REFERENCES
1. Robins-Browne, R. M., Holt, K. E., Ingle, D. J., Hocking, D. M., Yang, J., & Tauschek, M. (2016). Are Escherichia coli Pathotypes Still Relevant in the Era of Whole-Genome Sequencing? Frontiers in Cellular and Infection Microbiology , 6 . https://doi.org/10.3389/fcimb.2016.00141
2. Dubreuil, J. D. (2014). ESCHERICHIA COLI | Enterotoxigenic E. coli (ETEC). In Encyclopedia of Food Microbiology (pp. 728–734). Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00385-2
3. Madhavan, T. P. V., & Sakellaris, H. (2015). Colonization Factors of Enterotoxigenic Escherichia coli (pp. 155–197). https://doi.org/10.1016/bs.aambs.2014.09.003
4. Melkebeek, V., Goddeeris, B. M., & Cox, E. (2013). ETEC vaccination in pigs. Veterinary Immunology and Immunopathology ,152 (1–2), 37–42. https://doi.org/10.1016/j.vetimm.2012.09.024
5. Fairbrother, J. M., Nadeau, É., Bélanger, L., Tremblay, C.-L., Tremblay, D., Brunelle, M., Wolf, R., Hellmann, K., & Hidalgo, Á. (2017). Immunogenicity and protective efficacy of a single-dose live non-pathogenic Escherichia coli oral vaccine against F4-positive enterotoxigenic Escherichia coli challenge in pigs. Vaccine ,35 (2), 353–360. https://doi.org/10.1016/j.vaccine.2016.11.045
6. Evangelista, A. G., Corrêa, J. A. F., Pinto, A. C. S. M., & Luciano, F. B. (2021). The impact of essential oils on antibiotic use in animal production regarding antimicrobial resistance–a review. Critical Reviews in Food Science and Nutrition , 1–17. https://doi.org/10.1080/10408398.2021.1883548
7. Danielski, G. M., Evangelista, A. G., Luciano, F. B., & de Macedo, R. E. F. (2020). Non-conventional cultures and metabolism-derived compounds for bioprotection of meat and meat products: a review.Critical Reviews in Food Science and Nutrition , 1–14. https://doi.org/10.1080/10408398.2020.1835818
8. Corrêa, J. A. F., Evangelista, A. G., Nazareth, T. de M., & Luciano, F. B. (2019). Fundamentals on the molecular mechanism of action of antimicrobial peptides. Materialia , 8 , 100494. https://doi.org/10.1016/j.mtla.2019.100494
9. Evangelista, A. G., & Luciano, F. B. (2021). Presença de Salmonella spp. na produção animal e o uso de fermentados bacterianos para mitigação dos riscos – revisão de literatura. Arquivos de Ciências Veterinárias e Zoologia Da UNIPAR , 24 (1cont), 1–7. https://doi.org/10.25110/arqvet.v24i1cont.2021.8543
10. Oliveira, J. S., Costa, K., Acurcio, L. B., Sandes, S. H. C., Cassali, G. D., Uetanabaro, A. P. T., Costa, A. M., Nicoli, J. R., Neumann, E., & Porto, A. L. F. (2018). In vitro and in vivo evaluation of two potential probiotic lactobacilli isolated from cocoa fermentation (Theobroma cacao L.). Journal of Functional Foods , 47 , 184–191. https://doi.org/10.1016/j.jff.2018.05.055
11. Santos, T. F., Santana, L. K. A., Santos, A. C. F., Silva, G. S., Romano, C. C., Dias, J. C. T., & Rezende, R. P. (2011). Lactic acid bacteria dynamics during spontaneous fermentation of cocoa beans verified by culture-independent denaturing gradient gel electrophoresis.Genetics and Molecular Research , 10 (4), 2702–2709. https://doi.org/10.4238/2011.November.4.3
12. Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris, H. M. B., Mattarelli, P., O’Toole, P. W., Pot, B., Vandamme, P., Walter, J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S. (2020). A taxonomic note on the genus Lactobacillus: Description of 23 novel genera, emended description of the genus Lactobacillus Beijerinck 1901, and union of Lactobacillaceae and Leuconostocaceae.International Journal of Systematic and Evolutionary Microbiology , 70 (4), 2782–2858. https://doi.org/10.1099/ijsem.0.004107
13. Jacobsen, C. N., Nielsen, V. R., Hayford, A. E., Møller, P. L., Michaelsen, K. F., Pærregaard, A., Sandström, B., Tvede, M., & Jakobsen, M. (1999). Screening of probiotic activities of forty-seven strains of Lactobacillus spp. by in vitro techniques and evaluation of the colonization ability of five selected strains in humans.Applied and Environmental Microbiology , 65 (11), 4949–4956. https://doi.org/10.1128/aem.65.11.4949-4956.1999
14. Bordin, K., Saladino, F., Fernández-Blanco, C., Ruiz, M. J., Mañes, J., Fernández-Franzón, M., Meca, G., & Luciano, F. B. (2017). Reaction of zearalenone and α-zearalenol with allyl isothiocyanate, characterization of reaction products, their bioaccessibility and bioavailability in vitro. Food Chemistry , 217 , 648–654. https://doi.org/10.1016/j.foodchem.2016.09.044
15. Lin, T.-H., & Pan, T.-M. (2019). Characterization of an antimicrobial substance produced by Lactobacillus plantarum NTU 102.Journal of Microbiology, Immunology and Infection , 52 (3), 409–417. https://doi.org/10.1016/j.jmii.2017.08.003
16. Pridmore, R. D., Pittet, A. C., Praplan, F., & Cavadini, C. (2008). Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its role in anti-Salmonella activity. FEMS Microbiology Letters ,283 (2), 210–215. https://doi.org/10.1111/j.1574-6968.2008.01176.x
17. Chen, Z.-Y., Hsieh, Y.-M., Huang, C.-C., & Tsai, C.-C. (2017). Inhibitory Effects of Probiotic Lactobacillus on the Growth of Human Colonic Carcinoma Cell Line HT-29. Molecules , 22 (1), 107. https://doi.org/10.3390/molecules22010107
18. Blottiere, H. M., Buecher, B., Galmiche, J.-P., & Cherbut, C. (2003). Molecular analysis of the effect of short-chain fatty acids on intestinal cell proliferation. Proceedings of the Nutrition Society , 62 (1), 101–106. https://doi.org/10.1079/PNS2002215
19. Balaban, S., Shearer, R. F., Lee, L. S., van Geldermalsen, M., Schreuder, M., Shtein, H. C., Cairns, R., Thomas, K. C., Fazakerley, D. J., Grewal, T., Holst, J., Saunders, D. N., & Hoy, A. J. (2017). Adipocyte lipolysis links obesity to breast cancer growth: adipocyte-derived fatty acids drive breast cancer cell proliferation and migration. Cancer & Metabolism , 5 (1), 1. https://doi.org/10.1186/s40170-016-0163-7
20. Abushelaibi, A., Al-Mahadin, S., El-Tarabily, K., Shah, N. P., & Ayyash, M. (2017). Characterization of potential probiotic lactic acid bacteria isolated from camel milk. LWT - Food Science and Technology , 79 , 316–325. https://doi.org/10.1016/j.lwt.2017.01.041
21. Collado, M. C., Surono, I., Meriluoto, J., & Salminen, S. (2007). Indigenous Dadih Lactic Acid Bacteria: Cell-Surface Properties and Interactions with Pathogens. Journal of Food Science ,72 (3), M89–M93. https://doi.org/10.1111/j.1750-3841.2007.00294.x
22. Singh, N., Kaur, R., Singh, B. P., Rokana, N., Goel, G., Puniya, A. K., & Panwar, H. (2020). Impairment of Cronobacter sakazakii and Listeria monocytogenes biofilms by cell-free preparations of lactobacilli of goat milk origin. Folia Microbiologica ,65 (1), 185–196. https://doi.org/10.1007/s12223-019-00721-3
23. Rana, S., Bhawal, S., Kumari, A., Kapila, S., & Kapila, R. (2020). pH-dependent inhibition of AHL-mediated quorum sensing by cell-free supernatant of lactic acid bacteria in Pseudomonas aeruginosa PAO1.Microbial Pathogenesis , 142 , 104105. https://doi.org/10.1016/j.micpath.2020.104105
24. Zamani, H., Rahbar, S., Garakoui, S. R., Afsah Sahebi, A., & Jafari, H. (2017). Antibiofilm potential of Lactobacillus plantarum spp. cell free supernatant (CFS) against multidrug resistant bacterial pathogens. Pharmaceutical and Biomedical Research , 3 (2), 39–44. https://doi.org/10.29252/pbr.3.2.39
25. Melo, T. A., dos Santos, T. F., de Almeida, M. E., Junior, L. A. G. F., Andrade, E. F., Rezende, R. P., Marques, L. M., & Romano, C. C. (2016). Inhibition of Staphylococcus aureus biofilm by Lactobacillus isolated from fine cocoa. BMC Microbiology , 16 (1), 250. https://doi.org/10.1186/s12866-016-0871-8