References
Adachi, M., Ishida, A., Bunyavejchewin, S., Okuda, T. and Koizumi, H.,
2009. Spatial and temporal variation in soil respiration in a seasonally
dry tropical forest, Thailand. J. Trop. Ecol ., 25: 531-539. doi:
10.1017/S026646740999006X.
Akhtar M.S., Aswan S. and Shakoor, A., 1992. Altitudinal distribution of
termite species in Azad Kashmir. Pak. J. Zool ., 24: 91-94.
Bignell, D.E. and Eggleton, P., 2000. Termites in ecosystems. In: Abe,
T., Higashi, M. and Bignell, D.E. (Eds.), Termites: Evolution,
Sociality, Symbiosis, Ecology (pp. 363-387). Dordrecht: Kluwer Academic
Press. doi: 10.1007/978-94-017- 3223-9-17.
Bignell, D.E., Eggleton, P., Nunes, L. and Thomas, K.L., 1997. Termites
as mediators of carbon fluxes in tropical forest: budgets for carbon
dioxide and methane emissions. In: Watt, A.D., Stork, N.E. and Hunter,
M.D. (Eds.), Forests and Insects (pp. 109-134). London: Chapman and
Hall.
Boonriam, W., Suwanwaree, P., Hasin, S., Archawakom, T., Chanonmuang,
P., Yamada, A., 2021a. Seasonal changes in spatial variation of soil
respiration in dry evergreen forest, Sakaerat Biosphere Reserve,
Thailand. ScienceAsia , 47S:112-119.
Boonriam, W., Suwanwaree, P., Hasin, S., Archawakom, T., Chanonmuang,
P., Yamada, A., 2021b. Effect of fungus-growing termite on
CO2 emission from soil at termitaria scales in a
seasonal tropical forest, Thailand. Environ. Nat. Resour. J. ,
19(6): 503-513.
Brümmer, C., Papen, H., Wassmann, R. and Brüggemann, N., 2009. Fluxes of
CH4 and CO2 from soil and termite mounds
in south Sudanian savanna of Burkina Faso (West Africa). Global
Biogeochem. Cy ., 23: GB1001. doi: 10.1029/2008GB003237.
Chambers, J.Q., Tribuzy, E.S., Toledo, L.C., Crispim, B.F., Higuchi, N.,
Dos Santos, J., Araujo, A.C., Kraut, B., Nobre, A.D. and Trumbore, S.E.,
2004. Respiration from a tropical forest ecosystem: partitioning of
sources and low carbon use efficiency. Ecol. Appl ., 14(4):
S72-S88. doi: 10.1890/01-6012.
Coleman, D.C., Crossley, D.A. and Hendrix, P.F., 2004. Fundamental of
Soil Ecology 2nd Ed. UK: Elsevier Academic Press, 408
p. doi:
10.1016/B978-0-12-179726-3.X5000-X.
Collins, N.M., 1989. Termites. In: Lieth, H. and Werger, M.J.A. (Eds.),
Tropical Rain Forest Ecosystems (pp. 455-471). Elsevier Science
Publishers, B.V., Amsterdam.
doi:
10.1016/C2009-0-08377-9.
De Gerenyu, V.L., Anichkin, A., Avilov, V., Kuznetsov, A. and Kurganova,
I., 2015. Termites as a factor of spatial differentiation of
CO2 fluxes from the soils of monsoon tropical forests in
southern Vietnam. Eurasian Soil Sci ., 48: 208-217. doi:
10.1134/S1064229315020088.
Eggleton, P., Bignell, D.E., Sands, W.A., Mawdsley, N.A., Lawton, J.H.,
Wood, T.G., and Bignell, N.C., 1996. The diversity, abundance and
biomass of termites under differing levels of disturbance in the
Mbalmayo Forest Reserve, southern Cameroon. Philos. Trans.
R. Soc. London [Biol.] , 351: 51-68.
doi:
10.1098/rstb.1996.0004.
Fernandez-Bou, A.S., Dierick, D., Swanson, A.C., Allen, M.F., Alvarado,
A.G.F., Artavia-León, A., Carrasquillo-Quintana, O., Lachman, D.A.,
Oberbauer, S., Pinto-Tomás, A.A., Rodríguez-Reyes, Y., Rundel, P.,
Schwendenmann, L., Zelikova, T.J., Harmon, T.C., 2019. The role of the
ecosystem engineer, the leaf-cutter ant Atta cephalotes , on soil
CO2 dynamics in a wet tropical rainforest. J.
Geophys. Res. Biogeosci ., 124: 260-273. doi: 10.1029/2018JG004723
Guo, Y., Zhang, X., Zhang, Y., Wu, D., McLaughlin, N., Zhang, S., Chen,
X., Jia, S. and Liang, A., 2019. Temporal variation of earthworm Impacts
on soil organic carbon under different tillage systems. Int. J.
Environ. Res. Public Health ., 16(11): 1908. doi:10.3390/ijerph16111908.
Hanson, P.J., Edwards, N.T., Garten, C.T. and Andrews, J.A., 2000.
Separating root and soil microbial contributions to soil respiration: A
review of methods and observations. Biogeochemistry , 48: 115-146.
doi: 10.1023/A:1006244819642.
Hasin, S., Ohashi, M., Yamada, A., Hashimoto, Y., Tasen, W., Kume, T.
and Yamane. S., 2014. CO2 efflux from subterranean nests
of ant communities in a seasonal tropical forest, Thailand. Ecol.
Evol ., 20(4): 3929-3939. doi: 10.1002/ece3.1255.
Hu, Y., Zhang, L., Deng, B., Liu, Y., Liu, Q., Zheng, X., Zheng, L.,
Kong, F., Guo, X., Siemann, E., 2017. The non-additive effects of
temperature and nitrogen deposition on CO2 emissions,
nitrification, and nitrogen mineralization in soils mixed with termite
nests. Catena .154:12-20. doi: 10.1016/j.catena.2017.02.014.
IPCC: Intergovernmental Panel on Climate Change, 2007. Climate Change
2007: The Physical Science Basis. In: Solomon, S., Qin, D., Manning, M.,
Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L. (Eds.),
Contribution of Working Group I to the Fourth Assessment Report of the
Intergovernmental Panel on Climate Change. UK and New York: Cambridge
University Press, 996 p.
Inoue, T., Kirtibutr, N. and Abe, T., 2001. Underground passage system
of Macrotermes Carbonarius (Isoptera, Termitidae) in a dry
evergreen forest of northeast Thailand. Insectes Soc ., 48:
372-377. doi: 10.1007/PL00001794
Inoue, T., Takematsu, Y., Yamada, A., Hongoh, Y., Johjima, T., Moriya,
S., Sornnuwat, Y.,
Vongkaluang, C., Ohkuma, M., Kudo, T. 2006. Diversity and abundance of
termites along an altitudinal gradient in Khao Kitchagoot National Park,
Thailand. J. Trop. Ecol., 22(5): 609-612.
doi:10.1017/S0266467406003403
Jamali, H., Livesley, S.J., Hutley, L. B., Fest, B. and Arndt, S. K.,
2013. The relationships between termite mound
CH4/CO2 emissions and internal
concentration ratios are species specific. Biogeosciences , 10:
2229-2240. doi: 10.5194/bg-10-2229-201.
Janssens, I.A., Kowalski, A.S. and Ceulemans, R., 2001. Forest floor
CO2 fluxes estimated by eddy covariance and
chamber-based model. Agric. For. Meteorol ., 106: 61-69.
doi:
10.1016/S0168-1923(00)00177-5.
Jeeva, D., Bignell, D.E., Eggleton, P. and Maryati, M., 1999.
Respiratory gas exchanges of termites from the Sabah (Borneo)
assemblage. Physiol. Entomol ., 24:11-17. doi:
10.1046/j.1365-3032.1999.00106.x.
Jones, D.T. and Eggleton, P., 2000. Sampling termite assemblages in
tropical forests: Testing a rapid biodiversity assessment protocol.J. Appl. Ecol ., 37: 191-203. doi:
10.1046/j.1365-2664.2000.00464.x.
Kayani, S.A., Shiekh, K.H. and Ahmas, M. (1979). Altitudinal
distribution of termites in relation to vegetation and soil conditions.Pak. J. Zool ., 11: 123-137.
Konate, S., Roux, X.L., Verdier, B. and Lepage, M., 2003. Effect of
underground fungus-growing termites on carbon dioxide emission at the
point and landscape-scales in African savanna. Funct. Ecol ., 17:
305-314. doi:
10.1046/j.1365-2435.2003.00727.x.
Konemann, C.E. and Kard, B.M., (2016). CO2 Emissions
from Soil on Oklahoma’s Tallgrass Prairie Preserve in the Presence or
Absence of Termites (Isoptera: Rhinotermitidae). Am. Midl. Nat .,
176(1): 60-71. doi: 10.1674/0003-0031-176.1.60.
Korb, J., 2003. Thermoregulation and ventilation of termite mounds.Sci. Nat. , 90: 212-219. doi:
10.1007/s00114-002-0401-4.
Korb, J. and Linsenmair, K.E., 1999. The architecture of termite mounds:
a result of a trade-off between thermoregulation and gas exchange?Behav. Ecol. , 10: 312-316.
doi.org/10.1093/beheco/10.3.312.
Lamotte, S., Gajaseni, J. and Malaisse, F., 1998. Structure diversity in
three forest types of north-eastern Thailand (Sakaerat Reserve, Pak Tong
Chai). Biotechnol. Agron. Soc. Environ. , 2:192-202.
Lavelle, P. and Spain, A., 2001. Soil Ecology. Dordrecht: Kluwer
Academic Press. doi:
10.1007/0-306-48162-6.
Luo, Y. and Zhou, X., 2006. Soil Respiration and the Environment. U.K.:
Elsevier. doi:
10.1016/B978-0-12-088782-8.X5000-1.
Matsumoto, T. and Abe, T., 1979. The role of termites in an equatorial
rain forest ecosystems of West Malaysia. II Leaf litter consumption of
the forest floor. Oecologia , 38: 261-274. doi:
10.1007/BF00345187.
Nyamadzawo, G., Gotosa, J., Muvengwi, J., Wuta, M., Nyamangara, J.,
Nyamugafata, P. and Smith, J.L., 2012. The effect of catena position on
greenhouse gas emissions from Dambo located termite (Odontotermes
transvaalensis ) mounds from Central Zimbabwe. Atmospheric and
Climate Sciences , 2: 502-509. doi: 10.4236/acs.2012.24044.
Ohashi, M., Finér, L., Domisch, T., Risch, A.C. and Jurgensen, M.F.,
2005. CO2 efflux from a red wood ant mound in a boreal
forest. Agric. For. Meteorol ., 130: 131-136. doi:
10.1016/j.agrformet.2005.03.002.
Ohashi, M., Kume, T., Yamane, S. and Suzuki, M., 2007. Hot spots of soil
respiration in an Asian tropical rainforest. Geophys. Res. Lett .,
34: L08705. doi: 10.1029/2007GL029587.
Ohashi, M., Maekawa, Y., Hashimato, Y., Takematsu, Y., Hasin, S. and
Yamane, S., 2017. CO2 emission from subterranean nests
of ants and termites in a tropical rainforest in Sarawak, Malaysia.Appl. Soil Ecol. , 117-118: 147-155. doi:
10.1016/j.apsoil.2017.04.016.
Risch, A.C., Jurgensen, M.F., Schütz, M. and Page-Dumroese, D.S., 2005.
The contribution of red wood ants to soil C and N pools and
CO2 emissions in subalpine forests. Ecology , 86:
419-430. doi: 10.1890/04-0159.
Risch, A.C., Anderson, T.M. and Schutz, M., 2012. Soil
CO2 emissions associated with termitaria in tropical
savanna: Evidence for hot-spot compensation. Ecosystems , 15(7):
1147-1157. doi: 10.1007/s10021-012-9571-x.
Sawadogo, J.B., Traoré, A.S. and Dianou, D., 2012. Seasonal
CO2 and CH4 Emissions from Termite
Mounds in the Sub-Sahelian Area of Burkina Faso. Botany Research
International , 5(3): 49-56. doi: 10.5829/idosi.bri.2012.5.3.242.
Šimek, M. and Pižl, V., 2010. Soil CO2 flux affected byAporrectodea caliginosa earthworms. Cent. Eur. J. Biol .,
5: 364-370. doi: 10.2478/s11535-010-0017-1.
Song, Q.H., Tan, Z.H., Zhang, Y.P., Cao, M., Sha, L. Q., Tang, Y.,
Liang, N.S., Schaefer, D., Zhao, J.F., Zhao, J.B., Zhang, X., Yu, L. and
Deng, X.B., 2013. Spatial heterogeneity of respiration in a seasonal
rainforest with complex terrain. iForest , 6: 65-72. doi:
10.3832/ifor0681-006.
Sotta, E.D., Meir, P., Malhi, Y., Nobre, A.D., Hodnett, M. and Grace,
J., 2004. Soil CO2 efflux in a tropical forest in the
central Amazon. Glob. Change Biol. , 10: 601-617. doi:
10.1111/j.1529-8817.2003.00761.x.
Sousa-Souto, L., Santos, D.C.J., Ambrogi, B.G., Santos, M.J.C., Guerra,
M.B.B. and Pereira-Filho, E.R., 2012. Increased CO2emission and organic matter decomposition by leaf-cutting ant nests in a
coastal environment. Soil Biol. Biochem. , 44: 21-25. doi:
10.1016/j.soilbio.2011.09.008.
Stoyan, H., De-Polli, H., Böhm, S., Robertson, G.P. and Paul, E.A.,
2000. Spatial heterogeneity of soil respiration and related properties
at the plant scale. Plant Soil , 222: 203-214. doi:
10.1023/A:1004757405147.
Sugimoto, A., Bignell, D.E. and MacDonald, J.A., 2000. Global impact of
termites on the carbon cycle and atmospheric trace gases. In: Abe, T.D.,
Bignell, D.E. and Higashi, M. (Eds.), Termites: evolution, sociality,
symbioses, ecology (pp. 409-435). Dordrecht: Kluwer Academic Press. doi:
10.1007/978-94-017-3223-9_19.
Trisurat, Y., 2010. Land use and forested landscape changes at Sakaerat
Environmental Research Station in Nakhorn Ratchasima Province, Thailand.Ekologia Bratislava , 29(1): 99-109. doi: 10.4149/ekol-2010-01-99.
Wood, T.E., Detto, M. and Silver, W.L., 2013. Sensitivity of Soil
Respiration to Variability in Soil Moisture and Temperature in a Humid
Tropical Forest. Plos One , 8(12): e80965.
doi:10.1371/journal.pone.0080965.
Wood, T.G., 1976. The role of termites (Isoptera) in decomposition
processes. In: Anderson, J.M. and Macfadyen, A. (Eds.), the role of
terrestrial and aquatic organisms in decomposition processes (pp.
145-168). Blackwell, Oxford.
Xu, M. and Qi, Y., 2001. Soil-surface CO2 efflux and its
spatial and temporal variations in a young ponderosa pine plantation in
northern California. Glob. Change Biol. , 7: 667-677. doi:
10.1046/j.1354-1013.2001.00435.x.
Yamada, A., Inoue, T., Sugimoto, A., Takematsu, Y., Kumai, T., Hyodo,
F., Fujita, A., Tayasu, T., Klangkaew, C., Kirtibutr, N., Kudo, T. and
Abe, T., 2003. Abundance and biomass of termites (Insecta: Isoptera) in
dead wood in a dry evergreen forest of Thailand. Sociobiology ,
42(3): 569-585.
Yamada, A., Inoue, T.D., Ohkuma, M., Kudo, T., Abe, T. and Sugimoto, A.,
2005. Carbon mineralization by termites in tropical forests, with
emphasis on fungus-combs. Ecol. Res ., 20: 453-460. doi:
10.1007/s11284-005-0062-9.