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Abstract—Successive Interference Cancellation (SIC) is a key
element in a Non-Orthogonal Multiple-Access (NOMA) receiving
terminal and must be properly tuned in order to achieve the
optimal performance. To this purpose, receivers have to be
informed about which signal components have to be decoded
before decoding their own. In this framework, most literature
refers to a proposition reported in [1, Summary 6.1] for broadcast
Gaussian channels implying that the optimal decoding order
consists of decoding the weaker user signals first and then their
own. In this work, the blurred contours of the proposition are
brought into focus by considering the widespread Proportional
Fairness (PF) criterion to harmonize the user rates. Theorem 1
is the main contribution assessing the optimal SIC order of a
NOMA channel under a PF-optimal criterion. It is observed in
the paper that the optimum SIC order may change with different
utility functions which are concave and monotonically increasing
with the users’ individual SINRs. Numerical results are also
presented to confirm the validity in a fading environment.

Index Terms—Non-Orthogonal Multiple Access, Successive
Interference Cancellation, Proportional Fairness.

I. INTRODUCTION

NON-ORTHOGONAL Multiple Access (NOMA) is one
of the key technologies for future 5G and 6G wireless

systems that has emerged to enhance the efficiency, the fair-
ness, and the capacity of communication networks [2]–[6].
This work focuses on the downlink broadcast NOMA channel,
which is based on superposition encoding at the transmitting
base station and Successive Interference Cancellation (SIC) at
the user terminals. This theoretical analysis is based on the
achievable rates derived in [7]–[9] for the broadcast channel,
and its main goal is the optimization of a Key Performance
Indicator (KPI) characterizing the fairness of the communica-
tion network. The KPI considered is based on the Proportional
Fairness (PF) criterion proposed in [10]. The PF criterion
consists of the maximization of the minimum ratio of the
achievable rates of the different users to certain user target
rates. Since the target rates can be all equal to each other,
PF encompasses as a special case the Maximum-Minimum
(MAX-MIN) fairness criterion, consisting of the maximization
of the minimum user achievable rate. The advantage of PF
stands in the fact that MAX-MIN may lead to an excessive
penalty on the stronger users (experiencing better channel
conditions) in order to cope with the presence of very weak
users (experiencing bad channel conditions). If that penalty is
not acceptable, choosing target rates depending on the channel
conditions (higher target rates for stronger users and lower for
weaker users) allows to limit the penalty itself.

The implementation of a NOMA communication system is
based on several requirements: i) the base station must know

the Channel State Information at the Transmitter (CSIT) in
oreder to establish a dynamic user hierarchy which allows
to allocate the transmitted resources in an optimum way
according to the KPI selected; ii) the base station adopts
a superposition encoding technique based on linear weights
characterizing the power allocation of the encoded components
targeted to the different users in the transmitted signal; this
power allocation is determined in order to satisfy an optimality
criterion; iii) the user terminals must know the signal gains
from the base station over the wireless channel, which is
referred to as Channel State Information at the Receiver
(CSIR), and the transmitted power allocation for themselves
and for the weaker users in order to implement correctly the
SIC. The knowledge of the weaker users’ power allocation
is related with the SIC ordering property investigated in
this work. According to [1, Summary 6.1], the cancellation
order at every receiver is always to decode the weaker users
before decoding its own data. This statement is referred to
in most of the NOMA literature without critical assessment.
The proposition in the original source is not stated as a
theorem and misses a specification of the KPI. Moreover,
the analytic development refers exclusively to the two-user
broadcast channel and its direct applicability to a multiuser
NOMA system is questionable.

In the framework of broadcast channels, the maximum sum-
rate is achieved when transmission occurs to only one of the
strongest user by greedy resource allocation. However, this
approach is deemed to be unfair since the users would all strive
to reach the proximity of the base station to take a chance
at receiving some information. This has been recognized and
rationalized by defining fairness criteria, like PF, without
detailed investigation on the optimization of the SIC order.
Thus, the purpose of this work is filling the gap and shedding a
light on this issue to resolve it by either confirming the classic
proposition of [1, Summary 6.1] or proposing a different
ordering scheme.

This work relies on earlier literature results for the definition
of the PF KPI [10] and of the basic condition allowing to
optimize the power allocation to maximize PF [11, Th. 1].
Building on these results, the optimum SIC order is derived
for any set of user SNR’s and target rates with respect to
the PF criterion. The organization is summarized briefly:
Section II characterizes the NOMA channel and introduces the
relevant notation. Section III introduces the framework of SIC
order optimization and the main result, Theorem 1. Section
IV provides numerical results to confirm the assessment and
Section V reports some concluding remarks.



II. SYSTEM MODEL

Consider a Base Station (BS) transmitting to K users the
signal X =

∑K
k=1Xk corresponding to the superposition

of K independent component signals Xk, representing the
information to be conveyed to the k-th user. The average
transmitted power is Px and the power of the k-th component
signal Xk is αkPx. The power allocation coefficients are
collected in the vector α = (α1, . . . , αK) ∈ SK , where SK is
the K-dimensional simplex:

SK ,

{
α : αk ≥ 0, k = 1, . . . ,K,

K∑
k=1

αk = 1

}
. (1)

The received signal at the k-th user is:

Yk = HkX + Zk, (2)

for k = 1, . . . ,K, where Hk is the channel gain to the k-
th user and Zk ∼ CN (0, 1) is the additive noise. Assuming
that the k-th user decodes the signals of users 1 to k− 1, the
achievable rates are [11]:

Rk = log2

(
1 +

ρkαk
1 + ρkβk

)
= log2

(
1 + ρkβk+1

1 + ρkβk

)
, (3)

for k = 1, . . . ,K, where ρk , |Hk|2Px is the k-th user SNR
and

βk ,
k−1∑
`=1

α`. (4)

For convenience, the following vectors are defined:

ρ , (ρ1, . . . , ρK) (5a)

T , (T1, . . . , TK) (5b)

α , (α1, . . . , αK) (5c)

According to the notations introduced, PF consists of the
maximization (over the power allocation) of the minimum
(over the K users) ratio of the achievable rates Rk to the target
rates Tk. This ratio is referred to as Achievable to Target rate
Ratio (ATR) in the following and is defined by

Φmin(ρ,T ,α) , min
1≤k≤K

Φk(ρ,T ,α), (6)

where

Φk(ρ,T ,α) ,
1

Tk
log2

(
1 + ρkβk+1

1 + ρkβk

)
. (7)

The PF-optimal power allocation vector α∗(ρ,T ) maximizes
the ATR Φmin(ρ,T ,α) over the K-dimensional simplex:

α∗(ρ,T ) , arg max
α∈SK

Φmin(ρ,T ,α). (8)

The PF criterion reduces to MAX-MIN by setting Tk = 1 for
all k = 1, . . . ,K.

Given ρ and T , it is proved in [11, Th. 1] that the resulting
non-convex optimization problem leading to the PF optimum
power allocation is equivalent to the solution wrt α of the
following equations:

λ = Φk(ρ,T ,α), k = 1, . . . ,K. (9)

π α1 α2 α3 Φmax-min(ρ,T )
1 2 3 0.2134 0.2583 0.5283 0.2791
1 3 2 0.2200 0.3426 0.4375 0.2868
2 1 3 0.1720 0.2710 0.5571 0.3001
2 3 1 0.1951 0.3934 0.4115 0.3323
3 1 2 0.1987 0.3099 0.4915 0.3317
3 2 1 0.2172 0.3482 0.4347 0.3535

TABLE I
EXAMPLE OF PF POWER ALLOCATION OPTIMIZATION WITH DIFFERENT

PERMUTATIONS OF ρ = (1, 3, 5) AND T = (1, 2, 3).

The unknown λ is independent of k and coincides with the
maximum of Φmin(ρ,T ,α) over α ∈ SK :

λ = Φmax-min(ρ,T ) , max
α∈SK

Φmin(ρ,T ,α)

= Φmin(ρ,T ,α∗(ρ,T )). (10)

III. OPTIMAL INTERFERENCE CANCELLATION ORDER

The ordering of the vector ρ determines how SIC is im-
plemented at the receivers. Specifically, it is assumed that the
k-th user terminal decodes, from its own received signal:

Yk = Hk(X1 + . . .+XK) + Zk, (11)

the signals Xk+1, . . . , XK (if k = K it decodes no other
signals), removes their interference by subtracting Hk(Xk+1+
. . .+XK) from Yk to obtain:

Yk −Hk(Xk+1 + . . .+XK)

= HkXk +Hk(X1 + . . .+Xk−1) + Zk. (12)

If k = 1, there is no interfering term Hk(X1 + . . . + Xk−1)
(it is equal to 0). In general, the interfering term is considered
as noise and the achievable rates (3) are derived. Thus, the
ordering of the elements in the SNR vector ρ determines the
SIC order.

The PF criterion leads to the optimum ATR Φmax-min(ρ,T )
depending on the given SNR and target rate vectors, namely,
ρ,T . Any permutation π ∈ SK (the permutation group
of K elements) determines a different value of the ATR
Φmax-min(πρ, πT ) and the optimum permutation maximizes
this value. Notice that the permutation applies to both the SNR
and the target rate vectors since the target rates are associated
to the users as the SNR’s. A simple numerical example is
reported in Table I. This example shows that the maximum
optimum ATR is attained when the permutation π sorts the
SNR’s in decreasing order, agreeing with the proposition
reported from [1, Summary 6.1] in the Introduction.1 However,
the question remains whether or not this is a general rule or it
occurs to be true in specific cases that the optimum SIC order
consists of decoding the weaker user signals first and then the
own signal. An answer is provided by the following theorem.

Theorem 1 The optimum SIC order with a PF criterion
characterized by the SNR vector ρ and the target rate vector

1Notice that this property does not hold when the power allocation is not the
optimum one, i.e., comparing Φmin(πρ, πT , πα) for different permutations
π ∈ SK does not necessarily lead to a maximum when the permuted SNR
vector πρ is sorted in noncincreasing order.



T consists of decoding the weaker user signals first (the ones
with lower SNR) and then the own signal.

Proof: Any permutation π ∈ SK is the composition of
several transpositions (2-cycles) [12]. Therefore, to prove the
theorem, it is sufficient to consider the effect of arbitrary
transpositions (m,m+ 1) for m = 1, . . . ,K − 1. To simplify
the notation, define the inverse SNR’s σk , ρ−1k and the
corresponding vector as σ , (σ1, . . . , σK). The PF-optimal
ATR is obtained by solving the equations:

λ =
1

Tk
log2

(
1 +

αk
σk + βk

)
(13)

for k = 1, . . . ,K. Then,

αk = (2λTk − 1)(σk + βk). (14)

As a consequence,

βk+1 = βk + αk = (2λTk − 1)σk + 2λTkβk. (15)

Then,

β2 = (2λT1 − 1)σ1, (16a)

β3 = (2λT2 − 1)σ2 + 2λT2(2λT1 − 1)σ1. (16b)

Iterating the previous equation yields:

βK+1 =

K∑
k=1

σk(2λTk − 1)2λ(Tk+1+...+TK). (17)

The PF-optimum ATR is obtained by solving the equation:

φ(λ,σ,T ) ,
K∑
k=1

σk(2λTk − 1)2λ(Tk+1+...+TK) = 1. (18)

The function φ(λ,σ,T ) is monotonically increasing wrt λ.
Moreover, φ(0,σ,T ) = 0 and

φ

(
λmax(σ,T ) , max

1≤k≤K

log2(1 + ρk)

Tk

)
> 1. (19)

Therefore, a solution of φ(λ,σ,T ) = 0 always exists, is
unique, and lies in the interval (0, λmax(σ,T )).

Now, consider the transposition τ = (m,m + 1) for some
m = 1, . . . ,K − 1, and the difference ∆φ = φ(λ,σ,T ) −
φ(λ, τσ, τT ). The transposition τ does not affect the terms
in the definition of φ(λ,σ,T ) corresponding to the indexes k
such that 1 ≤ k < m or m+1 < k ≤ K. Then, the difference
can be calculated as follows:

∆φ = σm(2λTm − 1)2λ(Tm+1+...+TK)

+ σm+1(2λTm+1 − 1)2λ(Tm+2+...+TK)

− σm+1(2λTm+1 − 1)2λ(Tm+Tm+2+...+TK)

− σm(2λTm − 1)2λ(Tm+2+...+TK)

= (σm − σm+1)(2λTm − 1)(2λTm+1 − 1)2λ(Tm+2+...+TK)

< 0, (20)

since σm < σm+1 and the other terms in the product are
positive for λ > 0. Therefore, φ(λ,σ,T ) < φ(λ, τσ, τT ) for
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Fig. 1. Counterexample for Remark 2.

every transposition τ = (m,m+1). Denoting λ∗(σ,T ) as the
solution of φ(λ,σ,T ) = 1 leads to the inequality:

λ∗(τσ, τT ) < λ∗(σ,T ). (21)

Therefore, any diversion from the monotonically increasing
order of σ reduces the PF-optimal ATR, so that the maximum
is attained when the inverse SNR vector is monotonically non-
decreasing or the SNR vector is monotonically nonincreasing,
which concludes the proof of the theorem.

Remark 1 The conclusion by Theorem 1 is expected in view
of the literature results, mostly referencing to the proposition
of [1, Summary 6.1] mentioned in the Introduction. However,
the result is not trivial and holds specifically in the case of
PF-optimal ATR, which is one of the most interesting fairness
criteria for practical applications. This fills a conceptual gap
which, to the author’s knowledge, has been overlooked in the
current technical literature for the last twenty years.

Remark 2 One of the anonymous Reviewers suggested that
the fact that the optimum SIC order consists of canceling
the weaker user signals first and then the own signal should
apply to any utility function that is concave and monotonically
increasing with each user’s individual SINR. However, this
generalization is not true, as illustrated by the following
example.

Consider the maximization of
∑K
k=1Rk/Tk instead of

min1≤k≤K Rk/Tk. This sum utility function is concave and
monotonically increasing with each user’s individual SINR in
both cases, as the Reviewer proposed.

To assess the claim, Fig. 1 illustrates the cases correspond-
ing to

K = 2,T = (2, 1),ρ = (5, 2) or (2, 5). (22)

The top curves report the target utility functions
∑K
k=1Rk/Tk

and min1≤k≤K Rk/Tk (labeled as “SUM” and “MIN” in
the legend, respectively). The curves evidence the different
behavior of the “SUM” and “MIN” utility functions. In the
“SUM” case, the optimum SIC order is canceling the stronger
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Fig. 2. Plot of the average MAX-MIN rate versus the average SNR for
a NOMA broadcast channel with K = 3 users and Rayleigh fading, in
correspondence of different permutations of the SIC order with respect to
the optimum nonincreasing order.

user signal first and then the own signal, contrary to the “MIN”
case, where the standard rule must be followed.

IV. NUMERICAL RESULTS WITH RAYLEIGH-DISTRIBUTED
CHANNEL GAINS

This section provides a numerical illustration of the impact
of SIC ordering by considering the average MAX-MIN rate
following the application of all possible permutations to a
nonincreasingly ordered SNR vector. Specifically, considering
Rayleigh-distributed channel gains, the SNRs are generated as
iid random variables with the following common cumulative
distribution function:

P (ρk < ρ) = 1− e−ρ. (23)

Fig. 2 refers to the case of K = 3 users. The diagrams
report the average (based on Ns = 103 pseudo-random SNR
sample vectors sorted in nonincreasing order) of the MAX-
MIN rate obtained after the application of all the possible
permutations to the sorted SNR sample vectors. They show
that the optimum MAX-MIN rate is attained when the SNR
vector is nonincreasingly order (corresponding to the identical
permutation), i.e., when every user decodes the weaker user
signals and cancels them before decoding its own. They
also illustrate the loss entailed by the other permutations,
confirming that the pessimum approach is having the SNRs
nondecreasingly ordered (i.e., when each user decodes the
stronger user signals before its own). The numerical values
show that the impact of the SIC order increases as the average
SNR grows larger. Similar results are reported in Fig. 3 for
K = 4 users (again, Ns = 103 pseudo-random realizations
sorted in nonincreasing order are considered) and a subset of
the 24 possible permutations, including the best and the worst
ones. The diagrams confirm, also in this case, that the best
and worst SIC orders agree with the predictions of Theorem
1.
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Fig. 3. Same as Fig. 2 but with K = 4 users.

V. CONCLUSIONS

The main goal of this work is providing a rigorous proof
of the well known proposition stated in [1, Summary 6.1]
that the optimum SIC ordering for NOMA consists in having
every receiver decode all the weaker user signals first and then
their own. Though every user can autonomously decide the
SIC order, the PF-optimal approach requires them to follow
the rule. The base station confides in their compliance and
uses it to optimize the power allocation in the superposition
encoded transmitted signal. Though the proposition has been
considered common knowledge for twenty years now, and it
is often dismissed as a trivial fact, there is no evidence, to
the author’s knowledge, of any proof of its optimality in the
literature, at least under the PF criterion.

APPENDIX A
MAX-MIN OPTIMUM SIC ORDERING

The theorem in this appendix addresses the special case of
MAX-MIN fairness. Though this is a special case of PF, it
provides a direct illustration of the applicability of the proof
concept in this simpler case.

Theorem 2 The optimum SIC order with a MAX-MIN fair-
ness criterion characterized by the SNR vector ρ consists of
decoding the weaker user signals first (the ones with lower
SNR) and then the own signal.

Proof: Any permutation π ∈ SK is the composition of
several transpositions (2-cycles) [12]. Therefore, to prove the
theorem, it is sufficient to consider the effect of arbitrary trans-
positions (m,m+ 1) for m = 1, . . . ,K− 1. For convenience,
define the inverse SNR’s σk , ρ−1k and σ , (σ1, . . . , σK).
The MAX-MIN ATR is obtained by solving the following
equations wrt ξ:

αk = (σk + βk)ξ, k = 1, . . . ,K (24)
K∑
k=1

αk = 1. (25)



The first equations yield:

β2 = α1 = σ1ξ (26a)
β3 = β2 + α2 = σ2ξ + σ1ξ(ξ + 1). (26b)

Iterating this approach yields the following K-th degree poly-
nomial equation:

βK+1 = ξ

K∑
k=1

σk(ξ + 1)K−k = 1. (27)

Now, define the polynomial function

φ(ξ,σ) , ξ

K∑
k=1

σk(ξ + 1)K−k. (28)

It can be checked that φ(ξ,σ) is monotonically increasing for
ξ ≥ 0, φ(0,σ) = 0, and

φ

(
1∑K

m=1 σm
,σ

)

=
1∑K

m=1 σm

K∑
k=1

σk

(
1 +

1∑K
m=1 σm

)K−k
>

1∑K
m=1 σm

K∑
k=1

σk

= 1. (29)

Therefore, a solution of φ(ξ,σ) = 1 exists and is unique
in the interval (0, 1/

∑K
k=1 σk). Now, let σm < σm+1 (or

equivalently ρm > ρm+1) and let τ denote the transposition
(m,m+ 1) for some 1 ≤ m < K. Since, for any ξ > 0,

σm(ξ + 1)K−m + σm+1(ξ + 1)K−m−1

< σm+1(ξ + 1)K−m + σm(ξ + 1)K−m−1, (30)

equivalent to the readily checked inequality

(σm − σm+1)ξ < 0, (31)

the following holds:

φ(ξ,σ) < φ(ξ, τσ). (32)

Thus, if ξ∗(σ) denotes the solution of φ(ξ,σ) = 1,

φ(ξ∗(σ), τσ) > φ(ξ∗(σ),σ) = 1. (33)

Hence, since φ(ξ,σ) is a monotonically increasing function
of ξ for ξ ≥ 0, the solution of φ(ξ, τσ) = 1 must be lower
than the solution of φ(ξ,σ) = 1, namely,

ξ∗(τσ) < ξ∗(σ). (34)

This means that the maximum solution of φ(ξ, πσ) = 1 among
all the possible permutations π ∈ SK , corresponds to the
permutation that sorts the vector σ in nondecreasing order.
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