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Background Physical gas exchange processes
e inclusion ~ diffusion
Project: Ventilation and Anthropogenic Carbon in the Arctic Ocean formation

(VACAQ), Synoptic Arctic Survey 2021 (SAS21) [1]

Goals: understand timescales of ventilation and carbon uptake in
the Arctic Ocean

Physical processes at the surface control rates of gas uptake
Noble gas concentration anomalies act as non-chemical tracers for
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physical gas exchange processes. [2]

Formation/melting of sea ice, injection of air and rapid cooling can
be modelled and constrained using noble gas data.

Results are used to quantify the primary surface exchange
processes and to correct age-tracer data which assumes diffusion
as the only form of gas exchange

surement

he noble gJases as eXChange Process tracers Both models we present here consider only the interaction between the

atmosphere and elements in the Polar Mixed Layer (PML)

PML is assumed well-mixed and coupled to the atmosphere

« Diffusive exchange: acts to push gas concentrations toward equilibrium

* EXxcess air injection: wave breaking forces bubbles into the water which
release gases - diffusivities and abundances of gases control how
much their concentrations are affected
Ice formation: all noble gases (except He) are squeezed out of the ice
matrix upon freezing, causing fractionation [3]

* Ice melting: gases trapped in ice are released into the PML

Water below the PML is considered isolated and noble gases conserved

Five stable noble gases: He, Ne, Ar, Kr, Xe

(Bio-)Chemically inert and have constant atmospheric histories
Practically no degradation in subducted waters: effectively conservative
Concentrations only dependent on physical exchange parameters
Atmospheric concentrations, solubilities, solubility-temperature gradients
and behaviour 1n ice varies greatly from species to species of noble gas
These properties make them excellent environmental tracers for surface
gas exchange parameters

Concentration/Anomaly profiles can be used with an appropriate model
and fitting algorithm to parameterise surface gas exchange [2]

Noble gas anomaly profiles

SAS21 Cruise track

o — S5 —— 58 516 520 528 — 546 e Asample x B sample
Surface oversaturation of all
O . [ef 1 el WM L T I || e - Fe e
,,E{ H: I.HH |—:-#* HFLL" M gases: ice formation?
I Y M o e |
o WM o ! o]
14 b - H {1 M {1 e e !
-900 £ —_ Gas anomaly
—1800% = "~ " i s (neas
I NOBLE GAS LAB =) M X N b AGas = ( as_ _ 1) X 100%
=208 ANALYSIS c c
-'5_ Y i e HiH
8 3] HEh 4 1 e, 1 ey AGas = 0% = equilibrium/
> N e e saturation
Oversaturated
light gases:
. . . bubble Undersaturated heavy gases:
Vertical gas concentration profiles DL S SR R R — — el 2pid cooling?
injection? 0 10 20 O 10 20 -5 0 5 5 0 5 5 0 5

taken at each station shown [1, 4]

AHe [%] ANe [%] AAr [%] AKr [%] AXe [%]

Mixed reactor AIFM _ Model details and fitting
0 i | e 1 iy 0 roclty M atteap— iR e
e o b — —_ 4 e - loto— 1 | - —eok.4
DT I o e peve ity  Model parameters are constrained in a least-squares sense [2] using
1 o 1 - § ! . loe . o o . .
- i S ” * Levenberg-Marquardt nonlinear minimisation of:
E E | _ 2
=21 H as as =2 . - a , cleas _ cmodel (fitted parameters)
‘é IHtiel —etette—] H-o—Htbed ‘é F—o— HiieeH oot | HetteeH X = -
S5y L et © 5 sy R e Gas €
i ~ o " as a {He, ..., Xe}
4] - - 4l _ _ - Mixed reactor model.:
c
R . I - e B Cine> = (1 4+ (2 — Kgas) * Rep) - CG;IS + A - Zg,s Questions’?\
0 0.25 05 O 1 2 -5 0 5 10 0O 0.5 1 1.5 0O 00501015 4 -2 0 2 4 . . . « o . Ask h
Flush-freeze Excess air Recharge Excess air Remaining ice Recharge * K=1Ce fractlonatlon CoefﬁC]ent’ Z = atmospherlc abundance, skme here
io [— -3 em3. o1 ° - = ion [— ° . . :
rate ratio [—] [X1073 cmd;p g7 temperature [°C] [x1073 CmgTP g~ 1] fraction [—] temperature [°C] A — excess air, Rff — flush—freeze rate ratio or email me!

Steady-state mixed reactor where fluxes due to ice formation W1k}
balance those due to flushing rate of PML

 EXxcess air added after as transient term, melting ignored

« Air injection, freezing and melt model (AIFM
C(r;r;lesas — (ngs +A- ZGas) ' (1 T (1 _ K(Z}as) ' fri)

* f.i = remaining proportion of ice as a fraction of PML after melting

 EXxcess air injected before freezing occurs

* Freezing modelled as a single Rayleigh-fractionation process [5],
melting as a single rapid event

Conclusions and outlook -o “

Decision still must be made as to if a model should over- or under-saturate SF,
Excess air should be divided into diffusive and non-diffusive regimes
Glacial meltwater contribution could be modelled with a water-fraction model [7]
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Corrected profiles should be smoothed and used with transit time distributions of
SF./CFC-12 tracer pairs to better constrain timescales of Arctic water circulation
Application to the novel tracer 3°Ar is also a possibility
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Modelled anomalies can be used to “correct” their measured concentrations;
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