References
1. Ravel J, Gajer P, Abdo Z, Schneider GM, Koenig SSK, McCulle SL, et
al. Vaginal microbiome of reproductive-age women. Proc Natl Acad Sci.
2011 Mar 15;108(Supplement 1):4680–7.
2. Brotman RM, Shardell MD, Gajer P, Fadrosh D, Chang K, Silver M, et
al. Association between the vaginal microbiota, menopause status and
signs of vulvovaginal atrophy. Menopause N Y N. 2014 May;21(5):450–8.
3. Characterization of the Vaginal Micro- and Mycobiome in Asymptomatic
Reproductive-Age Estonian Women [Internet]. [cited 2020 Jul 18].
Available from:
https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0054379
4. Greenbaum S, Greenbaum G, Moran-Gilad J, Weintraub AY. Ecological
dynamics of the vaginal microbiome in relation to health and disease. Am
J Obstet Gynecol. 2019 Apr 1;220(4):324–35.
5. Peric A, Weiss J, Vulliemoz N, Baud D, Stojanov M. Bacterial
Colonization of the Female Upper Genital Tract. Int J Mol Sci. 2019
Jan;20(14):3405.
6. Miles SM, Hardy BL, Merrell DS. Investigation of the microbiota of
the reproductive tract in women undergoing a total hysterectomy and
bilateral salpingo-oopherectomy. Fertil Steril. 2017 Mar
1;107(3):813-820.e1.
7. Chen C, Song X, Wei W, Zhong H, Dai J, Lan Z, et al. The microbiota
continuum along the female reproductive tract and its relation to
uterine-related diseases. Nat Commun. 2017 Oct 17;8(1):875.
8. Pelzer ES, Willner D, Buttini M, Hafner LM, Theodoropoulos C, Huygens
F. The fallopian tube microbiome: implications for reproductive health.
Oncotarget. 2018 Mar 29;9(30):21541–51.
9. Zhou B, Sun C, Huang J, Xia M, Guo E, Li N, et al. The biodiversity
Composition of Microbiome in Ovarian Carcinoma Patients. Sci Rep. 2019
Feb 8;9(1):1691.
10. Soper DE. Pelvic Inflammatory Disease. Obstet Gynecol. 2010
Aug;116(2):419–428.
11. Ng KYB, Cheong Y. Hydrosalpinx – Salpingostomy, salpingectomy or
tubal occlusion. Best Pract Res Clin Obstet Gynaecol. 2019 Aug
1;59:41–7.
12. Johnson N, van Voorst S, Sowter MC, Strandell A, Mol BWJ. Surgical
treatment for tubal disease in women due to undergo in vitro
fertilisation. Cochrane Database Syst Rev [Internet]. 2010 Jan 20
[cited 2020 Jul 18];2010(1). Available from:
https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7154223/
13. Moreno I, Codoñer FM, Vilella F, Valbuena D, Martinez-Blanch JF,
Jimenez-Almazán J, et al. Evidence that the endometrial microbiota has
an effect on implantation success or failure. Am J Obstet Gynecol. 2016
Dec 1;215(6):684–703.
14. Amato V, Papaleo E, Pasciuta R, Viganò P, Ferrarese R, Clementi N,
et al. Differential Composition of Vaginal Microbiome, but Not of
Seminal Microbiome, Is Associated With Successful Intrauterine
Insemination in Couples With Idiopathic Infertility: A Prospective
Observational Study. Open Forum Infect Dis [Internet]. 2020 Jan 1
[cited 2020 Jul 18];7(1). Available from:
https://academic.oup.com/ofid/article/7/1/ofz525/5671633
15. Haahr T, Zacho J, Bräuner M, Shathmigha K, Jensen JS, Humaidan P.
Reproductive outcome of patients undergoing in vitro fertilisation
treatment and diagnosed with bacterial vaginosis or abnormal vaginal
microbiota: a systematic PRISMA review and meta-analysis. BJOG Int J
Obstet Gynaecol. 2019;126(2):200–7.
16. Wiesenfeld HC, Hillier SL, Krohn MA, Landers DV, Sweet RL. Bacterial
Vaginosis Is a Strong Predictor of Neisseria gonorrhoeae and Chlamydia
trachomatis Infection. Clin Infect Dis. 2003 Mar 1;36(5):663–8.
17. Ness RB, Kip KE, Hillier SL, Soper DE, Stamm CA, Sweet RL, et al. A
Cluster Analysis of Bacterial Vaginosis–associated Microflora and
Pelvic Inflammatory Disease. Am J Epidemiol. 2005 Sep 15;162(6):585–90.
18. Leitich H, Kiss H. Asymptomatic bacterial vaginosis and intermediate
flora as risk factors for adverse pregnancy outcome. Best Pract Res Clin
Obstet Gynaecol. 2007 Jun 1;21(3):375–90.
19. Naqib A, Poggi S, Wang W, Hyde M, Kunstman K, Green SJ. Making and
Sequencing Heavily Multiplexed, High-Throughput 16S Ribosomal RNA Gene
Amplicon Libraries Using a Flexible, Two-Stage PCR Protocol. In:
Raghavachari N, Garcia-Reyero N, editors. Gene Expression Analysis:
Methods and Protocols [Internet]. New York, NY: Springer; 2018
[cited 2022 Jan 17]. p. 149–69. (Methods in Molecular Biology).
Available from: https://doi.org/10.1007/978-1-4939-7834-2_7
20. Walters W, Hyde ER, Berg-Lyons D, Ackermann G, Humphrey G, Parada A,
et al. Improved Bacterial 16S rRNA Gene (V4 and V4-5) and Fungal
Internal Transcribed Spacer Marker Gene Primers for Microbial Community
Surveys. mSystems. 2015 Dec 22;1(1):e00009-15.
21. Babraham Bioinformatics - FastQC A Quality Control tool for High
Throughput Sequence Data [Internet]. [cited 2022 Mar 14].
Available from:
https://www.bioinformatics.babraham.ac.uk/projects/fastqc/
22. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for
Illumina sequence data. Bioinformatics. 2014 Aug 1;30(15):2114–20.
23. BBMap download | SourceForge.net [Internet]. [cited
2022 Mar 14]. Available from: https://sourceforge.net/projects/bbmap/
24. Bolyen E, Rideout JR, Dillon MR, Bokulich NA, Abnet CC, Al-Ghalith
GA, et al. Reproducible, interactive, scalable and extensible microbiome
data science using QIIME 2. Nat Biotechnol. 2019 Aug;37(8):852–7.
25. Amir A, McDonald D, Navas-Molina JA, Kopylova E, Morton JT, Xu ZZ,
et al. Deblur Rapidly Resolves Single-Nucleotide Community Sequence
Patterns. mSystems [Internet]. 2017 Mar 7 [cited 2022 Jan 17];
Available from:
https://journals.asm.org/doi/abs/10.1128/mSystems.00191-16
26. Quast C, Pruesse E, Yilmaz P, Gerken J, Schweer T, Yarza P, et al.
The SILVA ribosomal RNA gene database project: improved data processing
and web-based tools. Nucleic Acids Res. 2013 Jan 1;41(D1):D590–6.
27. Davis NM, Proctor DM, Holmes SP, Relman DA, Callahan BJ. Simple
statistical identification and removal of contaminant sequences in
marker-gene and metagenomics data. Microbiome. 2018 Dec 17;6(1):226.
28. Liu C, Cui Y, Li X, Yao M. microeco: an R package for data mining in
microbial community ecology. FEMS Microbiol Ecol. 2021 Feb
1;97(2):fiaa255.
29. Segata N, Izard J, Waldron L, Gevers D, Miropolsky L, Garrett WS, et
al. Metagenomic biomarker discovery and explanation. Genome Biol. 2011
Jun 24;12(6):R60.
30. Sterpu I, Fransson E, Hugerth LW, Du J, Pereira M, Cheng L, et al.
No evidence for a placental microbiome in human pregnancies at term. Am
J Obstet Gynecol. 2021 Mar 1;224(3):296.e1-296.e23.
31. Aagaard K, Ma J, Antony KM, Ganu R, Petrosino J, Versalovic J. The
Placenta Harbors a Unique Microbiome. Sci Transl Med. 2014 May
21;6(237):237ra65.
32. Eisenhofer R, Minich JJ, Marotz C, Cooper A, Knight R, Weyrich LS.
Contamination in Low Microbial Biomass Microbiome Studies: Issues and
Recommendations. Trends Microbiol. 2019 Feb 1;27(2):105–17.
33. Fouda UM, Elshaer HS, Youssef MA, Darweesh FF. Extended doxycycline
treatment versus salpingectomy in the management of patients
with hydrosalpinx undergoing IVF-ET. J Ovarian Res. 2020 Jun
12;13(1):69.
34. Onderdonk AB, Delaney ML, Fichorova RN. The Human Microbiome during
Bacterial Vaginosis. Clin Microbiol Rev. 2016 Apr;29(2):223–38.
Table 1. Clinical and demographic characteristics of
study participants
Figure 1. Diversity measures compared between sites and groups.a . Alpha diversity plot for vaginal samples of cases vs.
controls at the genus level (using Shannon index). b . Alpha
diversity plot comparing vaginal and FT samples of controls at the genus
level (using Shannon index). c . Beta diversity plot comparing
vaginal and FT samples of controls at the genus level, (using
Bray–Curtis dissimilarity index).
Figure 2 . Relative abundances of different phyla in vaginal vs.
FT samples
Figure 3 . Differential abundances of bacterial genera in
vaginal samples of cases and controls (using lefse)
Table S1. Sample sequencing data