ROUGH DRAFT authorea.com/95583
Main Data History
Export
Show Index Toggle 0 comments
  •  Quick Edit
  • Thesis - Magnetic Hyperthermia Treatment and Cancer

    Abstract

    Introduction

    Magnetic fluid hyperthermia is a promising cancer treatment that essentially ”fries” cells inside tumors. The procedure has been used successfully in prostate, liver, and breast tumors. Magnetic nanoparticles (each billionths of a meter in size) are injected into the body intravenously and diffuse selectively into cancerous tissues. Add a high-frequency magnetic field, and the particles heat up, raising the temperature of the tumor cells.

    Applications of thermal transport phenomena at nanoscale

    Thermal transfer plays an important role in many environmental, industrial, and biological processes. The knowledge of heat transfer can be applied to our everyday life, e.g., electrical power generation, energy conversion and storage, combustion processes, thermal insulation, refrigeration, material processing, and biological systems. A heat transfer analysis typically provides the rates of heat transfer and/or the temperature distributions for steady or transient states for specified boundary conditions, initial conditions, geometries, and materials. The transfer of heat in a stationary medium such as a solid, a liquid, or a gas is called heat conduction, but when the medium moved there is heat convection.

    Biological application - Hyperthermia cancer treatment

    Temperature is a key factor in the normal biological development of the stem cell, determining the sex of an amphibian, and developing immune therapies [6]. The human body has the ability to increase its basal temperature to fight diseases. When the body is infected by viruses and bacteria, it instinctively defends itself by increasing its temperature to slow or halt the rapid growth of the pathogens. It leads to what we call fever, which is another form of hyperthermia, i.e., by elevating in body temperature for therapeutic reasons. The normal body naturally maintains a temperature of 37 ◦C, and healthy cells can survive up to 42 ◦C. The elevation of body temperature enhances host defense. For this reason, thermal therapy is useful in clinical applications, such as the treatment of cancer. It is another way to induce therapy by elevating the temperature to a therapeutic temperature range of 42-45 ◦C to kill cancerous cells.

    Temperature and Cancer

    Thermal stress leads to the denaturation of proteins within cells which causes cell damage [7]. Thermally induced stress proteins or heat shock proteins (HSP) were described about forty years ago. HSP occurs when temperatures are elevated in the nonlethal regions of tumor to help refold and repair denatured proteins. It synthesizes new proteins by inducing a wide variety of cellular functions and defense, including chaperoning functions. HSP levels can be triggered by environmental stresses (for example chemicals, heat shock, heavy metals), a pathophysiological state (fever, viral infection, in