REFERENCES
1. Robins-Browne, R. M., Holt, K. E., Ingle, D. J., Hocking, D. M.,
Yang, J., & Tauschek, M. (2016). Are Escherichia coli Pathotypes Still
Relevant in the Era of Whole-Genome Sequencing? Frontiers in
Cellular and Infection Microbiology , 6 .
https://doi.org/10.3389/fcimb.2016.00141
2. Dubreuil, J. D. (2014). ESCHERICHIA COLI | Enterotoxigenic
E. coli (ETEC). In Encyclopedia of Food Microbiology (pp.
728–734). Elsevier. https://doi.org/10.1016/B978-0-12-384730-0.00385-2
3. Madhavan, T. P. V., & Sakellaris, H. (2015). Colonization
Factors of Enterotoxigenic Escherichia coli (pp. 155–197).
https://doi.org/10.1016/bs.aambs.2014.09.003
4. Melkebeek, V., Goddeeris, B. M., & Cox, E. (2013). ETEC vaccination
in pigs. Veterinary Immunology and Immunopathology ,152 (1–2), 37–42. https://doi.org/10.1016/j.vetimm.2012.09.024
5. Fairbrother, J. M., Nadeau, É., Bélanger, L., Tremblay, C.-L.,
Tremblay, D., Brunelle, M., Wolf, R., Hellmann, K., & Hidalgo, Á.
(2017). Immunogenicity and protective efficacy of a single-dose live
non-pathogenic Escherichia coli oral vaccine against F4-positive
enterotoxigenic Escherichia coli challenge in pigs. Vaccine ,35 (2), 353–360. https://doi.org/10.1016/j.vaccine.2016.11.045
6. Evangelista, A. G., Corrêa, J. A. F., Pinto, A. C. S. M., & Luciano,
F. B. (2021). The impact of essential oils on antibiotic use in animal
production regarding antimicrobial resistance–a review. Critical
Reviews in Food Science and Nutrition , 1–17.
https://doi.org/10.1080/10408398.2021.1883548
7. Danielski, G. M., Evangelista, A. G., Luciano, F. B., & de Macedo,
R. E. F. (2020). Non-conventional cultures and metabolism-derived
compounds for bioprotection of meat and meat products: a review.Critical Reviews in Food Science and Nutrition , 1–14.
https://doi.org/10.1080/10408398.2020.1835818
8. Corrêa, J. A. F., Evangelista, A. G., Nazareth, T. de M., & Luciano,
F. B. (2019). Fundamentals on the molecular mechanism of action of
antimicrobial peptides. Materialia , 8 , 100494.
https://doi.org/10.1016/j.mtla.2019.100494
9. Evangelista, A. G., & Luciano, F. B. (2021). Presença de Salmonella
spp. na produção animal e o uso de fermentados bacterianos para
mitigação dos riscos – revisão de literatura. Arquivos de
Ciências Veterinárias e Zoologia Da UNIPAR , 24 (1cont), 1–7.
https://doi.org/10.25110/arqvet.v24i1cont.2021.8543
10. Oliveira, J. S., Costa, K., Acurcio, L. B., Sandes, S. H. C.,
Cassali, G. D., Uetanabaro, A. P. T., Costa, A. M., Nicoli, J. R.,
Neumann, E., & Porto, A. L. F. (2018). In vitro and in vivo evaluation
of two potential probiotic lactobacilli isolated from cocoa fermentation
(Theobroma cacao L.). Journal of Functional Foods , 47 ,
184–191. https://doi.org/10.1016/j.jff.2018.05.055
11. Santos, T. F., Santana, L. K. A., Santos, A. C. F., Silva, G. S.,
Romano, C. C., Dias, J. C. T., & Rezende, R. P. (2011). Lactic acid
bacteria dynamics during spontaneous fermentation of cocoa beans
verified by culture-independent denaturing gradient gel electrophoresis.Genetics and Molecular Research , 10 (4), 2702–2709.
https://doi.org/10.4238/2011.November.4.3
12. Zheng, J., Wittouck, S., Salvetti, E., Franz, C. M. A. P., Harris,
H. M. B., Mattarelli, P., O’Toole, P. W., Pot, B., Vandamme, P., Walter,
J., Watanabe, K., Wuyts, S., Felis, G. E., Gänzle, M. G., & Lebeer, S.
(2020). A taxonomic note on the genus Lactobacillus: Description of 23
novel genera, emended description of the genus Lactobacillus Beijerinck
1901, and union of Lactobacillaceae and Leuconostocaceae.International Journal of Systematic and Evolutionary
Microbiology , 70 (4), 2782–2858.
https://doi.org/10.1099/ijsem.0.004107
13. Jacobsen, C. N., Nielsen, V. R., Hayford, A. E., Møller, P. L.,
Michaelsen, K. F., Pærregaard, A., Sandström, B., Tvede, M., &
Jakobsen, M. (1999). Screening of probiotic activities of forty-seven
strains of Lactobacillus spp. by in vitro techniques and evaluation of
the colonization ability of five selected strains in humans.Applied and Environmental Microbiology , 65 (11),
4949–4956. https://doi.org/10.1128/aem.65.11.4949-4956.1999
14. Bordin, K., Saladino, F., Fernández-Blanco, C., Ruiz, M. J., Mañes,
J., Fernández-Franzón, M., Meca, G., & Luciano, F. B. (2017). Reaction
of zearalenone and α-zearalenol with allyl isothiocyanate,
characterization of reaction products, their bioaccessibility and
bioavailability in vitro. Food Chemistry , 217 , 648–654.
https://doi.org/10.1016/j.foodchem.2016.09.044
15. Lin, T.-H., & Pan, T.-M. (2019). Characterization of an
antimicrobial substance produced by Lactobacillus plantarum NTU 102.Journal of Microbiology, Immunology and Infection , 52 (3),
409–417. https://doi.org/10.1016/j.jmii.2017.08.003
16. Pridmore, R. D., Pittet, A. C., Praplan, F., & Cavadini, C. (2008).
Hydrogen peroxide production by Lactobacillus johnsonii NCC 533 and its
role in anti-Salmonella activity. FEMS Microbiology Letters ,283 (2), 210–215.
https://doi.org/10.1111/j.1574-6968.2008.01176.x
17. Chen, Z.-Y., Hsieh, Y.-M., Huang, C.-C., & Tsai, C.-C. (2017).
Inhibitory Effects of Probiotic Lactobacillus on the Growth of Human
Colonic Carcinoma Cell Line HT-29. Molecules , 22 (1), 107.
https://doi.org/10.3390/molecules22010107
18. Blottiere, H. M., Buecher, B., Galmiche, J.-P., & Cherbut, C.
(2003). Molecular analysis of the effect of short-chain fatty acids on
intestinal cell proliferation. Proceedings of the Nutrition
Society , 62 (1), 101–106. https://doi.org/10.1079/PNS2002215
19. Balaban, S., Shearer, R. F., Lee, L. S., van Geldermalsen, M.,
Schreuder, M., Shtein, H. C., Cairns, R., Thomas, K. C., Fazakerley, D.
J., Grewal, T., Holst, J., Saunders, D. N., & Hoy, A. J. (2017).
Adipocyte lipolysis links obesity to breast cancer growth:
adipocyte-derived fatty acids drive breast cancer cell proliferation and
migration. Cancer & Metabolism , 5 (1), 1.
https://doi.org/10.1186/s40170-016-0163-7
20. Abushelaibi, A., Al-Mahadin, S., El-Tarabily, K., Shah, N. P., &
Ayyash, M. (2017). Characterization of potential probiotic lactic acid
bacteria isolated from camel milk. LWT - Food Science and
Technology , 79 , 316–325.
https://doi.org/10.1016/j.lwt.2017.01.041
21. Collado, M. C., Surono, I., Meriluoto, J., & Salminen, S. (2007).
Indigenous Dadih Lactic Acid Bacteria: Cell-Surface Properties and
Interactions with Pathogens. Journal of Food Science ,72 (3), M89–M93. https://doi.org/10.1111/j.1750-3841.2007.00294.x
22. Singh, N., Kaur, R., Singh, B. P., Rokana, N., Goel, G., Puniya, A.
K., & Panwar, H. (2020). Impairment of Cronobacter sakazakii and
Listeria monocytogenes biofilms by cell-free preparations of
lactobacilli of goat milk origin. Folia Microbiologica ,65 (1), 185–196. https://doi.org/10.1007/s12223-019-00721-3
23. Rana, S., Bhawal, S., Kumari, A., Kapila, S., & Kapila, R. (2020).
pH-dependent inhibition of AHL-mediated quorum sensing by cell-free
supernatant of lactic acid bacteria in Pseudomonas aeruginosa PAO1.Microbial Pathogenesis , 142 , 104105.
https://doi.org/10.1016/j.micpath.2020.104105
24. Zamani, H., Rahbar, S., Garakoui, S. R., Afsah Sahebi, A., &
Jafari, H. (2017). Antibiofilm potential of Lactobacillus plantarum spp.
cell free supernatant (CFS) against multidrug resistant bacterial
pathogens. Pharmaceutical and Biomedical Research , 3 (2),
39–44. https://doi.org/10.29252/pbr.3.2.39
25. Melo, T. A., dos Santos, T. F., de Almeida, M. E., Junior, L. A. G.
F., Andrade, E. F., Rezende, R. P., Marques, L. M., & Romano, C. C.
(2016). Inhibition of Staphylococcus aureus biofilm by Lactobacillus
isolated from fine cocoa. BMC Microbiology , 16 (1), 250.
https://doi.org/10.1186/s12866-016-0871-8