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Automatic Annotation Method for Day-Night
Aerial Infrared Image Dataset Creation and Its

Application to Semantic Segmentation
Michiya Kibe, Takeru Inoue, Junya Morioka, and Ryusuke Miyamoto,

Abstract—In situations where visible lighting is inadequate for sensing, infrared sensors are commonly employed. However, they often
yield blurry images lacking clear textures and terrain/object boundaries. Unfortunately, human visibility diminishes even with infrared
sensors providing more visual information than visible sensors, especially at night aerial imagery. To enhance the visibility of aerial
infrared images, we propose adopting semantic segmentation, which assigns pixel-wise class labels to various input images, thereby
clarifying substantial boundaries. However, training an accurate semantic segmentation model necessitates extensive pixel-wise
annotations corresponding to input images, which are lacking in aerial infrared images with ground truth datasets. To address this
challenge, we introduce a novel method that automatically generates pixel-wise class labels using solely infrared images and metadata
such as GPS coordinates. Our method comprises two pivotal functions: coarse alignment with metadata in geographic information
system (GIS) space and fine alignment based on multimodal image registration between aerial images. Aerial image datasets
spanning three domains—day, twilight, and night—were created using short-wave infrared (SWIR) and mid-wave infrared (MWIR)
images captured by optical sensors mounted on helicopters. Experimental results demonstrate that training on GIS data as label
images enables high-precision semantic segmentation across both daytime and nighttime conditions.

Index Terms—Semantic segmentation, Automatic annotation, Multimodal image registration, Aerial infrared image
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1 INTRODUCTION

H ELICOPTERS and UAVs are indispensable in numerous
tasks such as security, monitoring, and search and res-

cue operations, where visibility is paramount. In situations
where visible wavelengths are inadequate for sensing, in-
frared sensors are commonly utilized. However, they often
produce blurry images lacking clear textures and bound-
aries between different terrains and objects. Unfortunately,
human visibility worsens at night despite infrared sensors
providing more visual information than visible sensors. We
propose adopting semantic segmentation to address this
issue and enhance the visibility of aerial infrared images.
This technique assigns pixel-wise class labels to various
input images, clarifying substantial boundaries. In fields
like autonomous driving, remarkable performance has been
achieved through various semantic segmentation models for
environmental perception [1], [2]. If these advanced models
prove effective for aerial infrared images, they could sub-
stantially enhance situational awareness capabilities during
aerial missions throughout the day and night.

Training an accurate model for semantic segmentation
necessitates extensive pixel-wise annotations corresponding
to input images. Though manual labeling is commonly used
to obtain labeled images, it presents challenges due to its
expense and difficulty in labeling night images with unclear
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Fig. 1. Our annotation method utilizes geographic information system
(GIS) data, enabling the automatic generation of pixel-wise class labels
solely from infrared images and metadata such as GPS coordinates.
This approach facilitates training on images across three distinct do-
mains: day, twilight, and night, enabling the implementation of high-
precision semantic segmentation across varying lighting conditions from
day to night.

boundaries [3]. Several methods for obtaining labeled im-
ages have been deployed to overcome these issue. In the
SODA dataset [4], the pix2pixHD [5] model is utilized to
translate thermal images from labeled RGB images, thereby
expanding the dataset size. Similarly, the Freiburg Thermal
(F–T) dataset [6], which contains only 32 labeled images for
validation, employs the “HeatNet” model. Heatnet gener-
ates teacher images from RGB day images and employs
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domain adaptation for day-night transitions, improving
segmentation accuracy at night. Despite the effectiveness
of image translation and domain adaptation techniques,
they do not eliminate the need for manual labeling. In
aerial images with distant scenes, atmospheric propagation
leads to substantial contrast reduction, posing challenges for
manual labeling.

In contrast to previous research efforts, our proposed an-
notation approach leverages open GIS databases. In today’s
context, substantial information, including maps and satel-
lite imagery, is available as GIS data. A study [7] successfully
extracted road and building areas from OpenStreetMap
(OSM) and conducted semantic segmentation using this
information as labeled images aligned geometrically with
visible images. This approach’s effectiveness was validated
through a comparison with manual labeling. If accurate geo-
referencing of infrared images is achievable, similar seman-
tic segmentation of aerial infrared images can be conducted
by generating labeled images from GIS databases.

Our proposed method consists of two primary functions:
coarse alignment with metadata such as GPS to extract high-
resolution visible images from GIS data and fine alignment
based on multimodal image registration between aerial and
GIS images. Traditional learning-based multimodal image
registration demands many aligned multimodal image pairs
for training to achieve high precision [8]. The collection
of these training samples is challenging due to alignment
errors caused by physical vibrations and sensor noise. No-
tably, we discovered that a straightforward preprocessing
method based on physical mechanisms effectively mitigates
multimodal gaps between images. Our findings demon-
strate that multimodal image registration is achievable with-
out additional training, utilizing a model trained solely on
visible images. This approach enables the creation of task-
specific labeled images from extensive open GIS informa-
tion.

For the construction of our aerial image dataset, we
leverage previous research data [9], which comprises im-
ages captured from a helicopter using two infrared sen-
sors: short-wave infrared (SWIR) and mid-wave infrared
(MWIR). These images exhibit diverse characteristics based
on time domains, including day, twilight, and night. Our
study demonstrates the feasibility of training models ca-
pable of achieving high-precision semantic segmentation
throughout the day and night using labeled images from
GIS databases.
The main contributions of this study are as follows:

• Proposal of an automatic annotation method uti-
lizing open GIS databases: Our method eliminates
the need for costly manual labeling, enabling the
acquisition of labeled images even for challenging
night images.

• Application of a simple preprocessing method to
mitigate gaps between images and facilitate mul-
timodal image registration without requiring addi-
tional training: This approach enables high-precision
georeferencing of day-night aerial infrared images.

• Creation of aerial image datasets encompassing three
domains—day, twilight, and night—utilizing SWIR
and MWIR images: These datasets serve as valuable

research resources.

Demonstration through experiments using the created
datasets that training a single model on all domains enables
high-precision semantic segmentation throughout both day
and night scenarios. These contributions advance the field
by providing an efficient and practical approach to an-
notating aerial infrared images, enabling precise georef-
erencing, and achieving consistent semantic segmentation
performance across varying lighting conditions.

2 RELATED WORK

2.1 Infrared sensor for night vision
Infrared wavelengths are classified into various bands,

including near-infrared (NIR, 750 nm–1 µm), SWIR (1–2.5
µm), MWIR (3–5 µm), and long-wave infrared (LWIR, 8–12
µm). NIR and SWIR are employed in low-light vision sen-
sors that utilize moonlight or nightglow as light sources. In
contrast, MWIR and LWIR are utilized in thermal imaging
sensors that detect the radiation emitted by objects them-
selves.

Image intensifiers (II) utilizing NIR are widely employed
as low light level sensors [13]. Additionally, sensors utilizing
avalanche effects, like EBAPS [14] and SPAD [15], have
advancements in performance. Recently, susceptible SWIR
sensors with excellent dehazing capabilities, particularly for
phenomena like smoke, are gaining prominence [13], [16].

Thermal imaging sensors can be categorized into ther-
mal detectors (bolometers) and quantum detectors (photo-
voltaic and photoconductive detectors). Thermal detectors
are uncooled, making them cost-effective, while quantum
detectors, cooled to around 80K–140K, offer higher sensitiv-
ity than thermal detectors. Thermal detectors typically uti-
lize LWIR, while quantum detectors can also utilize MWIR
through semiconductor bandgap control [17].

In numerous image processing studies, images from NIR
and LWIR are commonly employed. Due to their atmo-
spheric propagation properties, SWIR and MWIR sensors
are particularly advantageous for their superior contrast
characteristics in capturing distant scenes. This makes them
especially relevant in aircraft applications, where longer
ranges are essential [18], [19]. Despite their advantages,
there is a call for further advancement in the study of
image processing tailored explicitly for these wavelength
bands–SWIR and MWIR.

2.2 Day-night infrared image datasets and semantic
segmentation

Several publicly available datasets contain infrared im-
ages [20], some of which include day-night images. Repre-
sentative day-night image datasets relevant to our research
are summarized in Table 1. The MSOD [10] dataset focuses
on object detection, such as pedestrians, and comprises
images across a wide range of wavelengths. The SODA
[4] and Freiburg Thermal [6] datasets employ dataset ex-
pansion techniques through image translation and domain
adaptation methods to address the challenge of annotat-
ing complex night images, respectively. These datasets are
instrumental in achieving excellent semantic segmentation
accuracy using their original models. The MVSeg [3] dataset
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TABLE 1
Relevant publicly available day-night infrared image datasets.

Dataset attributes MSOD [10] SODA [4] F-T [6] HIT-UAV [11] MVSeg [3] MONET [12] Ours

Type Terrestrial ✓ ✓ ✓ ✓
Aerial ✓ ✓ ✓

Sensor Modality RGB, SWIR, LWIR RGB, LWIR RGB, LWIR SWIR,
MWIR, LWIR LWIR LWIR MWIR

Task Detection ✓ ✓ ✓
Segmentation ✓ ✓ ✓ ✓

Classes - 20 12 - 26 - 11
# annotated images:
manual(not manual) 30K 2,168

(5,000)
32

(20K) 2.9K 3,545 53K (2,940)

Year 2017 2019 2020 2022 2023 2023 -

gathers existing public datasets for object detection tasks,
such as RGBT234 [21] and KAIST [22], and undertakes man-
ual annotation to create a new RGB-T benchmark dataset for
semantic segmentation.

While many infrared image datasets have centered on
traffic scenes, there has been a surge in aerial image datasets
in recent years. The HIT–UAV [11] and MONET [12]
datasets consist of day-night images captured using LWIR
cameras mounted on UAVs in urban and rural areas. Al-
though these datasets are primarily designed for detection
tasks such as pedestrians and vehicles, to our knowledge,
there is currently no aerial infrared image dataset especially
tailored for semantic segmentation.

In a previous study [9] conducted by the author, a
dataset was created by capturing images of various forward-
looking scenes using two infrared sensors, SWIR and
MWIR, mounted on a helicopter . The infrared sensors,
as shown in Fig. 2, are separately mounted on gimbals,
controlled to align with the same direction as the HMD
(Helmet-Mounted Display) inside the aircraft. Although the
dataset includes various scenes such as vegetation, water,
roads, runways, and the sky, creating pixel-wise labeled
images is necessary for use in semantic segmentation. In
this study, we utilize this image dataset to demonstrate
automatic annotation.

Fig. 2. The two infrared sensors, SWIR and MWIR, are mounted on
separate gimbals attached to the left and right steps of the helicopter.

2.3 Georeferencing and multimodal image registration
Georeferencing is the process of associating data, such as

maps or aerial images, with specific geographic locations
on the Earth’s surface. It can be utilized to overlay raster
images of various GIS sources and obtain information for

specific geographic location points. Georeferencing of aerial
images to geographic locations can be achieved through
coordinate transformations using metadata like GPS and
orientation sensors. Sensor noise and platform vibration
cause alignment error. Pixel-level fine alignment is achieved
through image registration between aerial image and GIS
image [23].

In recent years, deep learning-based feature detection
and matching methods have been extensively developed for
image registration, demonstrating better performance than
hand-craft ones. Notable examples include SuperPoint [24],
which detects local features and outputs their descriptors
using CNN, and SuperGlue [25], which directly outputs
correspondences between sets of features using a graph
neural network. LoFTR [26] is another method that extracts
features using CNN and Transformer, performing end-to-
end tasks from detection to matching. While these methods
enable precise alignment between single modal images,
ones between multimodal images remains challenging. For
instance, Multipoint [8] which uses the architecture of Su-
perPoint addresses the multimodal image registration by
learning from aligned visible and infrared image pairs.

In cases where there are not enough sufficient image
pairs for training, preprocessing to mitigate the modal
gap between images can be effective. In [27], image-to-
image translation using GAN model to convert infrared
images into visible images is combined with Multipoint.
Additionally, [28] combines preprocessing that extracts
modality-invariant geometric structural information using
Log-Gabor filters with LoFTR. Moreover, our previous
work [29] conducted experiments using augmentation and
preprocessing tailored to each image’s characteristics with
LoFTR, utilizing the image dataset of [9]. This demonstrated
the high-precision multimodal registration between SWIR
and MWIR images.

3 PROPOSED AUTOMATIC ANNOTATION METHOD

In this section, we introduce our proposed annotation
method that utilizes open GIS databases, automatically gen-
erating labeled images using only aerial infrared images and
metadata as input information.

3.1 Overview
The flow for creating labeled images and datasets is illus-

trated in Fig. 3. Our method consists of two major functions.
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Fig. 3. Flow for creating label images and datasets, which involves a two-step approach: coarse alignment, depicted in process a), fine alignment
consists of processes (b) and (c).

Firstly, coarse alignment is performed using metadata such
as GPS to crop projected images on the GIS space. Next,
fine alignment is conducted through multimodal image
registration, creating a dataset containing labeled images
using the obtained coordinate transformation matrix. Ad-
ditionally, preprocessing tailored to the characteristics of
infrared images is applied in this method to perform image
registration without additional training.

3.2 Coarse geodetic alignment and image cropping
The purpose of coarse geodetic alignment is to crop GIS

images with an equivalent field of view as aerial infrared
images, serving as a preliminary step for the fine alignment
described next subsection. The geometric transformation
from the world coordinates to the camera coordinates is
geometrically determined by the following equations, utiliz-
ing eight types of metadata: 3 degrees of freedom of aircraft
attitude, 2 degrees of freedom of camera pose, and 3 degrees
of freedom of aircraft position, as described below.

T =


1 0 0 δTx

0 1 0 δTx

0 0 1 δTx

0 0 0 1

 , (1)

R =


cosϕ 0 − sinϕ 0
0 1 0 0

sinϕ 0 cosϕ 0
0 0 0 1



1 0 0 0
0 cosβ sinβ 0
0 − sinβ cosβ 0
0 0 0 1



cosα − sinα 0 0
sinα cosα 0 0
0 0 1 0
0 0 0 1

 ,

(2)

G =


cosω 0 − sinω 0
0 1 0 0

sinω 0 cosω 0
0 0 0 1



cos τ − sin τ 0 0
sin τ cos τ 0 0
0 0 1 0
0 0 0 1

 ,

(3)

and −→
X camera = G ·R · T ·

−→
Xworld, (4)

where T is the rotation matrix related to the camera’s eleva-
tion angle (ω) and azimuth angle (τ ), G is the rotation matrix
related to the aircraft’s pitch angle (ϕ), roll angle (β), and
heading angle (α), and T is the translation matrix related
to the aircraft’s position (latitude, longitude, altitude). By
operating these matrices in GIS space, it is possible to project
onto the same Field of View (FOV) as aerial images. Due
to temporal and spatial noise in the metadata used for
these calculations, only coarse alignment is achievable at
this stage.

For semantic segmentation, accurate pixel-wise align-
ment is required. Although infrared multispectral images
captured from satellite are available as GIS data today, the
present ground resolution is typically in the order of several
tens of meters, lower than that of aerial infrared images.
Applicable images on GIS are limited to high-resolution vis-
ible images. The Google Earth platform is an online virtual
geographic information system software that provides high-
resolution visible images with a resolution exceeding one
meter for most scenes worldwide. In this study, we utilize
this platform to crop the visible images needed for image
registration and to obtain the GIS images required for label
creation.

3.3 Preprocessing for modal gap adaptation
Here, we introduce the preprocessing method for our pro-

posed modal gap adaptation. Unlike single-modal images,
feature matching between multimodal images with differ-
ences of spectra remain challenges. When the spectra differ,
differences in edge characteristics, noise characteristics, and
intensity polarity occur for each modality. Assuming the
Earth’s surface is Lambertian and ignoring the influence of
atmospheric propagation, the radiance is expressed by the
following equation:

L0(λ) = ϵ(λ)B(T, λ) + r(λ)
F0(λ)

π
, (5)
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where λ, T , ϵ and r represent the wavelength, surface
temperature, spectral emissivity, and spectral reflectance
of the Earth’s surface, respectively. B and F0 denote the
blackbody spectral radiance of the surface temperature and
the downward irradiance illuminating from external light,
respectively. The first term represents the thermal radiation
component of the object itself, and the second term rep-
resents the reflected component of the incident light from
the external source. The differences in image characteristics
arise due to the modalities of detection wavelengths and the
domains of day-night.

During day, there is radiance from sunlight across all
wavelength bands, and each image contains some degree of
reflected components, making it easy to extract common fea-
tures. At night, the differences between modalities become
more prominent. SWIR exhibits reflective radiance from
moonlight and night glow, while MWIR is dominated by
the thermal radiation emitted by objects themselves, making
feature matching challenging.

We notice that by applying preprocessing tailored to
each wavelength band based on physical mechanisms such
as reflection, radiation, and imaging conditions, it is possible
to mitigate modal gaps between images. Table 2 summarizes
the preprocessing techniques adopted to align the charac-
teristics of each image. For SWIR images, a bilateral filter
with high edge-preserving capability [30] is employed to
reduce noise in low-light conditions. For MWIR images,
unlike other modalities at night, which have no reflective
components, we adopt a process of black and white inver-
sion. The relationship between reflectance (r) and emissivity
(ϵ) is expressed by the following equation based on the laws
of energy conservation and Kirchhoff’s law:

ϵ(λ) = 1− r(λ), (6)

According to this equation, the radiance of regions with
high reflectance is high during day, while it is low during
night, and vice versa. Black and white inversion makes
the radiance characteristics of the thermal image similar to
those of reflective images. Additionally, in the VIS image
on GIS, taken at a different time, detailed information such
as texture has differences from other modalities. To achieve
a blurring effect for detailed information, a bilateral filter
is employed. Fig.4 illustrates images before and after pro-
cessing for each modality. Applying preprocessing reveals
that the edge, noise, and intensity polarity characteristics of
each image are becoming more similar. We demonstrate the
enhanced precision of keypoint matching at night images
through this preprocessing.

TABLE 2
Modality-specific image characteristics and each pre-processing

selected for mitigating modal gaps.

modality SWIR MWIR VIS(on GIS)
time night night day

sharpness good poor very good
noise very noisy low low

image property reflective radiative reflective

preprocess bilateral
filter

black and white
inversion

bilateral
filter

raw after preprocess

SWIR

MWIR

VIS

Fig. 4. Visible and Infrared Images Before and After Preprocessing

3.4 Image registration and generating label images

We apply preprocessing to only VIS images in day and
all modal images in twilight and night, performing key-
point matching using LoFTR [26]. LoFTR is a detector-free
approach that utilizes CNN and attention mechanisms to
produce robust matching results. In contrast to detector-
based methods employing handcrafted feature extractors
like SIFT [31], SURF [32], or deep learning-based models like
MultiPoint, LoFTR leverages long-range context to obtain
high-quality correspondences, even in regions with low
texture.

Here, we use the outdoor model trained on MegaDepth
[33] with dual softmax matching in LoFTR, without addi-
tional training. The matching points obtained by LoFTR are
used to estimate the coordinate transformation parameters
through the RANSAC algorithm [34]. Considering the rela-
tively minor influence of parallax in this scenario, an affine
transformation is used with fewer parameters to minimize
computational errors. Although affine transformation pa-
rameters can be estimated with three or more corresponding
points, we consider image pairs with 20 or more inliers as
correctly estimated due to the decrease in accuracy with
fewer points.

Alignment with visible images involves utilizing a fu-
sion image of SWIR and MWIR to leverage features from
both modalities. Initially, multimodal image registration
between SWIR and MWIR images is performed, followed by
blending the two images in equal proportions using /alpha-
blending. Subsequently, multimodal image registration be-
tween VIS images and the fusion images is conducted.
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All GIS images required for the label image are obtained
by applying the affine transformation matrix obtained in
this process and cropping them to have the same FOV as
the infrared images. Finally, label images are generated by
extracting class regions using color information from all GIS
images.

4 EXPERIMENTAL RESULT

In this section, we present the creation of datasets using
the proposed method, experimental results on semantic
segmentation, Quantitative evaluation by various learned
based models, and ablation study on multimodal image
registration.

4.1 Creation of Datasets Using the Proposed Method
This study utilized Google Earth, OpenStreetMap, and the

land-use and land-cover map from the Japan Aerospace Ex-
ploration Agency (JAXA) [35] to perform semantic segmen-
tation for the purpose of piloting assistance. Additionally,
we considered the following factors when creating the aerial
dataset:

• Humans take time for dark adaptation, accidents due
to decreased visibility are expected to increase in
twilight [36]. The accuracy of classification during
this period is also crucial.

• Existing studies often focus on NIR and LWIR im-
ages. SWIR and MWIR are also widely used [18],
[19]. Research using these wavelength bands, similar
to NIR and LWIR, needs to be further advanced.

The dataset utilized images and metadata from the au-
thor’s previous study [9], creating three domains: day, twi-
light, and night. To enable learning from landscapes as simi-
lar as possible in each domain, we selected scenes primarily
involving flight over flat areas and approach to runways.
Fig.5 demonstrates an example of applying the proposed
method to feature point matching in a night image. Inlier
correspondence points are shown in blue lines, and outlier
outliner points are indicated by red lines. In this scene, more
than 20 inlier correspondence points are calculated, indicat-
ing successful matching. the detail of matching performance
is described in Subsection D, E.

We applied the proposed method to scenes in all do-
mains and created a dataset. The dataset consists of 726
images for the day domain, 1713 images for the twilight
domain, and 501 images for the night domain. Example
images of the dataset is illustrated in Fig. 6. Table 3 shows
the categories, colors for each class and sample counts (80
frames) in the test images for each domain. The scene loca-
tions primarily consist of rural areas, resulting in a dataset
with a somewhat lower number of built-up. There is not
a significant imbalance in the sample counts of classes in
each domain, making it a suitable configuration for domain
comparison experiments.

4.2 Experimental Results of Semantic Segmentation
The objective of this experiment is to verify whether se-

mantic segmentation can be achieved consistently through-
out the day and night using label images created from

SWIR MWIR

Fusion VIS

Fig. 5. Example of keypoint matching using LOFTR: The blue lines
indicate inliers, while the red lines indicate outliers.

TABLE 3
Information of each classes in the created dataset. ”num of pix” shows
the number of samples in each domain of the test images (80 frames).

No. Color Category Num of Pix
Day Twilight Night

0 ■ None 1,136,374 1,353,939 821,131
1 ■ Sky 2,402,448 5,204,791 2,294,247
2 ■ Built-up 5,464 67,948 12,412

3 ■
Paddy field 6,180,552 4,844,902 7,486,231/Grassland

4 ■ Cropland 260,679 310,539 86,270
5 ■ DBF 3,708,962 2,537,218 3,228,186
6 ■ DNF 405,531 450,037 117,247
7 ■ ENF 71,388 82,652 104,046
8 ■ Bare 65,963 60,595 76,686
9 ■ Water 1,529,865 980,600 1,620,345
10 □ Road 110,426 84,363 93,544
11 ■ Runway 178,668 78,736 115,975

GIS data. For training and validation datasets, 320 and
80 images were randomly selected from the day, twilight,
and night domains, respectively. As a baseline, we used
the PSPNet [37] with ResNet50 [38] as the backbone. The
input consisted of pseudo-RGB images with three channels,
including 2 channels for SWIR and MWIR, and one channel
filled with zeros. The models were trained for 200 epochs,
and evaluation was performed using test images. The initial
weights were derived from a pre-trained model on the
Cityscapes visible image dataset.

First, we evaluated the models trained on specific do-
mains, followed by an evaluation using models trained on
all domains. The results are presented in Table 4, and Fig.
7 shows the segmentation images inferred by each model.
While high performance was obtained when the domain for
training and testing was the same, significant misclassifi-
cations occurred when the domains were different. On the
other hand, the model trained on all domains achieved con-
sistently high scores across all domains. This result confirms
that training across multiple domains enables high-precision
segmentation throughout the day and night using the same
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day twilight night

SWIR

MWIR

VIS

LABEL

Fig. 6. Example images from the created dataset showcasing scenes from three domains: day, twilight, and night. The dataset encompasses a
variety of rural landscapes, including sea, river, forests, roads, and runways.

model.

TABLE 4
Comparison of scores from models trained on each domain and all

domains.

Model/Backbone train on test on mIoU aAcc mAcc
day 57.4 90.4 67.7

day twilight 8.8 43.8 20.2
night 9.9 49.6 16.2

all 24.6 61.3 35.9
day 9.9 37.3 15.0

twilight twilight 58.0 90.0 69.6
night 34.9 82.2 43.6

PSPNet/ all 34.5 69.9 45.6
Resnet50 day 9.8 37.8 17.7

night twilight 23.7 67.9 35.4
night 63.8 94.2 74.8

all 29.2 66.8 40.7
day 56.4 88.8 68.4

all twilight 58.4 90.1 69.3
night 64.7 93.9 74.2

all 61.9 90.9 73.1

4.3 Quantitative evaluation

Here, we conducted quantitative evaluation using the
created image dataset. Validation experiments using various
visible image datasets have already been conducted, demon-
strating the effectiveness of semantic segmentation by many
models, including CNNs and Transformers, achieving high
classification accuracy. We performed training and evalua-
tion using representative models, CNN-based DeeplabV3+

[39], PSPnet [37], and Transformer-based Mask2Former [40]
and Segformer [41].

The experiment results are presented in Table 5. Among
the CNN-based models, PSPNet (Resnext101d) achieved the
highest score. In the Transformer-based models, SegFormser
(InternImage) demonstrated the highest score, surpassing
PSPNet (Resnext50) used in the previous experiment by
an improvement of over 2.5% in mean intersection over
union(mIoU). Additionally, the experiments used a pre-
trained model for visible images as the initial weight. The
evaluation results of a model trained solely on the dataset
without pretraining are presented as PSPNet (NoPretrain).
A comparison revealed that using pretraining with visible
image models resulted in a score over 5% higher, indicating
the effectiveness of pretraining visible image models even
for infrared image datasets.

4.4 Comparison test of multimodal image registration

To evaluate the performance of our multimodal image
registration, we conducted comparative experiments with
SIFT, Superpoint and SuperGlue (SP+SG). Since the models
with raw input images showed low scores, we compared
the results obtained with preprocessed images. The results
are presented in Table 6. Here, accurate pairs(Acc pairs)
represent the average number of inliers in affine estimation
among the matching points, Accuracy (Acc) is the ratio of
accurate pairs to matching pairs, and precision score (Pre)
indicates the percentage of images with successful matches
(inliers: 20 pairs or more) out of the total samples. For the
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train test on
on day twilight night

day

twilight

night

all

GT

Fig. 7. Difference of the inference images based on each training do-
main: Training on the same domain leads to fewer misclassifications in
the inference images.

TABLE 5
Comparison of scores from various models

Model Backbone mIoU aAcc mAcc
PSPNet Resnet50 61.9 90.9 73.1
PSPNet Resnet101 59.5 91.5 71.2
PSPNet Resnext101 [42] 63.7 92.3 77.0
PSPNet InternImage [43] 60.3 90.9 74.6
DeepLabV3+ Resnet50 60.4 90.6 69.4
DeepLabV3+ Resnet101 56.4 85.0 65.6
Mask2Former Resnet50 62.8 91.1 74.9
Mask2Former Swin-L [44] 63.4 91.0 75.3
SegFormer MiT-B5 64.2 92.0 75.0
SegFormer InternImage 64.5 92.3 76.0
PSPNet(NoPretrain) Resnext101 58.6 91.2 71.0

creation of label images, the precision score is particularly
crucial. In the matching of SWIR and MWIR images, SP+SG
achieved the best score only during the day. In all other
cases, the proposed method consistently demonstrated a
high precision score. Moreover, in matching the fusion im-
ages with the reference VIS images, the proposed method
obtained high precision scores in all cases. This experiment
confirmed that combining modality-specific preprocessing
with LoFTR results in excellent scores across all domains.

TABLE 6
Comparison of multimodal image registration performance for each

model.

Modality Time Model Acc
Pairs Acc Pre

pp+SIFT 48.6 83.6% 63.4%
day pp+(SP+SG) 114.1 68.2% 98.6%

ours 126.5 7.2% 92.1%
pp+SIFT 3.3 30.9% 0.8%

SWIR- twilight pp+(SP+SG) 55.7 54.3% 73.7%
MWIR ours 119.7 20.5% 90.8%

pp+SIFT 2.8 31.2% 0.8%
night pp+(SP+SG) 32.3 38.9% 61.3%

ours 81.2 23.0% 79.7%
pp+SIFT 1.0 16.9% 0.0%

day pp+(SP+SG) 15.0 15.7% 29.7%
ours 48.0 15.4% 65.6%

pp+SIFT 1.9 23.5% 0.5%
VIS- twilight pp+(SP+SG) 9.0 15.9% 10.8%

Fusion ours 24.8 15.0% 44.1%
pp+SIFT 1.9 28.8% 4.4%

night pp+(SP+SG) 17.1 22.5% 26.5%
ours 56.3 20.9% 58.3%

4.5 Ablation study
Finally, we showed the result of an ablation study con-

ducted to examine the effects of preprocessing on key-
point matching. This experiment focused on night domain
with a significant modal gap. We systematically applied
preprocessing to the images of each modality to observe
the resulting effects. The scores are presented in Table 7.
Without preprocessing, the highest score was achieved by
the pair of visible and SWIR images, both being reflection
images, with a score of 27.8%. Applying preprocessing led to
a substantial improvement in scores, enhancing the success
rate to 50.4%, 51.1% for both SWIR and MWIR images,
respectively. Furthermore, the proposed method employs
feature matching with fusion images to utilize the charac-
teristics of both SWIR and MWIR images. This approach
further improved the success rate to 58.3%.

TABLE 7
Results of the ablation study.

Modality Preprocess Acc Acc Prem1-m2 m1 m2 pairs
13.6 9.0% 16.0%

SWIR- ✓ 13.7 9.8% 19.7%
MWIR ✓ 76.7 26.2% 72.4%

✓ ✓ 81.2 23.0% 79.7%
22.8 14.2% 27.8%

VIS- ✓ 25.3 15.9% 32.0%
SWIR ✓ 25.2 12.7% 39.5%

✓ ✓ 40.5 18.0% 50.4%
6.2 5.1% 1.2%

VIS- ✓ 6.6 6.1% 0.7%
MWIR ✓ 34.4 16.9% 37.3%

✓ ✓ 45.1 20.3% 51.1%
8.1 7.4% 5.8%

VIS- ✓ 8.3 8.1% 7.7%
Fusion ✓ 38.8 19.6% 39.6%

✓ ✓ 56.3 20.9% 58.3%

5 CONCLUSION

In this paper, we proposed an automatic annotation
method utilizing an external GIS database, with only aerial
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infrared images and metadata as input. This method,
employing preprocessing based on physical mechanisms,
enables high-precision image registration even for blurry
night images, allowing for the creation of annotated image
datasets for both day and night. Using this approach, we
created a day-night aerial infrared image datasets for SWIR
and MWIR and conducted experiments on semantic seg-
mentation. The results of the experiments showed excellent
accuracy across day and night domains by training on im-
ages from multiple domains. Additionally, the application
of state-of-the-art models effective in visible image datasets
proved to be effective even for infrared images with sig-
nificant modality gaps. From these results, it was demon-
strated that by extracting relevant information from huge
open GIS data, it is possible to train images across various
domains and modalities without costly manual annotation.
This dataset creation method is expected to be applicable to
various tasks.
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M. Benecke, S. Brunner, B. Göhler, P. Lutzmann, and A. Sieck,
“Ingaas-based swir photodetectors for night vision and gated
viewing,” 10 2018, p. 2.

[17] A. Rogalski, “Next decade in infrared detectors,” 10 2017, p. 100.
[18] R. S. Allison, J. M. Johnston, G. Craig, and S. Jennings, “Airborne

optical and thermal remote sensing for wildfire detection and
monitoring,” Sensors (Basel, Switzerland), vol. 16, 2016.

[19] G. G. Artan and G. S. Tombul, “The future trends of EO/IR
systems for ISR platforms,” in Image Sensing Technologies: Materials,
Devices, Systems, and Applications IX, N. K. Dhar, A. K. Dutta, S. R.
Babu, and K. K. Son, Eds. International Society for Optics and
Photonics, 2022, vol. 12091, p. 120910B, SPIE.

[20] K. I. Danaci and E. Akagunduz, “A survey on infrared image &
video sets,” Multimedia Tools and Applications, 2022.

[21] C. Li, X. Liang, Y. Lu, N. Zhao, and J. Tang, “Rgb-t object tracking:
Benchmark and baseline,” Pattern Recognition, vol. 96, pp. 106977,
2019.

[22] S. Hwang, J. Park, N. Kim, Y. Choi, and I. S. Kweon, “Multispectral
pedestrian detection: Benchmark dataset and baseline,” in 2015
IEEE Conference on Computer Vision and Pattern Recognition (CVPR),
2015, pp. 1037–1045.

[23] Y. Sheikh, S. Khan, M. Shah, and R. W. Cannata, “Geodetic
alignment of aerial video frames,” 2003.

[24] D. DeTone, T. Malisiewicz, and A. Rabinovich, “SuperPoint: Self-
supervised interest point detection and description,” in Proc.
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition Workshop, 2017.

[25] P.-E. Sarlin, D. DeTone, T. Malisiewicz, and A. Rabinovich, “Su-
perGlue: Learning feature matching with graph neural networks,”
in Proc. IEEE Conf. Comput. Vis. Pattern Recognit., 2020.

[26] J. Sun, Z. Shen, Y. Wang, H. Bao, and X. Zhou, “LoFTR: Detector-
free local feature matching with transformers,” in Proc. IEEE Conf.
Comput. Vis. Pattern Recognit., 2021.

[27] M. Elsaeidy, M. Emin Erkol, B. Kürşat Güntürk, and
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