References
Adachi, M., Ishida, A., Bunyavejchewin, S., Okuda, T. and Koizumi, H., 2009. Spatial and temporal variation in soil respiration in a seasonally dry tropical forest, Thailand. J. Trop. Ecol ., 25: 531-539. doi: 10.1017/S026646740999006X.
Akhtar M.S., Aswan S. and Shakoor, A., 1992. Altitudinal distribution of termite species in Azad Kashmir. Pak. J. Zool ., 24: 91-94.
Bignell, D.E. and Eggleton, P., 2000. Termites in ecosystems. In: Abe, T., Higashi, M. and Bignell, D.E. (Eds.), Termites: Evolution, Sociality, Symbiosis, Ecology (pp. 363-387). Dordrecht: Kluwer Academic Press. doi: 10.1007/978-94-017- 3223-9-17.
Bignell, D.E., Eggleton, P., Nunes, L. and Thomas, K.L., 1997. Termites as mediators of carbon fluxes in tropical forest: budgets for carbon dioxide and methane emissions. In: Watt, A.D., Stork, N.E. and Hunter, M.D. (Eds.), Forests and Insects (pp. 109-134). London: Chapman and Hall.
Boonriam, W., Suwanwaree, P., Hasin, S., Archawakom, T., Chanonmuang, P., Yamada, A., 2021a. Seasonal changes in spatial variation of soil respiration in dry evergreen forest, Sakaerat Biosphere Reserve, Thailand. ScienceAsia , 47S:112-119.
Boonriam, W., Suwanwaree, P., Hasin, S., Archawakom, T., Chanonmuang, P., Yamada, A., 2021b. Effect of fungus-growing termite on CO2 emission from soil at termitaria scales in a seasonal tropical forest, Thailand. Environ. Nat. Resour. J. , 19(6): 503-513.
Brümmer, C., Papen, H., Wassmann, R. and Brüggemann, N., 2009. Fluxes of CH4 and CO2 from soil and termite mounds in south Sudanian savanna of Burkina Faso (West Africa). Global Biogeochem. Cy ., 23: GB1001. doi: 10.1029/2008GB003237.
Chambers, J.Q., Tribuzy, E.S., Toledo, L.C., Crispim, B.F., Higuchi, N., Dos Santos, J., Araujo, A.C., Kraut, B., Nobre, A.D. and Trumbore, S.E., 2004. Respiration from a tropical forest ecosystem: partitioning of sources and low carbon use efficiency. Ecol. Appl ., 14(4): S72-S88. doi: 10.1890/01-6012.
Coleman, D.C., Crossley, D.A. and Hendrix, P.F., 2004. Fundamental of Soil Ecology 2nd Ed. UK: Elsevier Academic Press, 408 p. doi: 10.1016/B978-0-12-179726-3.X5000-X.
Collins, N.M., 1989. Termites. In: Lieth, H. and Werger, M.J.A. (Eds.), Tropical Rain Forest Ecosystems (pp. 455-471). Elsevier Science Publishers, B.V., Amsterdam. doi: 10.1016/C2009-0-08377-9.
De Gerenyu, V.L., Anichkin, A., Avilov, V., Kuznetsov, A. and Kurganova, I., 2015. Termites as a factor of spatial differentiation of CO2 fluxes from the soils of monsoon tropical forests in southern Vietnam. Eurasian Soil Sci ., 48: 208-217. doi: 10.1134/S1064229315020088.
Eggleton, P., Bignell, D.E., Sands, W.A., Mawdsley, N.A., Lawton, J.H., Wood, T.G., and Bignell, N.C., 1996. The diversity, abundance and biomass of termites under differing levels of disturbance in the Mbalmayo Forest Reserve, southern Cameroon. Philos. Trans. R. Soc. London [Biol.] , 351: 51-68. doi: 10.1098/rstb.1996.0004.
Fernandez-Bou, A.S., Dierick, D., Swanson, A.C., Allen, M.F., Alvarado, A.G.F., Artavia-León, A., Carrasquillo-Quintana, O., Lachman, D.A., Oberbauer, S., Pinto-Tomás, A.A., Rodríguez-Reyes, Y., Rundel, P., Schwendenmann, L., Zelikova, T.J., Harmon, T.C., 2019. The role of the ecosystem engineer, the leaf-cutter ant Atta cephalotes , on soil CO2 dynamics in a wet tropical rainforest. J. Geophys. Res. Biogeosci ., 124: 260-273. doi: 10.1029/2018JG004723
Guo, Y., Zhang, X., Zhang, Y., Wu, D., McLaughlin, N., Zhang, S., Chen, X., Jia, S. and Liang, A., 2019. Temporal variation of earthworm Impacts on soil organic carbon under different tillage systems. Int. J. Environ. Res. Public Health ., 16(11): 1908. doi:10.3390/ijerph16111908.
Hanson, P.J., Edwards, N.T., Garten, C.T. and Andrews, J.A., 2000. Separating root and soil microbial contributions to soil respiration: A review of methods and observations. Biogeochemistry , 48: 115-146. doi: 10.1023/A:1006244819642.
Hasin, S., Ohashi, M., Yamada, A., Hashimoto, Y., Tasen, W., Kume, T. and Yamane. S., 2014. CO2 efflux from subterranean nests of ant communities in a seasonal tropical forest, Thailand. Ecol. Evol ., 20(4): 3929-3939. doi: 10.1002/ece3.1255.
Hu, Y., Zhang, L., Deng, B., Liu, Y., Liu, Q., Zheng, X., Zheng, L., Kong, F., Guo, X., Siemann, E., 2017. The non-additive effects of temperature and nitrogen deposition on CO2 emissions, nitrification, and nitrogen mineralization in soils mixed with termite nests. Catena .154:12-20. doi: 10.1016/j.catena.2017.02.014.
IPCC: Intergovernmental Panel on Climate Change, 2007. Climate Change 2007: The Physical Science Basis. In: Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M. and Miller, H.L. (Eds.), Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change. UK and New York: Cambridge University Press, 996 p.
Inoue, T., Kirtibutr, N. and Abe, T., 2001. Underground passage system of Macrotermes Carbonarius (Isoptera, Termitidae) in a dry evergreen forest of northeast Thailand. Insectes Soc ., 48: 372-377. doi: 10.1007/PL00001794
Inoue, T., Takematsu, Y., Yamada, A., Hongoh, Y., Johjima, T., Moriya, S., Sornnuwat, Y.,
Vongkaluang, C., Ohkuma, M., Kudo, T. 2006. Diversity and abundance of termites along an altitudinal gradient in Khao Kitchagoot National Park, Thailand. J. Trop. Ecol., 22(5): 609-612. doi:10.1017/S0266467406003403
Jamali, H., Livesley, S.J., Hutley, L. B., Fest, B. and Arndt, S. K., 2013. The relationships between termite mound CH4/CO2 emissions and internal concentration ratios are species specific. Biogeosciences , 10: 2229-2240. doi: 10.5194/bg-10-2229-201.
Janssens, I.A., Kowalski, A.S. and Ceulemans, R., 2001. Forest floor CO2 fluxes estimated by eddy covariance and chamber-based model. Agric. For. Meteorol ., 106: 61-69. doi: 10.1016/S0168-1923(00)00177-5.
Jeeva, D., Bignell, D.E., Eggleton, P. and Maryati, M., 1999. Respiratory gas exchanges of termites from the Sabah (Borneo) assemblage. Physiol. Entomol ., 24:11-17. doi: 10.1046/j.1365-3032.1999.00106.x.
Jones, D.T. and Eggleton, P., 2000. Sampling termite assemblages in tropical forests: Testing a rapid biodiversity assessment protocol.J. Appl. Ecol ., 37: 191-203. doi: 10.1046/j.1365-2664.2000.00464.x.
Kayani, S.A., Shiekh, K.H. and Ahmas, M. (1979). Altitudinal distribution of termites in relation to vegetation and soil conditions.Pak. J. Zool ., 11: 123-137.
Konate, S., Roux, X.L., Verdier, B. and Lepage, M., 2003. Effect of underground fungus-growing termites on carbon dioxide emission at the point and landscape-scales in African savanna. Funct. Ecol ., 17: 305-314. doi: 10.1046/j.1365-2435.2003.00727.x.
Konemann, C.E. and Kard, B.M., (2016). CO2 Emissions from Soil on Oklahoma’s Tallgrass Prairie Preserve in the Presence or Absence of Termites (Isoptera: Rhinotermitidae). Am. Midl. Nat ., 176(1): 60-71. doi: 10.1674/0003-0031-176.1.60.
Korb, J., 2003. Thermoregulation and ventilation of termite mounds.Sci. Nat. , 90: 212-219. doi: 10.1007/s00114-002-0401-4.
Korb, J. and Linsenmair, K.E., 1999. The architecture of termite mounds: a result of a trade-off between thermoregulation and gas exchange?Behav. Ecol. , 10: 312-316. doi.org/10.1093/beheco/10.3.312.
Lamotte, S., Gajaseni, J. and Malaisse, F., 1998. Structure diversity in three forest types of north-eastern Thailand (Sakaerat Reserve, Pak Tong Chai). Biotechnol. Agron. Soc. Environ. , 2:192-202.
Lavelle, P. and Spain, A., 2001. Soil Ecology. Dordrecht: Kluwer Academic Press. doi: 10.1007/0-306-48162-6.
Luo, Y. and Zhou, X., 2006. Soil Respiration and the Environment. U.K.: Elsevier. doi: 10.1016/B978-0-12-088782-8.X5000-1.
Matsumoto, T. and Abe, T., 1979. The role of termites in an equatorial rain forest ecosystems of West Malaysia. II Leaf litter consumption of the forest floor. Oecologia , 38: 261-274. doi: 10.1007/BF00345187.
Nyamadzawo, G., Gotosa, J., Muvengwi, J., Wuta, M., Nyamangara, J., Nyamugafata, P. and Smith, J.L., 2012. The effect of catena position on greenhouse gas emissions from Dambo located termite (Odontotermes transvaalensis ) mounds from Central Zimbabwe. Atmospheric and Climate Sciences , 2: 502-509. doi: 10.4236/acs.2012.24044.
Ohashi, M., Finér, L., Domisch, T., Risch, A.C. and Jurgensen, M.F., 2005. CO2 efflux from a red wood ant mound in a boreal forest. Agric. For. Meteorol ., 130: 131-136. doi: 10.1016/j.agrformet.2005.03.002.
Ohashi, M., Kume, T., Yamane, S. and Suzuki, M., 2007. Hot spots of soil respiration in an Asian tropical rainforest. Geophys. Res. Lett ., 34: L08705. doi: 10.1029/2007GL029587.
Ohashi, M., Maekawa, Y., Hashimato, Y., Takematsu, Y., Hasin, S. and Yamane, S., 2017. CO2 emission from subterranean nests of ants and termites in a tropical rainforest in Sarawak, Malaysia.Appl. Soil Ecol. , 117-118: 147-155. doi: 10.1016/j.apsoil.2017.04.016.
Risch, A.C., Jurgensen, M.F., Schütz, M. and Page-Dumroese, D.S., 2005. The contribution of red wood ants to soil C and N pools and CO2 emissions in subalpine forests. Ecology , 86: 419-430. doi: 10.1890/04-0159.
Risch, A.C., Anderson, T.M. and Schutz, M., 2012. Soil CO2 emissions associated with termitaria in tropical savanna: Evidence for hot-spot compensation. Ecosystems , 15(7): 1147-1157. doi: 10.1007/s10021-012-9571-x.
Sawadogo, J.B., Traoré, A.S. and Dianou, D., 2012. Seasonal CO2 and CH4 Emissions from Termite Mounds in the Sub-Sahelian Area of Burkina Faso. Botany Research International , 5(3): 49-56. doi: 10.5829/idosi.bri.2012.5.3.242.
Šimek, M. and Pižl, V., 2010. Soil CO2 flux affected byAporrectodea caliginosa earthworms. Cent. Eur. J. Biol ., 5: 364-370. doi: 10.2478/s11535-010-0017-1.
Song, Q.H., Tan, Z.H., Zhang, Y.P., Cao, M., Sha, L. Q., Tang, Y., Liang, N.S., Schaefer, D., Zhao, J.F., Zhao, J.B., Zhang, X., Yu, L. and Deng, X.B., 2013. Spatial heterogeneity of respiration in a seasonal rainforest with complex terrain. iForest , 6: 65-72. doi: 10.3832/ifor0681-006.
Sotta, E.D., Meir, P., Malhi, Y., Nobre, A.D., Hodnett, M. and Grace, J., 2004. Soil CO2 efflux in a tropical forest in the central Amazon. Glob. Change Biol. , 10: 601-617. doi: 10.1111/j.1529-8817.2003.00761.x.
Sousa-Souto, L., Santos, D.C.J., Ambrogi, B.G., Santos, M.J.C., Guerra, M.B.B. and Pereira-Filho, E.R., 2012. Increased CO2emission and organic matter decomposition by leaf-cutting ant nests in a coastal environment. Soil Biol. Biochem. , 44: 21-25. doi: 10.1016/j.soilbio.2011.09.008.
Stoyan, H., De-Polli, H., Böhm, S., Robertson, G.P. and Paul, E.A., 2000. Spatial heterogeneity of soil respiration and related properties at the plant scale. Plant Soil , 222: 203-214. doi: 10.1023/A:1004757405147.
Sugimoto, A., Bignell, D.E. and MacDonald, J.A., 2000. Global impact of termites on the carbon cycle and atmospheric trace gases. In: Abe, T.D., Bignell, D.E. and Higashi, M. (Eds.), Termites: evolution, sociality, symbioses, ecology (pp. 409-435). Dordrecht: Kluwer Academic Press. doi: 10.1007/978-94-017-3223-9_19.
Trisurat, Y., 2010. Land use and forested landscape changes at Sakaerat Environmental Research Station in Nakhorn Ratchasima Province, Thailand.Ekologia Bratislava , 29(1): 99-109. doi: 10.4149/ekol-2010-01-99.
Wood, T.E., Detto, M. and Silver, W.L., 2013. Sensitivity of Soil Respiration to Variability in Soil Moisture and Temperature in a Humid Tropical Forest. Plos One , 8(12): e80965. doi:10.1371/journal.pone.0080965.
Wood, T.G., 1976. The role of termites (Isoptera) in decomposition processes. In: Anderson, J.M. and Macfadyen, A. (Eds.), the role of terrestrial and aquatic organisms in decomposition processes (pp. 145-168). Blackwell, Oxford.
Xu, M. and Qi, Y., 2001. Soil-surface CO2 efflux and its spatial and temporal variations in a young ponderosa pine plantation in northern California. Glob. Change Biol. , 7: 667-677. doi: 10.1046/j.1354-1013.2001.00435.x.
Yamada, A., Inoue, T., Sugimoto, A., Takematsu, Y., Kumai, T., Hyodo, F., Fujita, A., Tayasu, T., Klangkaew, C., Kirtibutr, N., Kudo, T. and Abe, T., 2003. Abundance and biomass of termites (Insecta: Isoptera) in dead wood in a dry evergreen forest of Thailand. Sociobiology , 42(3): 569-585.
Yamada, A., Inoue, T.D., Ohkuma, M., Kudo, T., Abe, T. and Sugimoto, A., 2005. Carbon mineralization by termites in tropical forests, with emphasis on fungus-combs. Ecol. Res ., 20: 453-460. doi: 10.1007/s11284-005-0062-9.