 Water segmentation model structure 

This study integrates General AI with domain-specific models to formulate a 

transferable deep learning framework for water segmentation in river images. As shown 

in Figure 1, the framework employs SAM, an innovative image segmentation model 

developed by Meta AI, as the foundational computer vision model. SAM automates the 

segmentation of original river images into multiple discrete objects, even though their 
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semantics are unknown (“Everything Mask”). Simultaneously, a conventional deep 

learning semantic segmentation model (ResUnet, Ronneberger et al., 2015), pre-trained 

on a limited river image dataset that does not include images taken at the river awaiting 

observation, is employed as the domain-specific model to identify the pixel with the 

highest water probability in the image. The coordinates of this pixel are then 

superimposed onto the “Everything Mask” segmented by SAM, facilitating the 

identification of the water object and thereby completing the water segmentation process. 

The specific introductions to model principles and structures for both SAM and ResUnet 

model within the framework are provided in the following section. 

Figure 1. Diagram of the water segmentation framework. The framework is developed by coupling 

an SAM and a ResUnet model. The SAM and ResUnet outputs an everything mask and a water 

probability map, respectively. Consequently, the pixel with the highest water probability is overlain 

with the everything mask to specify the water body and generate the corresponding water body mask. 

 

2.1.1 Brief introduction to SAM model 

SAM departs from conventional segmentation frameworks by introducing a novel 

promptable segmentation task, which is facilitated by a prompting-enabled model 

architecture and a diverse pool of training data. In the model training phase, a data engine 

is used to establish a cyclic process that employs the model for data collection and then 

exploits the newly gathered data to enhance the model performance. Ultimately, SAM 

undergoes training on an extensive dataset consisting of over one billion masks extracted 

from 11 million images. Following the above training process, SAM can serve as a 

foundational model in this study for segmenting images into a series of non-semantic 

masks, obviating the need for local fine-tuning processes. 

As shown in Figure 2, SAM comprises three components: an image encoder, a 

prompt encoder, and a mask decoder. The image encoder, built on the backbone of ViT, is 
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pre-trained using the masked autoencoder technique (He et al., 2022). It takes a single 

image as input and generates image embeddings. The embeddings can be either combined 

with the prompt encoding output, generated by the prompt encoder that includes dense 

branches (for masks) and sparse branches (for points, boxes, and texts), or directly passed 

to the mask decoder for decoding the corresponding masks. 

SAM offers support for both automatic everything and manual prompt modes. The 

fundamental distinction between the two modes lies in whether SAM uses guided prompts 

during its segmentation process and whether its resulting segmentation contains specific 

semantic information. For the former, SAM will automatically generate a series of 

semantically unknown masks for the image without manual priors. Moreover, even if an 

object is separated into two or more sub-objects of the same semantics by other objects, 

everything mode SAM can output these sub-objects as a whole. For the latter, users need 

to manually provide additional hints to SAM, including boxes, points, and texts. These 

hints serve to guide SAM in the segmentation process for the expected object  

In this study, we opt to leverage everything mode to fully exploit the segmentation 

capability of SAM itself. In the everything mode, SAM is used as a domain-agnostic 

General AI. This implies that, although the image is accurately segmented, the semantic 

understanding of each individual object remains unknown. Therefore, SAM needs to be 

used in combination with other domain-specific models for obtaining water-related hints. 

Figure 2. Diagram of the structure of the SAM model. Though the SAM supports both the automatic 

everything and manual prompt modes, this study only adopted the former mode to fully exploit the 

segmentation capability of the SAM. The prompt encoder was, thus, not used. 

 

2.1.2 Brief introduction to ResUnet model 

In this study, the task of providing water-related hints to filter objects segmented by 
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SAM is conducted by the ResUnet model. ResUnet is a conventional end-to-end 

convolutional neural network, employing the Unet structure as its backbone (Figure 3a). 

As a fully convolutional network, Unet has shown efficacy in pixel-level tasks such as 

semantic segmentation (Ronneberger et al., 2015).  

The Unet-based model comprises a contraction (encoding) and an expanding 

(decoding) path, creating a symmetric u-shaped architecture. During contraction, spatial 

information decreases while feature information increases. The expanding path decodes 

extracted features into spatial information. The model combines features and spatial 

information through skip connections, aiding in preserving spatial detail (Drozdzal et al., 

2016). The change in feature size is opposite between the contraction and expanding paths. 

ReLU activation is applied to features in each block. The symmetric structure allows the 

decoding layers to match their encoding layers, transmitting initial context and texture 

information for accurate segmentation. 

Each encoding or decoding block of ResUnet integrates ResNet-50, a validated 

model structure for water segmentation (Wagner et al., 2023). ResNet-50 is a well-known 

convolutional neural network architecture in computer vision tasks, exceling in image 

recognition and can capture intricate features of images. ResNet-50 addresses vanishing 

gradient problems through residual blocks, enabling the stable training of multiple-layer 

based model architecture. With 50 layers, shortcut connections efficiently learn residual 

functions (Figure 3 (b) and (c)). 

The ResUnet will struggle with qualified precision given limited training data or 

when facing new scenes that are significantly divergent from its training dataset’s 

contexts. Therefore, this study avoids using the ResUnet model directly for mask 

generation. Instead, we rely on the water probability distribution output by it to identify 

the most water-like pixel in each image. By aligning the pixel with SAM’s segmentations, 

the water body object is pinpointed. In essence, ResUnet50 can be viewed as an 

automated prompter, handling the object filter task that typically necessitates manual 

visual recognition in the post-processing of SAM’s outputs. 
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Figure 3. Diagram of (a) the structure of ResUnet model; (b) the structure of the ResNet-50; and (c) 

the residual operations in the ResNet-50. While the ResUnet model can generate probabilities for all 

the pixels in images, only the pixel with the highest probability will be used in subsequent applications. 

 

2.2 Data quality control method 

The above procedure aided by the ResUnet+SAM framework can produce water 

masks for each image along with its corresponding SOFI value, capturing temporal 

fluctuations in water levels. However, in instances where there is a considerable 

discrepancy in identifying the most water-like pixel by the domain-specific model 

(ResUnet), the framework may yield water segmentation results with significant errors. 

For these exceptional images, the calculated SOFI values are erratic and lack 

informativeness for model calibration, thus should be excluded. 

This study uses an unsupervised clustering algorithm as the data quality control 

method for the removal of anomalous water masks. Images captured by river cameras are 

typically taken at small time intervals, resulting in a temporally evolving water mask 

sequence derived from the image sequence. Specifically, a water mask at a given time is 

expected to exhibit morphological similarity to water masks captured at adjacent 

moments. In datasets covering a lengthy time span with a substantial accumulation of 

images, a given water mask should have similar counterparts not only in adjacent time 

frames but also in moments with similar hydrological conditions. Building upon this 

assumption, the absence of morphologically similar water masks for a specific mask 

within the temporal sequence indicates an outlier, leading to its removal from the dataset. 

As depicted in Figure 4, each mask generated by the framework undergoes uniform 
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division into multiple sub-regions of identical size, with subsequent calculation of SOFI 

values within each sub-region. These SOFI values are then assembled into a one-

dimensional vector, serving to approximately characterize the morphological pattern of 

the mask. Subsequently, the DBSCAN method is applied to cluster these vectors.  

DBSCAN is a density-based clustering algorithm designed to cluster data with 

arbitrary shapes in the presence of noise within high-dimensional data (Khan et al., 2014). 

The fundamental concept behind DBSCAN is that each data point within a cluster must 

have a neighborhood of a defined radius (Eps) containing at least a specified minimum 

number of data points (MinPts). In other words, the number of data points within this 

neighborhood must surpass a certain threshold. The Eps-neighborhood of a given data 

point ‘p’, 𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸, is defined as follows: 

𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸 = {𝑞𝑞 ∈ 𝐷𝐷/𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(𝑝𝑝,𝑞𝑞) < 𝐸𝐸𝐸𝐸𝐸𝐸}                 (1) 

Here, D represents the database of data points (SOFI vectors). The function 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑(·) 

is used to calculate the Euclidean distance between two data points. If the Eps-

neighborhoods of a data point ‘p’ contain at least the required minimum number of points, 

the point is termed a core point. The core point is defined by the condition: 

𝑁𝑁𝐸𝐸𝐸𝐸𝐸𝐸(𝑃𝑃) > 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀                       (2) 

DBSCAN identifies clusters by examining the Eps-neighborhood of each data point 

in the dataset. If the Eps-neighborhood of a point ‘p’ contains more than MinPts, a new 

cluster is formed with ‘p’ as the core point. The algorithm then iteratively collects points 

density-reachable from these core points, potentially leading to the creation of a new 

density-reachable cluster. In our study, Eps and MinPts were configured as 0.5 and 5, 

respectively. 

The aforementioned process continues until no further points can be added to any 

cluster, signifying the algorithm’s termination. Ultimately, mask images corresponding to 

outlier data points, which do not belong to any cluster, are identified as anomalies and 

subsequently removed. The remaining data is retained for characterizing the trend of 

water levels over time. 
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Figure 4. Diagram of data quality control on water masks. In this study, each water mask was divided 

into 3×4 patches. SOFI was calculated separately in each patch, and then synthesized into a twelve-

dimension SOFI vector. The SOFI vector series were used for subsequent abnormal water 

segmentation identification based on DBSCAN. 

 

2.3 Data 

2.3.1 Dataset for pretraining ResUnet 

The ResUnet model is pre-trained on the RIWA dataset (River Water Segmentation 

Dataset; Wagner et al., 2023). The dataset represents the first version of pixel-wise binary 

river water segmentation that offers resolutions of up to 1536×1536 pixels. Comprising a 

total of 789 training images, 228 validation images, and 111 testing images, RIWA is a 

compilation of fine-labeled images captured by smartphones, drones, and digital single 

lens reflex cameras, in addition to suitable images extracted from the Water Segmentation 

Dataset (Liang et al., 2020). As shown in Figure 5, the images in this dataset encompass 

various lighting conditions, weather scenarios, and perspectives. 
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Figure 5. Illustration of example images in the RIWA dataset. Images with widths or heights exceeding 

512 are divided into 512×512 sub-patches for model input. 

 

2.3.1 Dataset for the application of ResUnet+SAM framework 

The framework was applied to a river camera image dataset collected in the 

Tewkesbury, UK (Vetra-Carvalho et al., 2020). The dataset comprises images and water 

level observations acquired from river cameras installed at four spots: Diglis Lock, 

Evesham, Strensham Lock, and Tewkesbury Marina, situated along the rivers Avon and 

Severn in the UK (Figure 6). These observations cover the period between November 

21st and December 5th, 2012, during a significant flooding event in the Tewkesbury 

region. The dataset offers daytime water level data for both River Avon and River Severn, 

encompassing both the rising and falling limbs of the flood. 

The water level values for the four river camera images during this period are also 

extracted. High-accuracy field-of-view point measurements are utilized for each camera, 

employing Leica TS 12 (TS) and Leica CS10/CS15 & GS Sensor instruments (GNSS) 

and Total Station. The dataset includes a total of 141, 136, 144, and 138 images from the 

Diglis Lock, Evesham, Strensham Lock, and Tewkesbury Marina, respectively. However, 

not every image in the dataset is labeled with a water level value, the number of images 

with associated valid water level records in the four locations is 50, 46, 114, and 138, 

respectively. The position of water and non-water pixels for each image is manually 

annotated to serve as the ground truth water masks. 
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Figure 6. Camera perspectives from (a) Diglis Lock, (b) Evesham, (c) Strensham Lock, and (d) 

Tewkesbury Marina. The yellow dots depict a selection of measured points within the cameras’ field 

of view in the construction of the original dataset, utilized for extracting water level from the images. 

The above example images are referenced from Vandaele et al (2021). 

 

2.4 Experimental setup 

2.4.1 Model setup 

The ResUnet model was pretrained on the RIWA dataset for 100 epochs using cross 

entropy (Lecun et al., 2015) as loss function, a learning rate of 0.001, and a batch size of 

16. Parameter updates were performed using the training set, and the model parameters 

from the epoch with the optimal performance on the validation set were chosen as the 

final parameters. 

The official GitHub repository of SAM offers three types of pre-trained models 

distinguished by varying backbone sizes: ViT-B, ViT-L, and ViT-H. These models’ 

parameter sizes span from small to large. ViT-H notably outperforms ViT-B, though its 

increased complexity leads to multiplied testing time. For our research, we chose to adopt 

ViT-H as the encoder to achieve the optimal performance of the everything modes of SAM. 

2.4.2 Image preprocessing 

Both images and masks in the RIWA dataset have arbitrary sizes. To standardize 

image inputs for ResUnet, the dataset underwent automated preprocessing to generate 

squared input samples, all with dimensions of 512×512 pixels. For images larger than 512 

pixels in width or height, they and their masks were divided into multiple 512×512 sub-
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patches (Figure 6). Images with dimensions smaller than 512 pixels in either width or 

height were resampled to 512 pixels in the corresponding dimension. 

In the application of the ResUnet+SAM framework to the river image dataset in 

Tewkesbury, UK, the initial step also involved dividing the images into 512×512 sub-

patches as described above. These sub-patches were then input into the pre-trained 

ResUnet to calculate the probability of each pixel belonging to the water class. The 

probability distributions of all sub-patches were combined to determine the position of 

the pixel with the highest probability in the complete image. Specifically, if different sub-

patches had overlapping regions, the probability of the overlapping region was calculated 

by averaging the probabilities of each sub-patch. However, when SAM was applied to the 

image to perform the everything mode segmentation, the image was input to SAM in its 

entirety, eliminating the need to slice the image into sub-patches. Additionally, during the 

data quality control process, the size of the sub-patch for SOFI calculation was also 

configured as 512×512 pixels. 

2.4.3 Evaluation metrics 

To assess the reliability of the pixel identified as being most water-like by ResUnet, 

accuracy was introduced as the metric to indicate the proportion of pixels that truly 

represent water among all the identified most water-like pixels for each of the four 

locations. 

As for the water segmentation task, the intersection over union ratio (IoU), also 

known as the Jaccard index (Rezatofighi et al., 2019), was used for comparing the water 

segmentation result (𝑆𝑆) to the manually annotation (𝑆̂𝑆). IoU is computed as:   

𝐼𝐼𝐼𝐼𝐼𝐼 =  1
𝑛𝑛
�𝑆𝑆𝑖𝑖∩𝑆̂𝑆𝑖𝑖
𝑆𝑆𝑖𝑖∪𝑆̂𝑆𝑖𝑖

�                          (3) 

where 𝑆𝑆𝑖𝑖  and 𝑆̂𝑆𝑖𝑖  is the area covered by water in a segmented image and 

corresponding ground truth water mask, respectively. The index varies from 0% to 100% 

to represent complete misclassification to perfect classification. 

Meanwhile, to further compare the model’s ability to identify water bodies at 

different pixel coordinates within images, accuracy was used again but to indicate the 

proportion of times a pixel coordinate is correctly recognized as water body by models, 

out of all the times this pixel truly belongs to water body across different images taken in 

the same location.  



15 
 

Moreover, the Spearman correlation coefficient and Pearson correlation coefficient 

(de Winter et al., 2016), were applied to images affiliated with ground truth water level 

data in the four locations. These coefficients were used to evaluate and describe the extent 

of correlation between the estimated SOFI values and the scalar values of water level. 

 

3. Results 

3.1 The performance on most water-like pixel identification 

Firstly, we investigates the distribution patterns of most water-like pixels identified 

by ResUnet, and whether the identified pixels correspond to actual water. This serves as 

the premise for ResUnet to provide water-related hints for SAM. 

Figure 7 provides a visualization of the spatial distribution of pixels most resembling 

water, as identified by the ResUnet model in images captured at various locations by river 

cameras. The illustration highlights that, across different moments in time, pixels 

identified as closely resembling water exhibited a clustering pattern, with their clustering 

centers shifting in response to fluctuations in river water levels. Moreover, these pixels 

mainly clustered within the central regions of the water bodies rather than at the interfaces 

between water and the non-water background. Therefore, the confidence of the single pre-

trained ResUnet model in discerning water within the interior of river channels is higher, 

while its efficacy at the water body’s periphery cannot be guaranteed. 

Figure 7. The kernel density of pixels with the highest probability of belonging to water identified by 

the ResUnet model in river camera images taken at different time points at the four locations. 
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Figure 8 further statistically analyzes the probability values associated with pixels 

identified by the pre-trained ResUnet model as having the highest likelihood of belonging 

to water. Across all four locations, the majority of the identified pixels exhibited a 

probability of being water exceeding 0.95, and the accuracy that the pixel identified as 

the most water-like pixel is truely a water pixel exceeded 90%. The identified pixels can 

effectively represent water bodies. 

Figure 8. (a) The box plot depicting the probability values corresponding to the pixel with the highest 

probability of belonging to water among different images at Diglis Lock, Evesham, Strensham Lock, 

and Tewkesbury Marina. The upper and lower boundary of the box represent the upper (0.75) and 

lower quartile (0.25), the solid line represents the median, the whiskers extend to 1.5 times the 

interquartile range, and the dots are outliers. (b) The accuracy that the pixel with the highest probability 

of belonging to water is truly a water pixel. 

 

3.2 The performance on water segmentation 

Aided by the robust most-water-like pixel identification by ResUnet and the class-

agnostic segmentation by SAM, the framework has produced the corresponding water 

masks. Compared with the single pre-trained model, the framework’s superior 

performance on water segmentation is demonstrated. As depicted in Figure 9, at Diglis 

Lock, Evesham, and Strensham Lock, the ResUnet+SAM framework consistently 

outperformed the single ResUnet model with statistically significant superiorities in terms 

of IoU values. The statistical significance was verified by the Analysis of Variance 

(ANOVA), with p-value less than 0.01 given the confidence level of 95%. At these three 

locations, the median IoU values for individual images all exceeded 0.95. 



17 
 

At Tewkesbury Marina, the advantage of the ResUnet+SAM framework over the 

ResUnet model was less pronounced. This is attributed to SAM conflating water bodies 

and wet embarkment ground as a unified object in some images. However, the median 

IoU value of the framework for single images was still close to 1. Meanwhile, predictions 

with very low IoU values (<0.5) by the ResUnet+SAM framework were also fewer than 

those produced by the ResUnet model. The findings across the four locations collectively 

suggest that the integration of ResUnet and SAM can refine the water segmentation 

process and has generated more reliable water masks. 

Figure 9. The IoU values for water body segmentation by the ResUnet+SAM framework and the 

ResUnet model at Diglis Lock, Evesham, Strensham Lock, and Tewkesbury Marina. 

 

Figure 10 further compares the accuracy achieved by the ResUnet+SAM framework 

and the ResUnet model across various pixel coordinates within the images. the single 

ResUnet model performed well on discerning water pixels within the central regions of 

the water bodies but encountered challenges in accurately segmenting water pixels in 

transitional zones between water and non-water pixels, notably around the pillar at Diglis 

Lock, as well as the objects along the riverbank in the other three locations. Consequently, 
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the single ResUnet falls short in delineating the contours of the water bodies with the 

same level of precision as the coupling framework. In contrast, the ResUnet+SAM 

framework consistently presented a high degree of accuracy at not only pixels residing 

within the water bodies, but also those positioned along the interfaces between the water 

and adjacent elements, such as river banks, trees, pillars, and other background features.  

Figure 10. The accuracy achieved by the ResUnet+SAM framework and the ResUnet across various 

pixel coordinates within the river camera images for the four locations. 

 

In Figure 11, three example images with varying water levels at each of the four 

locations, along with their corresponding water masks, as well as the water segmentation 

results achieved by different methods are visualized. It can be observed that the single 

ResUnet model struggled to accurately extract water pixels. Similar to previous findings 

illustrated in Figure 10, in some images, the sky was misclassified as water due to its blue 

appearance, while in other cases, damp ground and the reflections of trees or pillars on 

the water surface led to misclassification by ResUnet, causing the water areas covered by 

reflections to be unrecognized. However, these interfering factors have not significantly 

impacted water segmentation when using the ResUnet+SAM framework. For each 

example image, the framework has effectively captured the water body outlines, 

achieving precise segmentation of water pixels. 
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Figure 11. Illustrative examples of water segmentation results of ResUnet+SAM and ResUnet at 

Diglis Lock, Evesham, Strensham Lock, and Tewkesbury Marina. 

 

3.3 The effectiveness of data quality control 

Based on the water segmentation results, SOFI values representing the proportion of 

water pixels for each image can be computed. Preceding the comparison between the 

SOFI sequences and actual variations in water levels, the DBSCAN unsupervised 

clustering algorithm was employed to identify anomalous prediction values for data 

quality control. 

As shown in Figure 12, at Diglis Lock, Strensham Lock, and Tewkesbury Marina, 

water mask sequences underwent the anomaly detection process, resulting in the removal 

of 3, 3, and 4 images with significant prediction deviations (IoU value<0.5), respectively. 

Consequently, the minimum IoU values for individual images in these sequences were 

elevated to above 0.6, notably reaching 0.88 for Tewkesbury Marina after data quality 

control. For the Evesham, ResUnet+SAM exhibited reasonable predictions across all 

images, with a minimum IoU value of 0.74, thus leading to no exclusion of images at this 
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site though processed by data quality control method. The substantial improvement in 

minimum IoU values for most locations signifies the efficacy of the DBSCAN method.  

Regarding the single ResUnet model, the errors within its generated water masks 

were categorized as systematic errors (overall overestimation or underestimation), and its 

results with significant errors could not be eliminated through the outlier detection 

methods.  

Figure 12. Number of images and corresponding minimum IoU values before and after data quality 

control at Diglis Lock, Evesham, Strensham Lock, and Tewkesbury Marina. 

 

3.4 The performance on water level trend monitoring 

The inception of this study is to employ river camera image sequences to monitor the 

trend in water levels. Figure 13 presents a comparative analysis of the trend in SOFI time 

series contrasted against the actual water level time series at four locations. It should be 

noted that the images removed through data quality control were not considered for both 

the single ResUnet and the ResUnet+SAM framework to focus on the inherent 

performance differences between them. 

The figure illustrates that, across Diglis Lock, Evesham, and Strensham Lock, the 

SOFI variations obtained using the ResUnet+SAM framework closely aligned with the 
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actual water level fluctuations. The alignment remained consistent irrespective of high or 

low water levels, effectively capturing the water level dynamics. Notably at Strensham 

Lock, where water level changes were substantial, the SOFI derived from the framework 

still matched the water levels, accurately capturing even minor variations. 

At Tewkesbury Marina, the framework tended to overestimate water levels at specific 

intervals. Nevertheless, it still provided predictions that were relatively accurate in 

magnitude for extremely high and low water levels. In contrast, the SOFI values 

calculated based on the water segmentation results of ResUnet presented larger errors, 

especially at Diglis Lock, Evesham, and Strensham Lock, with a greater number of 

anomalies, thereby compromising the accurate depiction of actual water level trends. 

Moreover, most of these errors were systematic errors that are difficult to be eliminated 

through data quality control. 

Figure 13. The trends of the actual water levels and the SOFI time series derived from both the 

ResUnet+SAM framework and the ResUnet model at Diglis Lock, Evesham, Strensham Lock, and 

Tewkesbury Marina. It should be noted that the images from different locations are sorted by time, but 

the time intervals between individual images are not uniform. 
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From quantitative perspective, the Spearman correlation coefficient and Pearson 

correlation coefficient between the SOFI time series obtained from the ResUnet+SAM 

framework and the actual water level time series were also superior to those of the 

ResUnet model across all locations (Table 1). The Pearson correlation coefficient 

exceeded 0.8 in most locations, and the Spearman correlation coefficient even reached 

0.92 at Strensham Lock. These results quantitatively demonstrate the strong correlation 

between the SOFI time series obtained from the ResUnet+SAM framework and the actual 

water level time series, confirming the earlier assertion from Figure 13. Hence, the 

framework practically facilitates the monitoring of the temporal water level trend. 

Table 1. The Spearman correlation coefficient and Pearson correlation coefficient between the SOFI 

time series obtained using the ResUnet+SAM method, the ResUnet model, and the actual water level 

time series at various locations 

 Spearman correlation coefficient Pearson correlation coefficient 

 ResUnet ResUnet+SAM ResUnet ResUnet+SAM 

Diglis Lock 0.28 0.84 0.26 0.88 
Evesham 0.39 0.78 0.18 0.83 

Strensham Lock 0.74 0.92 0.58 0.83 

Tewkesbury Marina 0.76 0.78 0.59 0.78 

 

Table 2 further explores the error distribution patterns of the normalized values of the 

SOFI time series obtained from the ResUnet+SAM framework and the ResUnet model. 

The correlation between the errors of the ResUnet+SAM framework and the normalized 

actual water levels was lower compared to that of the ResUnet model. The error 

distribution of the ResUnet+SAM framework appeared to be more random, while the 

errors of the ResUnet model exhibited a higher correlation with the water level values. 

Particularly, errors generated under low-flow conditions tended to be more pronounced. 

Table 2. The Pearson correlation coefficient between the error of SOFI time series obtained using the 

ResUnet+SAM method, the ResUnet model, and the actual water level time series at various locations. 

 Diglis Lock Evesham Strensham Lock 
Tewkesbury 

Marina 

ResUnet -0.81 -0.81 -0.78 -0.60 

ResUnet+SAM -0.64 -0.53 -0.08 -0.64 

 



23 
 

4. Discussion 

4.1 Why monitor water level trends rather than scalar values? 

This study monitors the water level trend based on the SOFI sequences derived from 

water segmentation results, as opposed to fetching the scalar river water level value. 

Using deep learning models, directly predicting river water levels in the continuous 

domain from images can also be realized (Vandaele et al., 2023). However, training a 

regression model that can establish a general mapping relationship between images and 

water level values poses a greater challenge compared to developing a transferable water 

segmentation model. The challenge is, for one thing, related to the construction 

complexity and inherent defect of the deep learning-based regression model. The 

imaging-based water level prediction demands more specific knowledge and manual 

parameter tuning for specific sites. Meanwhile, the establishment of the training dataset 

necessitates sites equipped with both cameras (for input preparation) and gauging stations 

(for label preparation), a requirement that cannot be met in certain regions given their 

local monitoring conditions. Furthermore, another limitation of the deep learning-based 

regression model is its inability to extrapolate outputs, making it challenging to monitor 

extremely high or low water levels (Vanden Boomen et al., 2021). 

Necessity and flexibility are two additional factors considered in not using regression 

models to directly deduce scalar water level from images. According to previous studies, 

a robust characterization of water level trends is already valuable enough for hydrologic 

model calibration, with the Spearman rank correlation coefficient serving as the 

optimization objective (Weeser et al., 2019). Therefore, the acquisition of scalar water 

level values becomes less necessary, as it will not yield significant information increment. 

Moreover, when there is a solid requirement arises for the acquisition of river stage data, 

this objective can be accomplished through the application of photogrammetric 

techniques to transform water segmentation results, then overlaying the transformed 

water masks onto the topography of channel geometry to derive scalar water level values 

(Sermet & Demir, 2023). The framework’s ability to accurately characterize water body 

edges, as demonstrated in the results, can support this potential application. Therefore, 

compared to directly predicting scalar water level values from images, monitoring water 

level trends based on water segmentation can be a more flexible technical path. 
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4.2 The compromise between the Narrow AI and General AI in imaging-
based hydrological monitoring 

AI is gradually progressing from the era of Narrow AI towards the era of General AI 

(Bundy, 2017). During the Narrow AI stage, researchers aim to develop AI models with 

highly specialized intelligence in specific domains, while in the General AI stage, the 

potential for large models pre-trained on web-scale datasets to revolutionize computer 

vision with robust zero-shot and few-shot generalization capabilities has emerged. Taking 

SAM as an example, it possesses the capacity to segment distinct entities in any given 

image, as long as no less than two separate objects exist. However, similar to other 

General AI, SAM cannot provide insights into the identity of a segmented object. Hence, 

for conducting downstream tasks such as water segmentation, prompt engineering 

becomes essential. Typically, the task of providing prompts is executed by humans, 

following predefined guidelines (V. Liu & Chilton, 2022). In our study, we automate the 

entire process by leveraging General AI (SAM) as the foundational component while 

employing Narrow AI (ResUnet) as a prompter. This approach represents a fusion of the 

capabilities from the two models, thus achieving a balance between the two AI paradigms.  

The framework proposed in this study also holds the potential for application to other 

imaging-based hydrological monitoring tasks that are currently constrained by the 

availability of annotated data. Examples include water quality monitoring or the detection 

of floating debris on the water surface (Ramírez et al., 2023; Solé Gómez et al., 2022). 

The combination paradigm maximizes the utilization of costs already consumed in 

General AI development, while compressing the marginal costs associated with 

developing domain-specific models for downstream tasks. The developers of the General 

AI, often large corporations like Meta AI and OpenAI who own substantial datasets and 

computational power resources, have shouldered the burden of training big foundation 

models for the public. The time and learning costs associated with the creation of 

standardized datasets and model selection by individual users in domain-specific model 

development can be substantially reduced. This facilitates a more convenient utilization 

of AI tools for non-computer science professionals, as exemplified by hydrologists in this 

study. 
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4.3 Are the SOFI time series derived by ResUnet+SAM informative for 
hydrologic model calibration? 

The higher the correlation between SOFI and actual water level values, the better the 

calibration efficacy for the hydrologic model. This is why there is a continuous pursuit of 

higher-performance water segmentation algorithms. According to the scenarios analysis 

conducted by Moy de Vitry & Leitão (2020), with correlation coefficients no less than 0.6 

between SOFI time series and real water level values, hydrologic models could be 

calibrated to achieve significantly higher predictive level than uncalibrated benchmark. 

The SOFI sequences generated by the ResUnet+SAM framework in this study can 

achieve correlation coefficients of over 0.8 for most regions, thus are informative for 

hydrologic model calibration.  

Despite the relative high accuracy level of ResUnet+SAM framework’s predictions, 

certain degrees of forecasting bias still exist (Section 3.2). To handle data points with 

large errors, this study employs the DBSCAN unsupervised clustering algorithm for 

removal. Within the remaining data, the uncertainty of the framework has been stabilized 

and its error distribution pattern exhibits more randomness compared to the single 

ResUnet (Section 3.4). Based on the research by Moy de Vitry & Leitão (2020) and Ilja 

Van Meerveld et al. (2017), a greater degree of randomness in the error distribution of 

water level class is more advantageous for model calibration when errors are minor. This 

phenomenon can be attributed to the compensating effect of the number of observations 

and their accuracy, as the random errors will average out when a sufficient number of 

observations are utilized. Accordingly, the existing errors in predictions by the coupling 

framework will not impact their effectiveness for model calibration. Therefore, the river 

camera-based water level trend observations are robust enough to practically support the 

hydrologic modeling. 

 

5. Conclusions 

In this study, we propose a novel transferable deep learning framework that combines 

General AI (SAM) with a domain-specific model (ResUnet pre-trained on a non-local 

river image dataset) for water segmentation and water level trend monitoring using the 

Static Observer Flooding Index (SOFI) as the proxy. The framework was implemented in 

four different riverside locations in Tewkesbury, UK, supported by an unsupervised 
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clustering method, Density-Based Spatial Clustering of Applications with Noise 

(DBSCAN), for data quality control, and compared with the single ResUnet model.  

Our results indicated the transferability of the ResUnet+SAM framework for water 

segmentation, with an average improvement of 13% in Intersection over Union (IoU) 

compared to ResUnet. Requiring no local data annotation or model parameter fine-tuning, 

the proposed framework accurately identified water pixels in the images and delineated 

the water body’s outline. Meanwhile, the average increase of 0.7 in minimum IoU across 

image sequences after the data quality control substantiated the effectiveness of the 

DBSCAN method. For all four locations, the spearman correlations between the SOFI 

and the actual water level exceeded 0.75, and the errors were randomly distributed. 

Regarding both the error magnitude and the error distribution pattern, the SOFI sequences 

obtained by the framework were informative for hydrological model calibration. 

Overall, this study establishes a transferable imaging-based water level trend 

monitoring paradigm through the use of Narrow AI and General AI in tandem, 

substantially lowering the requirement for localized data annotation and model 

deployment. Future work is recommended to adopt one-shot learning or different forms 

of prompts to adapt the framework to more diverse and complex monitoring conditions. 

Meanwhile, the data processed by the framework will be further integrated with 

hydrologic models to evaluate its enhancement of hydrological forecasting performance. 
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