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Abstract

Analytical formalisms to model interband tunneling, including the
Kane method and the WKB approach, are discussed in general. Direc-
tions are suggested for how to apply these formalisms to a tunneling device
of recent interest, the spiked pn junction in GaN, which lacks the simple
band structure and uniform fields assumed by conventional models.

1 Introduction

Given the difficulty of creating good ohmic contacts to n-doped GaN, the ni-
trides community would benefit greatly from alternative structures which al-
low large currents to flow from p-contacts into n-GaN. One such possibility is
“spiked” pn junctions in GaN, where the regrowth of the junction interface pro-
duces a built-in sheet charge. This sheet charge notches the band diagram, forc-
ing the high electric fields necessary for large tunneling currents. Recent work
has derived analytical approximations to the band diagrams of these devices,
yet, due to the highly non-uniform fields, simple expressions of the tunneling
currents in these devices remain an open problem. Relating the design param-
eters, eg geometry and doping, of these interfaces to the tunneling current will
be vital for rapid modeling if these structures are to find application in LEDs
and more.

The initial theoretical studies of interband tunneling began with Keldysh [3]
and Kane [2]. In particular, the two-band model of Kane has proven an effective
approximation for the study of many direct-gap semiconductors. A major intu-
itive simplification was introduced by Sze [6], who approximated the problem as
a classic tunneling wavefunction through a one-dimensional barrier, neglecting
the details of the matrix element and band-structure. Both methods assumed,
however, a uniform electric field. Within Sze’s picture, this assumption can be
relaxed rather simply. Many authors (eg [7], [8]) have since expanded Kane’s
model as well to non-uniform field, though at the cost of greater mathematical
complexity. Given the trade-offs of both Kane’s and Sze’s approaches, it will be
useful to study the application of each model to the non-uniform field profile of
the spiked pn junction.
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2 Sze’s WKB method

Given the mathematical ease of Sze’s method, it is the more natural place to
begin. In a semi-classical, effective mass/envelope function picture of electron
transport in a crystal, the state is imagined to be a wavepacket with simulta-
neously well-defined and smoothly evolving position x and crystal momentum
~k. The energy E of the tunneling electron is constant, but the bands EC(x),
EV (x) bend throughout the device. At any position x, one could then determine
the electron’s energy relative to changing the band edges, and then, from the
crystal dispersion relation, compute k(x) for every position.

As the electron enters the classically forbidden region, the x-component of
its wavevector passes through zero onto the imaginary axis and the wavepacket
decays in amplitude. As the electron exits the region, its wavevector passes
back through zero once more and returns to the real axis. Once k(x) is known,
the WKB approximation provides a simple expression for the transmission co-
efficient through a tunneling barrier:

T (E) = exp

{
−2

∫ xc

xv

dx|k(x)|
}

where xv and xc are the valence and conduction-side boundaries of the tunnel
region.

2.1 Reduction to a scattering problem

To evaluate this integral, k(x) should, in principle, come from the (complex)
dispersion relation of the crystal, or some model thereof (eg [1]). In our ap-
proach, we will properly evaluate k(x); however, it’s worth noting the clever
trick which Sze leverages to ignore the details of the dispersion and map the
solution onto an introductory-level scattering problem. In explaining this point,
we will consider only electrons with no transverse momentum, and we briefly
restore the assumption of uniform electric field, ξ(x) = ξ = EG/q(xc − xv).

With the assumption of parabolic bands (both of effective mass m∗) for small
k, one can analytically continue the dispersions E(k) = Ev(x) − ~2k2/2m∗,
E(k) = Ec(x) + ~2k2/2m∗ onto imaginary k to find valid solutions in the gap.
(Note that this only holds near to the respective band edges because of the
parabolicity assumption.) So, near xv, we have E = EV (x) + ~2|k|2/2m∗.
Since, at the start of the tunnel region, EV (xv) = E, and the slope of EV is
given by ξ, EV (x) = E − qξ(x− xV ), and

ik(x) =
√

2m∗qξ(x− xv)/~2

The above is formally the same as the classic dispersion of an particle of energy
E in a barrier U(x), where U(x) − E = qξ(x − xv). Playing the same game
near xc, we find an effective barrier U(x)−E = qξ(xc − x). When the electron
is deep into the tunneling region, the dispersion is of course more complicated.
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Nonetheless, Sze interpolates the simplest algebraic functional form for a barrier
U(x) which fits to the above limits. That is the quadratic:

U(x)− E =
(EG/2)2 − (qξx)2

EG

where the zero of x has been implicitly set to the mean of xc and xv. In Sze’s
approximation, the transmission coefficient for interband tunneling is just given
by the transmission coefficient of a particle with a familiar parabolic dispersion
(and mass m∗) through the above parabolic potential barrier. Conveniently,
this coefficient does not even depend on the energy of the tunneling electron
(within the WKB approximation, for uniform fields, and ignoring transverse
momentum). Note that, if the conduction and valence bands have different
effective masses, m∗ should be a reduced effective mass; in Sze’s convention,
m∗ → m∗r = 2/( 1

m∗e
+ 1

m∗h
).

Allowing for transverse momentum can be shown to simply raise the parabolic
barrier by E⊥ = ~2k2⊥/2m∗. Including this effect, and evaluating the WKB in-
tegral, we find

T (E,E⊥) = exp

{
−π
√
m∗(EG + 2E⊥)3/2

2
√

2q~ξ

}
Despite the roughness of the above derivation, Tanaka [8] finds more rigorously
that for a two-band model in a uniform field, the exponential dependance of
the transmission coefficient is precisely Sze’s expression. Given T , one can then
sum over the group velocities of all the contributing k-states to find the current.

3 GaN Bandstructure

Sze simplifies the problem by using a parabola with curvature set by the effec-
tive mass for the dispersion, but one really should use the material-appropriate
imaginary bandstructure in the gap, as shown in 1. In order have a usable
form for the bandstructure, we may taken the 4x4 k · p Hamiltonian from [5],
and specify it to the ẑ direction, which removes most of the off-diagonal matrix
elements.

H =


Eg + ∆CR +

~2k2
z

2m0
+A′1k

2
z 0 0 iP1kz

0 ∆CR +
~2k2

z

2m0
+M2k

2
z 0 0

0 0 ∆CR +
~2k2

z

2m0
+M2k

2
z 0

−iP1kz 0 0
~2k2

z

2m0
+ L′2k

2
z


Along this direction, the center 2x2 of the matrix (which form the light and

heavy hole bands in real k-space) is uncoupled to the outside 2x2 (which form
the conduction and split-off band). So, along the z-axis, the Hamiltonian can
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be reduced to an effective two-band model (similar to but more general than
[2]).

H =

(
E′g +

~2k2
z

2me
iP1kz

−iP1kz
~2k2

z

2mh

)
where

1

me
≡ 1

m0
+

2A′1
~2

,
1

mh
≡ 1

m0
+

2L′2
~2

E′g ≡ Eg + ∆CR,
1

mr
≡ 1

me
+

1

mh

and the undefined variables above are expressed in terms of Luttinger-like pa-
rameters by [5]. Diagonalizing the above, our band connection in imaginary
k-space can be written analytically:

kz(E) = i

√
A(E) +

√
A(E)2 +B(E)

A(E) =
meEg

′

~2
− 2memhP

2
1

~4
− memhE

mr~2

B(E) =
4memhE(E′g − E)

~4
where E is the energy above the valence band-edge. One subtlety worth

noting is that, although we have naively found a connection between the split-
off (SO) band and the conduction band (CB), the actual continuous connection
is between the light-hole (LH) band and conduction band. In our model, the SO
crosses through the LH to meet the CB, but, were we to account for spin-orbit
coupling, this would be an avoided crossing, so the band which shoots up in
imaginary k-space to meet the CB is continuously connected to the LH band,
despite its SO character. Since this all happens at small kz, and what matters is
the whole integral of kz, it’s not important to get the avoided crossing correct,
so long as we remember that the connection is actually LH-CB.

Much like in Sze’s model, adding additional transverse momentum (x-y) in-
creases the imaginary kz inside the gap, which will exponentially reduce the
tunneling current contribution from those states. So, incorporating the contri-
bution from all states with finite transverse momentum requires only an expres-
sion that is valid for small transverse momentum kp. We have not derived a
formal expression, but assuming that kp just broadens the effective band gap
by a(kp) and shifts the kz up by b(kp), ie

kz(E, kp) ≈ kz(E/a(kp)) + b(kp)

we can fit a(kp) and b(kp) as quadratic expressions to the eigenvalues and achieve
workable agreement.

HHHHHHHHHH
Computationally, this method is straightforward to apply even when the

assumptions underlying its simple analytical forms are removed. Starting from
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Figure 1: Bandstructure of Gallium Nitride along the ẑ direction (Γ → A),
continued onto imaginary values of the wavevector (within the k · p approxima-
tion, neglecting spin-orbit coupling, using parameters from [5]). In imaginary
k-space, the conduction band and light-hole band meet, allowing a particle to
”tunnel” continuously between the real bands.

a given band diagram, the procedure is as follows. For each ~k in the valence
band that could tunnel to the conduction band (while conserving energy and
transverse momentum), find the start and end of the tunnel region (where kx =
0). Then, choosing some determination of k (either Sze’s formula, or a band
structure model) evaluate 2. Once T is known for all k’s, integrate over the
band to find a tunnel current.

In the case of uniform fields and parabolic bands/two-band model, the above
could be done analytically, since T (above) does not depend on E. However

In preparation for the final presentation, I will be studying the math to
approximate this procedure for non-uniform fields and some realistic yet simple
band model (likely of the form expressed in [1] or derived from [4]).

4 Kane’s model

Whereas Sze’s approach could be described as a time-independent WKB method
within the effective mass picture of transport, Kane instead applies time-dependent
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perturbation theory to the the Wannier equation

i~∂tψn(r, t) = (E0
n(k)− eφ(x))ψn(r, t) +

∑
n 6=n′

Wnn′ψn′(r, t)

where the effect of the electric field −∂xφ(x) is two-fold. First, by removing
translation symmetry, it mixes the k-states within a band, and, secondly, it
provides matrix elements Wn 6=n′ that mix bands together. Kane solves for
the wavefunctions with W set to zero, and then applies Fermi’s golden rule to
determine the transition rate between bands.

In Kane’s approach, the Wannier equation is expressed not as above, but
rather in the crystal momentum basis. The procedure is the same in princi-
ple, though expression in this basis provides an integral which Kane was able
to approximate analytically via the method of steepest descent. Nonetheless,
use of the crystal momentum basis becomes burdensome for all but the most
trivial field profiles (the position operator is represented by a derivative in k-
space, so fields that are non-trivial functions of position become higher-order
derivatives in the Wannier equation). Recent generalizations of Kane’s model
to non-uniform fields thus prefer the familiar position representation [8].

4.1 Approach to generalize

All the work discussed involving Kane’s method of evaluating the interband
tunneling has been within Kane’s two-band k · p model of the band structure,
which works will for many semiconductors (originally InSb), but less so for
III-V’s. It would be a useful exercise to try expressions from larger models
(ie the 4x4 k · p model which has been fitted to GaN [5]) and see whether the
mathematics can still be performed analytically by similar techniques, especially
in the context of Tanaka’s more general formulation.

5 Summary and Directions

We have discussed two formalisms for determining the transmission coefficients
appropriate for direct interband tunneling transitions, and how they might be
extended. For the final presentation, I will push both methods in the directions
listed toward applicability in the Gallium Nitride spiked pn junction system and
compare with experimental data.
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