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1 | INTRODUCTION

ABSTRACT

In this paper, we establish a new post quantum integral identity for twice (p, q)-
differentiable convex functions. Then, we use this result to derive some new post
quantum Ostrowski-type inequalities for twice (p, q)-differentiable convex functions
involving (p, q),- and (p, q)"-integrals. The newly established results are also proven
to be generalizations of some existing results in the field of integral inequalities of
already published ones.
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Mathematical inequalities are a necessary tool in the study of pure and applied mathematics. One of the type inequalities that
have been the focus of significant attention from many researchers is Ostrowski-type inequalities because it can be applied in
quadrature, stochastic, probability and optimization theory, statistics, integral operator theory, and information. The classical
integral inequality for the differentiable function is as follows:

Theorem 1. " Let /' : [a, b] = R be a differentiable function on (a, b) whose the derivative function f : (a, b) — R is bounded
on (a,b) and || f'|l, = sup |f'(#)| < 0. Then

te€(a,b)

b
f(X)—% / £ di| <
—a

for all x € [a, b].

(o252

1 '
it (Al VS




2 | WAEWTA LUANGBOON ET AL.

In recent years, many researchers focused on the Ostrowski-type inequalities and their applications, see“™">%%% R and
the references cited therein for more details. Specifically, many researchers worked on the Ostrowski-type inequalities and their
applications using quantum calculus, some results can be found in @S EEEEIOL 554 the references cited therein.

Quantum calculus, also known as g-calculus, is the study of calculus without limits. The concept was revealed by renowned
mathematician Euler (1707-1783), who introduced the number in g-infinite series defined by Newton. Then, in 1910, Jackson 22
defined g-integral and g-derivative of a continuous function on the interval (0, o0) extending the concept of Euler. In this, the
main objective is to obtain the g-analoques of mathematical objects that can be recaptured as ¢ — 1. The topic of g-calculus has
received outstanding attention from many scientists because it has numerous applications in various fields of mathematics and
physics such as hypergeometric functions, orthogonal polynomials, mechanics, number theory, combinatorics, and the theory
of relativity, see 77 EFIPRISEOELELES anq the references cited therein for more details.

In 2013, Tariboon and Ntouyas™ presented the g, -derivative and g,-integral of a continuous function on a finite interval
and addressed numerous problems on ¢, -analogues of classical inequalities. Recently, the g’-derivative and g’-integral of a
continuous function on a finite interval and proved some basic properties was presented by Bermudo et al.** in 2020 and some
basic properties were proved. Currently, these topics of g-calculus have been studied in various inequalities, for example, Hanh
integral inequalities, Hermite-Hadamard inequalities, Hermite-Hadamard-like inequalities, Newton-type inequalities, Simpson-
type inequalities, Fejér-type inequalities, and Ostrowski-type inequalities, see %5788 89508187 3 the references cited therein for
more details.

Post quantum calculus, also known as (p, g)-calculus, is a generalization of g-calculus. The (p, g)-calculus has two independent
parameters that are p-number and g-number. Apparently, g-calculus cannot be obtained directly by substituting ¢ by ¢/p in
g-calculus, but it can be obtained directly by taking p = 1 in (p, g)-calculus. Then, the classical inequalities can be gain by
taking ¢ — 1. The concept of (p, g)-calculus of a continuous function on the interval (0, co) was first presented by Chakrabarti
and Jagannathan®™ in 1991. Then, the concept of the (p, q),-derivative and (p, q) -integral of a continuous function on a finite
interval was presented by Tung, and Gov*** in 2016. Recently, the concept of the (p, g)’-derivative and (p, q)°-integral of a
continuous function on a finite interval was presented by Vivas-Cortez et al.*® in 2021. Currently, the topic of (p, g)-calculus is
being investigated extensively by many scientists, and some new results can be found in */##:#5:t:24.52.55,64,65
cited therein.

In 2021, Ali et al.*? presented quantum Ostrowski-type inequalities for twice g-differentiable convex functions. By taking
q — 1, they obtain classical results on some Ostrowski-type inequalities for functions, whose second derivatives are A-convex
functions ™. Inspired by the above mentioned reports, we establish some new post quantum Ostrowski-type inequalities for twice
(p, q)-differentiable convex functions to extend and generalize the results given in previous reports.

The rest of the paper is organized as follows: In Section [, we give some basic knowledge and notation. In Section B, we
establish some new post quantum Ostrowski-type inequalities for twice (p, g)-differentiable convex functions. In Section B, we
summarize our results.

and the references

2 | PRELIMINARIES

In this section, we give basic knowledge and notation that will be used in our work. Throughout this paper, let [a, b] C R be an
interval with a < band 0 < g < p < 1 be constants. The (p, g)-number of n is given by

r-q
[nl,, = =4 =" 4 p" g4+ pg" P+ g™, neN, (1)
which is a generalization of the g-number or g-analogue of n such that
1 —h
[n], = 1_2 =l+q+-+¢"2+¢"", neNn, )

see™ for more details.

Definition 1. *** For a continuous function f : [a, b] — R, then the (p, q),-derivative of function f att € [a, b] is defined by

S i+ (1= p)a) = f (g1 + (1 = o)
“Doal 0= (b=t~ a) e

oD, f(a) = Pj{} oD, F@. 3
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The function f is said to be (p, q),-differentiable function on [a, b] if , D, , f(?) exists for all 7 € [a, (b — a)/p + al.
In Definition I, if p = 1 and ,D, , f(1) = ,D,f(t), then (B) reduces to

f@) = f(gt+1-qg)a)
P O= T im0 T

oD, f (@ =1lim ,D,f (1), “)

which is the g,-derivative of function f defined on [a, b], see™>" for more details. In addition, if a = 0 and (D, f(t) = D, f (),
then (@) reduces to

_ S0 = £
Df()= =G o 1
D, f(a) = lim D, f (1), )

which is the g-derivative of function f defined on [0, b], also called g-Jackson derivative, see™ for more details.
Example 1. Define function f : [a,b] = R by f(t) = t* + C, where C is constant. Applying Definition [ for ¢ # a, we have
[(pt + (1 = p)a)* + C| = [(gt + (1 — g)a)* + C]
P-9t—-a

_ e+ +2al1 - (p+ @1+ a’[(p+49) - 2]

(t-a)
_(p+ - a)* +2a(t — a)
- )
=1[2],,(t —a) + 2a. 6)

2 —
D, +C) =

Definition 2. *® For a continuous function f : [a, b] = R, then the (p, g)*-derivative of function f att € [a, b] is defined by

b @+ (L= b = £ (pr+ (1= pb)
Dal 0= TEDIUED A

"D, f(b)=1lim *D, f(2). ™

The function f is said to be (p, g)°-differentiable function on [a, b] if bDM f@) exists forall t € [b— (b — a)/p, b].

In Definition , if p = 1 and *D, ,f(t) = "D, f (1), then (@) reduces to

o fa(=ah)= £
P O= 56— "7

"D, f(b) =1lim "D, f (1), ®)

which is the g”-derivative of function f defined on [a, b], see*>™* for more details.
Example 2. Define function f : [a,b] - R by f(f) = > + C, where C is constant. Applying Definition D for # # a, we have
[(qr + (1 = @)b)* + C| = [(pr + (1 = p)b)* + C|

P-@b-1
—(p+ @ +2bt[(p+ q) = 11+ B*[2 = (p + 9]

b-1

=+ b -1 +2b(b—1)
- (-1
=[2],,(t —b) +2b. )

b 2 —
D, (i +C)=

Definition 3. * For a continuous function f : [a, 5] — R, then the (p, q),-integral of function f at 7 € [a, x] is defined by

/f(t) gt == Dx =) Y, Z+1f< Tox <1— f{H)a) (10)
a n:()p p 4

for x € [a, b].

The function f is said to be (p, q) ,-integrable function on [a, x] if [a x f@® adp‘qt exists for all ¢ € [a,a + p(x — a)].
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Example 3. Define function f : [a, b] - R by f (t) = At + B, where A and B are constants. Applying Definition B, we have

/f(t)a pqt—/(At+B)a ol

j
- S (00 1~ 5)2)
v ¢
+B(p—q)(b—a)j§0F
_ A(b—a)(b[;]a(l —p—q)) + Bb—a). (11)
p.q

Definition 4. *® For a continuous function f : [a, b] — R, then the (p, g)*-integral of function f at ¢ € [x, b] is defined by

b
/f(t) bdpqqt=(p—q)(b—x)z o < Tx+ <1 _ p3+l>b> (12)

for x € [a, b].

The function £ is said to be (p, q)*-integrable function on [x, b] if fa b f(@td gt exists for all 7 € [b — p(b — x), b].
Example 4. Define function f : [a,b] — R by f(¢#) = At + B, where A and B are constants. Applying Definition B, we have
b

b
/ NOK / (At + B)"d, t

a

¢ ([ q q’
= A(p — q)(b — B S . S [
o000 35 (e (1-55)0)

(e

+B(p—q>(b—a>2p%

_Ab-a(a-b(-p-9)

+ B(b — a). (13)
(21,,
Lemma 1. ™ For a € R\ {—1}, the following expression holds:
(b _ a)a+1

r— d 14
/( a)* ,d, 1= [a+1] (14)

Theorem 2. “ If f, g : [a,b] — R are continuous functions and r > 0 with 1/r + 1/s = 1, then

b 1/s

/ |f (g d, 1 < / [fDI" .d, t / g’ .d,,t (15)

fort € [a, b].

3 | MAIN RESULTS

In this section, we give some new estimates of post quantum Ostrowski-type inequalities for twice (p, g)-differentiable functions
involving (p, q),- and (p, g)*-integrals. Let J; = [b — p(b — x),b] and J, = [a,a + p(x — a)]. We start with the following
(p, g)-integral identities.
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Theorem 3. If f : [a, b] — Risatwice (p, q)-differentiable function such that bDi . f and aDlZ) ‘ S are continuous and integrable
functions on J, and J,, respectively. Then

1
(x —a)*(b—x)*| (a — x)/t D’ f(x+(1—0a)d, t+(x - b)/t2 bDi,qf(tx +(1-0byd,t|="L, (x), (16)
0 0

apg
where
b _(x—a)b-x) s )
oLp () TR (x=—apqf(gx+ (1 —q)b)+ (b —x)pqf(gx+ (1 —qg)a)— (x —a)q” + pq—p ) f(px + (1 - p)b)
b P*x+(1-p*a
— (b= x)(@* +pg— p)f(px + (1 — p)a)] -2 (x-a)’ / F@) d, gt + (b= x)? / F@) oyt
P*x+(1-p?)b a
Proof. Using Definition [, we have
a qu(zb+ (I-0a)

= a pq( a qu(tb+ (1 - t)a))

- D f(ptb+ (1 = pta) — f(qth+ (1 — gt)a)

I (p— )b - a)

_ 1 [f(pztb +(1 = p*t)a) = f(pgtb + (1 — pg)a) _ f(pgtb + (1 = pgtia) = f(g*tb + (1 — g°na)

(»—q)(b—a) pt(p—q)(b—a) qt(p— q)b—a)

_afP*tb+ (1 - p’Na) — [21,,f (patb + (1 — pgna) + pf(g*tb + (1 — g t)a)

pat*(p — ¢)*(b — a)?
Applying (IC2) and Definition B, we obtain

a7

1

2 2
/ 2,02 f(tx+(1=1na)d,,t

0

/1 qf (p*tx + (1 — p*t)a) — [21,,f (pgtx + (1 — pgt)a) + pf(g*tx + (1 — g*1)a)

t
J pq(p — q)*(x — a)? P

a(p q)(x—a)Z e < 2p311x+ (1 —Pzple > “)
pa(p — q)*(b — x)?
o= 0-0 3 507 (s (12055 ) )
pqz(p — @) (b—x)
P = x—a) i qi (f,jx * (1 B Zi) a>
pq3(p 9)*(b — x)?
(b= a)x - a)Z il ( zpf,’+1x+ <1 Pzpfil ) “)
p(p—q)*(b—x)*
21, 0~ @)x — @) i Lot (P (1-755 ) o)

pqz(p — @)’ (b — x)

+
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q qn+2 ) qn+2
p (p q)(x_a)z n+3 < pn+3x+ <1 -p pn+3 a

+
pq*(p @)*(b —x)?
,, (@ +pg— P f(px+ (1 —pa)  flax+(1 - ga)
, 9> + pq — p*) f(px - pla gx - q)a
= PTG / Tt -7 Po-d—a? (1%)
Using Definition [, we have
”thq fta+ (1 =1)b)
="'D, ("D, f(ta+ (1 -1)b)
_bp <f(qta + (1 —ghb) - f(pta+ (1 —pt)b)>
P4 (p—q)b—ax
_ 1 [f(qzta +(1=¢’0b) = f(pgta+ (1 = pgH)b)  f(pqta+ (1 — pgb) — f(p*ta + (1 — p*1)b)
(p—q)(b—a) qt(p—q)(b—a) pt(p— q)(b— a)
B pf(g*ta+ (1 — g*t)b) — (21, ,/ (pgta + (1 — pgt)b) + qf(p*ta+ (1 - 2t)b) (19)
B pat*(p — q)*(b — a)?
Applying (¥) and Definition B, we obtain
1
/ ? bDiq fx+ (1 =nb)d, t
0
1
/ pf(g*tx + (1 = g’D)b) = 21, ,f (parx + (1 = pgt)b) + q.f (p*tx + (1 — p*1)b)
B pa(p — q)*(b — x)? P
0
n+2 n+2 n+2
P(p q)(b_x)z qn+1 <pn+lx+ <1 - Zn+l> b>
B pqS(p @b — x)?
n+1 n+1 n+1
[ ]pq(p Q)(b - X) Z qn+1 (pZn+l X+ <1 - pzn+1 ) b>
- qu(p Db — x)*
) qn+2 ) qn+2
q(p Q)(b - X) ZO n+1 <p pn+1 x+ <1 -p pn+1 ) b>
" 24 — 226 — %)
qn+2 qn+2 ) qn+2
Pp- q)(b—x)Z et (p st (1 -p F) b)
B pq3(p q)z(b - x)3
q qn+l ) qn+l
PI21, (P = )b — %) 2 Sl (Pt (1= s > b)
- qu(p Db — x)?
n+2 n+2
a(p — )b = ) Z ey < P <1 -ﬁ%) b)
+
pa(p — @)*(b — x)
b (@*+pg =) f(px+ A =p)b)  flgx+ (1= q)b)
p3q3(b / Tyt o= b= %7 - b — P 20

p 2x+(1-p*)b
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By multiplying (IR) and (Z0) by (x — a*)(b — x)*(a — x) and (x — a*)(b — x)*(x — b), respectively, and adding the resultant
inequalities, we obtain the required identity (If). Therefore, the proof is completed. O

Remark 1. If p = 1, then (I8) reduces to

(x —a*(b—x)*|(a—x) / 2, D2 f(tx + (1 = )a) d,t + (x = b) / PPDIfax+(1=0b) dt|= JL,(x), (1)
0 0

where

b
( q(ap)(_q) )[(x_a)Qf(qx+(l_q)b)+(b—x)qf(qx+(1—q)a)_(q2+q_1)(b_a)f(x)]

b R
2
‘% (x—a)z/f(t) bdqt+(b—x)2/f(t) oAyt

PL(x) =

which appeared in™’

Theorem 4. Let f : [a,b] — R be a twice (p, g)-differentiable function such that sz ./ and aD;q f are continuous and
integrable functions on J, and J,, respectively. If |bD12)q f]and |aD2 f| are convex functions, then

1 (3]
'L, (0] < (x = aP (b - x7 [(x—a)<[4] D2 f)| + Tp:’ . Mf(a)|>
-[31,,
b=—x)| ——|"D; ——| "D} )| )] 22
+ ( x><[4] S )| [3],,4] R >|>] 22)

Proof. Taking the modulus in Theorem B, using Lemma [, and applying the convexity of |bD12)!q f| and |0Di ./ 1, we obtain

B 1 1
b M(x)| < (x—a)(b—x)? (x—a)/t2 . Mf(tx+(1—t)a)| dp,qt+(b—x)/tz)bDIZJ,qf(tx+(l—t)b) d
0 0

an

2 S|+ =0],D2, 1@]) d,,

1
<(x—a)’b-x)? (x—a)/t2
0

+(b—x)/ (02, s+ —t)‘bDi,qf(b)D d

—[31,,
Dy | + [3],,4[]

(x— a)z(b - x)2 [(x —a) < aDiqf(a)’)

(41,4
+(b=x) (— 02, o + e~ e o f(b)D] :
(4] [31,4[41,4 P
which completes the proof. O

Corollary 1. With the assumptions of Theorem B, if |bD127q f] and | aDﬁ . f| £ M, where M is constant, then we obtain the
following post quantum Ostrowski-type inequality for twice (p, ¢)-differentiable functions as follows

— )b = x)2(b —
; pq(x)| < M(x —a)*(b—x)(b a). 23)
(31,4

Remark 2. If p = 1, then (I2) reduces to

DLf)] + 7 4

+<b—x><[4] RACIEE Q] |*D2r s >|>]

L0 < (x = @%b — %) [(x -a) <[ a aDjf(a)|>
‘]

which appeared in™’
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Remark 3. If p = 1, then (I3)) reduces to quantum Ostrowski-type inequality for twice g-differentiable functions as follows
< M(x — a)*(b— x)*(b — a)
< 1, )

oLa (24)

which appeared in™’
In addition, if ¢ — 1 and x = (a + b)/2 in (), then we obtain the following

b
M(b— a)?
7(432) - 1 [ s < M2

2 24

which appeared in™ and it can be found in"®.

Theorem 5. Let f : [a,b] — R be a twice (p, g)-differentiable function on (a, b) such that sz f and D2 f are continuous
and integrable functions on J; and J,, respectively. If |l’D2 f |"and |, D2 f |" are convex functlons for r > 1 then

< 2b 5 1 1-1/r 1 []pq 1/r
DLy )| < (x =26 =) ([3]%‘1) ("“’)<[4]pq D2 )| + —[3]pq[] D2, f(a )|>
o [4],, - [3] v
— bp? e ra bp?
+ (b x><[4] | "D/ + P f<b>\> ] (25)

Proof. Taking the modulus in Theorem B and applying the power mean inequality, we have

, qu(tx+(1—t)a)| t+(b—x)/t |bD§’qf(tx+(l—t)b) d

DLy (0| < (x = @b — %) (x—a)/r
0

1-1/r 1 1/r

[ 1
<(x—a)’b-x?|(x—a) /12 th /t2 a Mf(tx+(l—t)a)|r d

0 0

1 1-1/r 1 1/r

+(b - x) / 2 d,t / 2 | *D? ftx+(1 - t)b)’r d

0 0

Using Lemma [ and applying the convexity of |bD§!q f|" and |aD§q 1", we obtain

1 1-1/r 1 1/r

DL, ()] < (x = (b= xP| (x - @) / J /ﬂ (|02, s aDquf(a)r) d

0 0
1 1-1/r 1 1/r
+(b—x) /t2 d, 1 / b1)2 f(x))r+(1—t))bDi,qf(b)‘r> d
0 0
1-1/r [3] 1/r
oo o) (B )
(x — aP(b—x) l(x ‘”([3],,, [4]%4 D2, 0| + B | P 2 f@l

1-1/r 1/r
1 1 —Blg 140 )
b— - — | °D b ,
+( ’”([3],,,4) ([4]M| wic: >| [3]M[] 2 p2, r )|

which completes the proof. O
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Remark 4. 1f p = 1, then (2Z3) reduces to

1-1/r
b 2 2 1
sgnfse-or0-2 () - (.

1/r
_ b2 r 7 b2 r
i ”<M1|DJ“4+BLMM DJ@”) L

r 1/
aDym4>

[3] (4],

which appeared in™’

Theorem 6. Let f : [a,b] — R be a twice (p, g)-differentiable function such that sz ./ and aqu f are continuous and
integrable functions on J; and J,, respectively. If |? DIZ) g S| and |aD§ g S| are convex functions for » > 1 and 1/s+1/r = 1, then

r r\1/
/)| +(p+q-1D]|,D2f (@)

(21,4

1/s
2 1
a pq(x)‘ < (x—a)’(b—x)? <m> (x—a)

202 o + 0 +a- |27 )’

+(b —x) B
P4

(26)

Proof. Taking the modulus in Theorem B and applying the Holders inequality, we have

ap4m|<u—afw—xf(x—m/"

D2, (tx+(l—t)a)| t+(b—x)/t )bDZ Ffltx+(1-1b)| a
1/s 1 1/r

1
< e ab— 02| (x—a) / 2 d, (D2 fax+(1— t)a)|r d
0

0
1 ) 1/s 1/r
+(b - x) /125 d, t /’sz fx+(1 —t)b)‘r d
0
Using Lemma [ and applying the convexity of |bD2 , /1" and |,D? > .17, we obtain
[ 1 1/s 1 1/r
DLy (0| < (x = a6 - )(wm)/ﬁ%y /(apguﬂ+a—oawﬂ4)
0 0
1 1/s 1 1/r
+(b-x) /z2s d / (t |”D[2wf(x)| +(1-1) |”Di’qf(b)| ) d
0 0

ry\1/
D2/ (@)

D]+ +
2l,,

1/s
=x-ab-x)"|(x-a <[2s + 1],,,q>

1 >vskbﬁuﬁ+@+q—nwbywﬁl/

b - 9
+6-x) < 2s+1],, 21,,

which completes the proof. l
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Remark 5. 1f p = 1, then (22) reduces to

1/s
b _ 2 _ 2 1
'L, 0| < (x = a6 - <—[2s +1]q>

r\1/r

Dyt +alopr@[ )" (|0pse] | pirof "

o 2, 2,

; 27

which appeared in®.

4 | CONCLUSIONS

In this work, we established some new integral inequalities of post quantum Ostrowski-type inequalities for twice (p, q)-
differentiable convex functions by using the definition of (p, g)-derivatives and (p, g)-integrals. The main results in this study
were the extension and generalization of some previously proved research in the literature of quantum Ostrowski-type inequali-
ties for twice g-differentiable convex functions. Authors can obtain similar inequalities in future works by using (p, g)-fractional
calculus.
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