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Abstract

In this paper, the optimized decomposition method, which was developed to solve integer-order dif-

ferential equations, will be modified and extended to handle nonlinear fractional differential equations.

Fractional derivatives will be considered in terms of Caputo sense. The suggested modifications design

new optimized decompositions for the series solutions depending on linear approximations of the nonlinear

equations. Two optimized decomposition algorithms have been introduced to obtain approximate solu-

tions of broad classes of IVPs consisting of nonlinear fractional ODEs and PDEs. A comparative study

of the suggested algorithms with the Adomian decomposition method was performed by means of some

test illustration problems. The executed numerical simulation results demonstrated that the proposed

algorithms give better accuracy and convergence compared with Adomian’s approach. This confirms the

belief that the optimized decomposition method will be effectively and widely used in solving various

functional equations.

Keywords: Optimized decomposition method; Linear approximation; Adomian decomposition method;

Caputo derivative; Fractional differential equation.

1 Introduction

The topic of fractional calculus has received great popularity and importance over the past few decades

as a powerful tool to model complex systems with long term memory and nonlinear behavior. The main

reason is due to its multiple applications in the mathematical, chemical, physical, biological, medical,

financial and environmental sciences, in control theory, as well as in signal and image processing, and

other areas [1-10].

In recent years, scientists have devoted great efforts to find and develop stable and robust numerical

methods as well as analytical methods for solving nonlinear differential equations involving fractional

derivatives of physical interest. One of these methods is the Adomian decomposition method (ADM)

[11, 12]. It has been observed that the ADM has demonstrated to be efficient in solving various functional

equation types including nonlinear ODEs and PDEs (deterministic and stochastic). Significantly, the

method has been employed successfully to provide approximate solutions to numerous classes of nonlinear

ODEs [13-20] and nonlinear PDEs [21-32]. This method turns a nonlinear problem into a sequence of

linear equations that can be straightforwardly and directly solved. Furthermore, the method has been

modified to handle nonlinear ODEs and PDEs of fractional order, where the fractional derivative is taken
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into consideration in Caputo sense [3, 4]. However, the series solution provided using this method often

converges in a very small region and has a slow convergent rate or divergent in wider regions.

Recently, Odibat in [33] established a new decomposition method, the so-called optimized decomposi-

tion method (ODM), to handel nonlinear ODEs, and developed an extension of it to deal with nonlinear

PDEs. The suggested ODM employs Taylor series linearization of the considered nonlinear equation and

designs an optimal formulation of the series solution. The proposed ODM offers a powerful technique

for producing precise approximate analytical solutions to nonlinear differential equations. The results

obtained in [33] confirm that the developed ODM provides better convergence and accuracy compared

to ADM.

In this work, we aim to modify and expand the applications of the ODM for use in the treatment

of nonlinear fractional differential equations. We will present two modified algorithms of the ODM

as new tools for obtaining series solutions to broad classes of IVPs consisting of fractional ODEs and

time-fractional PDEs. Several examples will be examined, and the obtained results will indicate that

the proposed modifications accelerate the convergence and enhance the accuracy of the series solutions

compared to ADM. The proposed algorithms of the ODM will be highly accurate and efficient in handling

nonlinear fractional differential equations.

2 The ADM for fractional differential equations

The ADM, presented by Adomian in 1980, has been used to solve accurately and effectively large cate-

gories of differential equations. The method provides a decomposition solution in the form of an infinite

series for nonlinear differential equations that rapidly converge to an accurate solution. This method has

been adapted and modified to provide analytical and numerical solutions for nonlinear ODEs and PDEs

of fractional order. To describe the basic ideas of the ADM to handle nonlinear fractional differential

equations, we consider the IVP consists of the fractional differential equation

Dα
t u(t) = N [u(t)] + g(t), t > 0, (1)

and the initial conditions

u(k)(0) = ck, k = 0, 1, ...,m− 1, (2)

where m− 1 < α ≤ m, Dα
t is the Caputo fractional derivative operator of order α > 0, N is a nonlinear

function of u and g is a given function of t. The Caputo fractional derivative operator, Dα
t , of order

α > 0 is defined by the composition form

Dα
t f(t) = (Im−α

t Dmf)(t). (3)

Here Dm denotes the ordinary derivative operator of order m and I
β
t indicates the Riemann-Liouville

fractional integral operator of order β > 0 which is defined by the formula

I
β
t f(t) =

1

Γ(β)

∫ t

0

(t− τ)β−1f(τ) dτ, t > 0. (4)

The Caputo operator, which is an adjustment of the Riemann-Liouville operator, is often one of the most

frequently employed definitions of fractional derivatives in fractional calculus applications. Fractional or-

der systems can serve as a useful tool in the modeling of many complex physical systems. The advantages

of fractional order models are that they provide more degrees of freedom to include ”memory” in the

model. Fractional calculus models are characterized by having long-term memory and long-term spatial
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interactions. Applications and properties of the Caputo fractional derivative operator can be obtained

from the literature [3, 4].

Now, the main step of the ADM is to apply the integral operator Iα
t , the inverse of the derivative

operator Dα
t , to both sides of Eq. (1). This gives, using the initial conditions given in Eq. (2),

u(t) =

m−1
∑

i=0

ci
ti

i!
+ Iα

t g(t) + Iα
t N [u(t)]. (5)

The standard ADM offers the solution u(t) be formulated by the infinite series

u(t) =
∞
∑

n=0

φn(t), n ≥ 0, (6)

and the nonlinear function N [u(t)] be decomposed as

N [u(t)] =

∞
∑

n=0

An(t), n ≥ 0, (7)

where the Adomian polynomials An(t) can be evaluated using the relation

An(t) =
1

n!

[

dn

dλn
N

(

n
∑

k=0

λkφk(t)

)]

λ=0

, n ≥ 0. (8)

Inserting the series given in Eqs. (6) and (7) into the integral Eq. (5) produces the ADM series solution

u(t) =
∑∞

n=0 φn(t), where the term function φn(t), n = 0, 1, · · ·, can be obtained recursively by using the

formula











φ0(t) =
∑m−1

i=0 ci
ti

i! + Iα
t g(t),

φn(t) = Iα
t An−1(t), n ≥ 1.

(9)

The convergence of the ADM has been discussed by Cherruault in [34, 35]. However, the obtained

series solutions for the most studied nonlinear fractional differential equations converge in a very small

region or completely diverge in the wider regions. This highlights the need to develop new techniques

that enhance the convergence and the accuracy of the decomposition series solutions.

3 The ODM for fractional differential equations

The ODM has been worked successfully in handling IVPs for ODEs and PDEs of integer-order and

provided better convergence and accuracy compared to ADM [33]. The method proposes an optimal

framework for series solutions depending on employing a linear approximation of the nonlinear equation.

In this section, we will modify the ODM to become an effective tool for producing approximate solutions

of nonlinear fractional order ordinary and partial differential equations.

3.1 Nonlinear fractional ODEs

Now, we will introduce the basic steps of the ODM to deal with the IVP (1)-(2). In the first place, we

will derive Taylor series linearizaion of the nonlinear equation Dα
t u −N [u]. To achieve this goal, under

the consideration that the nonlinear function F (Dα
t u, u) = Dα

t u − N [u] can be approximated by the

first-order Taylor polynomial at t = 0, we solve the algebraic equation F (Dα
t u(0), u(0)) = 0 for Dα

t u(0),
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say u(0) = k0 and Dα
t u(0) = k∗0 . Hence, the linear approximation to the function F (Dα

t u, u) near the

point (k∗0 , k0) can be obtained as

F (Dα
t u, u) ≈ Dα

t u+
∂F

∂u
(k∗0 , k0)u, (10)

since ∂F
∂Dα

t
u (k∗0 , k0) = 1. In view of the previous approximation, given in Eq.(10), Eq.(1) can be reformu-

lated as

L[u(t)] = C0[N ]u(t) +N [u(t)] + g(t), (11)

where

L[u(t)] = Dα
t u(t) + C0[N ]u(t), (12)

and the constant C0[N ] can be computed as

C0[N ] =
∂F

∂u
(k∗0 , k0) = −∂N

∂u

∣

∣

∣

t=0
. (13)

According to the constant C0[N ] in the derived linear operator L, given in Eq. (13), our modified

ODM will be established. Since the linear operator L can not be easily inverted, the decomposition

series of our approach will be designed differently from the ADM. The modified ODM proposes the

decomposition series solution u(t) =
∑∞

n=0 ψn(t) for the IVP (1)-(2), where the components {ψn(t)}∞n=0,

n = 0, 1, · · ·, can be determined recursively by the formula















































ψ0(t) =
∑m−1

i=0 ci
ti

i! + Iα
t g(t),

ψ1(t) = Iα
t

[

P0(t)
]

,

ψ2(t) = Iα
t

[

P1(t) + C0[N ]ψ1(t)
]

,

ψn+1(t) = Iα
t

[

Pn(t) + C0[N ](ψn(t) − ψn−1(t))
]

, n ≥ 2,

(14)

where

Pn(t) =
1

n!

[

dn

dλn
N

(

n
∑

k=0

λkψk(t)

)]

λ=0

, n ≥ 0, (15)

and N(
∑∞

n=0 ψn(t)) =
∑∞

n=0 Pn(t). Obviously, if our decomposition series
∑∞

n=0 ψn(t) converges then

limn→∞ ψn = 0, and so by cancelling the adjacent component we get

∞
∑

n=0

ψn(t) =

m−1
∑

i=0

ci
ti

i!
+ Iα

t g(t) +

∞
∑

n=0

Iα
t [Pn(t)]. (16)

Hence

u(t) =

∞
∑

n=0

ψn(t) =

m−1
∑

i=0

ci
ti

i!
+ Iα

t g(t) +

∞
∑

n=0

Iα
t [Pn(t)] =

m−1
∑

i=0

ci
ti

i!
+ Iα

t g(t) + Iα
t N [u(t)]. (17)

Therefore Dα
t u(t) = N [u(t)] + g(t). So, u(t) =

∑∞
n=0 ψn(t) is exactly a solution of the IVP (1)-(2).
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3.2 Nonlinear fractional PDEs

In [33] it has been demonstrated that the ODM reduces the volume of computations and accelerates the

convergence for the series solutions of nonlinear PDEs compared to ADM. Here, we extend the modified

ODM, introduced in the previous subsection, to solve analytically the IVP consists of the fractional

partial differential equation

Dα
t u(x, t) =

∂2

∂x2
u(x, t) +M [u(x, t)], t > 0, (18)

where 0 < α ≤ 2, M is a nonlinear given function of u, subject to the initial conditions











u(x, 0) = f0(x), 0 < α ≤ 1,

u(x, 0) = f0(x), ut(x, 0) = f1(x), 1 < α ≤ 2.

(19)

Now, to outline the main steps of the ODM in order to provide an analytical solution for the IVP

(18)-(19), let’s consider the claim that the nonlinear function F (Dα
t u, uxx, u) = Dα

t u − ∂2

∂x2u −M [u],

where 0 < α ≤ 2, can be linearized by the first-order Taylor polynomial at t = 0. On this basis, the

lineariation of the function F (Dα
t u, uxx, u) at t = 0 can be simply derived as

F (Dα
t u, uxx, u) ≈ Dα

t u− ∂2

∂x2
u− C0[M ](x)u, (20)

where

C0[M ](x) =
∂M

∂u

∣

∣

∣

t=0
. (21)

Hence, using Eq. (20), the nonlinear fractional PDE given in Eq. (18) can be reformulated as follows

L[u(x, t)] = M [u(x, t)] − C0[M ](x)u(x, t), t > 0, (22)

where

L[u(x, t)] = Dα
t u− ∂2

∂x2
u− C0[M ](x)u. (23)

As discussed previously, the ODM will be extended based on the engagement of the function C0[M ](x),

the coefficient of u(x, t) in the derived linear operator L, within our construction. In this case, the

extended ODM suggests the series solution u(x, t) of the IVP (18)-(19) be expressed by the series u(x, t) =
∑∞

n=0 ϕn(x, t), such that the component functions {ϕn(x, t)}∞n=0, n = 0, 1, · · ·, are evaluated recursively

using the formula



























































ϕ0(x, t) =
∑m−1

i=0 fi(x)
ti

i! ,

ϕ1(x, t) = Iα
t

[

Q0(x, t) + ∂2

∂x2ϕ0(x, t)
]

,

ϕ2(x, t) = Iα
t

[

Q1(x, t) + ∂2

∂x2ϕ1(x, t) − ( ∂2

∂x2 + C0[M ](x))ϕ1(x, t)
]

,

ϕn+1(x, t) = Iα
t

[

Qn(x, t) + ∂2

∂x2ϕn(x, t) − ( ∂2

∂x2 + C0[M ](x))(ϕn(x, t) − ϕn−1(x, t))
]

, n ≥ 2,

(24)
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where

Qn(x, t) =
1

n!

[

dn

dλn
M

(

n
∑

k=0

λkϕk(x, t)

)]

λ=0

, n ≥ 0, (25)

and M [
∑∞

n=0 ϕn(x, t)] =
∑∞

n=0Qn(x, t). Obviously, if the decomposition series
∑∞

n=0 ϕn(t) converges,

that is limn→∞ ϕn = 0, then, using the deformation Eq. (24), we get

∞
∑

n=0

ϕn(x, t) =

m−1
∑

i=0

fi(x)
ti

i!
+

∞
∑

n=0

Iα
t

[

∂2

∂x2
ϕn(x, t) +Qn(x, t)

]

. (26)

This due to the elimination of the adjacent component functions. Thus

u(x, t) =
∑∞

n=0 ϕn(x, t),

=
∑m−1

i=0 fi(x)
ti

i! + Iα
t

∑∞
n=0

[

∂2

∂x2ϕn(x, t) +Qn(x, t)
]

,

=
∑m−1

i=0 fi(x)
ti

i! + Iα
t

[

∂2

∂x2

∑∞
n=0 ϕn(x, t) +M [

∑∞
n=0 ϕn(x, t)]

]

,

(27)

and so Dα
t u(x, t) = ∂2

∂x2u(x, t) + M [u(x, t)]. Therefore, u(x, t) =
∑∞

n=0 ϕn(x, t) is exactly a solution of

the IVP (18)-(19).

Remark 1 The modified ODM algorithms, where the series solution components are described by for-

mulas (14) and (24), are optimal algorithms in the direction that the generated linear operator, given in

Eq. (12) or (23), is the best linear interpolation to estimate the nonlinear function F .

Remark 2 In the two previous subsections, if we replace C0[N ] by 0 in (14) or C0[M ](x) by 0 in (24)

then the ODM turns down to the ADM.

Remark 3 For the application purposes, we may truncate the infinite series
∑∞

n=0 ψn(t) and
∑∞

n=0 ϕn(x, t)

at the (K+1)-th term and use the resulting partial sum
∑K

n=0 ψn(t) and
∑K

n=0 ϕn(x, t) as approximations

to the solutions u(t) and u(x, t), respectively.

4 Application

This section explores the efficiency, accuracy and performance of the modified ODM algorithms, presented

in section 3, for solving nonlinear fractional ODEs and PDEs. Some nonlinear fractional ODEs and

PDEs have been analytically solved by using the ADM and the proposed algorithms of the ODM. Actual

numerical comparisons between the proposed algorithms of ODM approximate solutions and the ADM

approximate solutions are performed using the Mathematica software. Here, to give a clear comparison

between the ADM and the proposed algorithms of the ODM and to examine the accuracy of the suggested

algorithms, we evaluated approximate solutions in the integer order case in order to compare them with

exact solutions. Next, some numerical simulations are performed in the fractional order case.
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4.1 Nonlinear fractional ODEs

Example 1. We first consider the nonlinear fractional Riccati differential equation

Dα
t u(t) = 1 − u2(t), t > 0, 0 < α ≤ 1, (28)

with the initial condition

u(0) = u0, (29)

where u0 ∈ IR. The exact solution of the Riccati Eq. (28) together with the condition (29), when α = 1,

is

u(t) =
tanh(t) + u0

u0 tanh(t) + 1
. (30)

The first-order Taylor series approximation of the function F (Dα
t u, u) = Dα

t u + u2 − 1 near the point

(k∗0 , k0) can be obtained as

F (Dα
t u, u) ≈ Dα

t u+ C0[N ]u, (31)

where N [u(t)] = −u2(t) and

C0[N ] = −∂N
∂u

∣

∣

∣

t=0
= 2u0. (32)

In view of the ADM, the solution of Eq. (28) can be given by the infinite series u(t) =
∑∞

n=0 φn(t),

such that the components {φn(t)}∞n=0 are determined recursively by using the formula



























φ0(t) = u0,

φ1(t) = tα

Γ(α+1) + Iα
t A0(t),

φn(t) = Iα
t An−1(t), n ≥ 2,

(33)

and the term An(t) is represented by

An(t) =
1

n!



− dn

dλn

(

n
∑

k=0

λkφk(t)

)2




λ=0

, n ≥ 0. (34)

According to our proposed algorithm, presented in subsection 3.1, the ODM suggests the decompo-

sition series solution u(t) =
∑∞

n=0 ψn(t), where the components {ψn(t)}∞n=0 are derived recursively by

using the representation















































ψ0(t) = u0,

ψ1(t) = tα

Γ(α+1) + Iα
t

[

P0(t)
]

,

ψ2(t) = Iα
t

[

P1(t) + 2u0ψ1(t)
]

,

ψn+1(t) = Iα
t

[

Pn(t) + 2u0(ψn(t) − ψn−1(t))
]

, n ≥ 2,

(35)

and the term Pn(t) is represented by

Pn(t) =
1

n!



− dn

dλn

(

n
∑

k=0

λkψk(t)

)2




λ=0

, n ≥ 0. (36)
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Fig. 1 pictures ADM approximate solutions
∑K

n=0 φn(t), ODM approximate solutions
∑K

n=0 ψn(t)

and the exact solutions for the Riccati Eq. (28), when α = 1, for some certain values of u0 and K. We can

notice, from the numerical results shown in Fig. 1, that the approximate solutions displayed using our

ODM algorithm are more accurate than the ones produced by the ADM. Fig. 2 draws ADM approximate

solutions
∑K

n=0 φn(t) and ODM approximate solutions
∑K

n=0 ψn(t) for the fractional Riccati Eq. (28) for

some fractional orders α, when u0 = −0.4 and K = 10. From the numerical results appeared in Fig. 2,

we can observe that our ODM algorithm enhances the interval of convergence for the series solutions. Of

course, the efficiency of both approaches can be improved by adding more terms to the truncated series

approximate solutions.

Example 2. Now, consider the nonlinear fractional differential equation

Dα
t u(t) = −u(t) − au3(t), t > 0, 0 < α ≤ 1, (37)

with the initial condition

u(0) = u0, (38)

where a, u0 ∈ IR. The exact solution of fractional differential Eq. (37) together with the condition (38),

when α = 1, is

u(t) = u0
exp(−t)

√

1 + au2
0(1 − exp(−2t)

. (39)

The first-order Taylor series approximation of the function F (Dα
t u, u) = Dα

t u + u(t) + au3(t) near the

point (k∗0 , k0) can be derived as

F (Dα
t u, u) ≈ Dα

t u+ C0[N ]u, (40)

where N [u(t)] = −u(t) − au3(t), and

C0[N ] = −∂N
∂u

∣

∣

∣

t=0
= 1 + 3au2

0. (41)

Now, in view of the ADM, the solution of Eq. (37) can be given by the infinite series u(t) =
∑∞

n=0 φn(t), such that the components {φn(t)}∞n=0 are determined recursively by using the formula











φ0(t) = u0

φn(t) = Iα
t An−1(t), n ≥ 1,

(42)

where the term An(t) is represented by

An(t) =
1

n!





dn

dλn



−
n
∑

k=0

λkφk(t) − a

(

n
∑

k=0

λkφk(t)

)3








λ=0

, n ≥ 0. (43)

According to our proposed algorithm, presented in subsection 3.1, the ODM assumes the decompo-

sition series solution u(t) =
∑∞

n=0 ψn(t), where the components {ψn(t)}∞n=0 are derived recursively by

using the representation















































ψ0(t) = u0,

ψ1(t) = Iα
t

[

P0(t)
]

,

ψ2(t) = Iα
t

[

P1(t) +
(

1 + 3au2
0

)

ψ1(t)
]

,

ψn+1(t) = Iα
t

[

Pn(t) +
(

1 + 3au2
0

)

(ψn(t) − ψn−1(t))
]

, n ≥ 2,

(44)
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and the term Pn(t) is defined by

Pn(t) =
1

n!





dn

dλn



−
n
∑

k=0

λkψk(t) − a

(

n
∑

k=0

λkψk(t)

)3








λ=0

, n ≥ 0. (45)

Fig. 3 pictures ADM approximate solutions
∑K

n=0 φn(t), ODM approximate solutions
∑K

n=0 ψn(t)

and the exact solutions for the fractional differential Eq. (37), when α = 1, for some certain values of a,

u0 and K. As observed in Example 1, from the numerical results shown in Fig. 3, we can notice that

the approximate solutions displayed using our ODM algorithm are better than the approximate solutions

produced by the ADM. Fig. 4 draws ADM approximate solutions
∑K

n=0 φn(t) and ODM approximate

solutions
∑K

n=0 ψn(t) for the fractional differential Eq. (37) for some fractional orders α, when a = 0.1,

u0 = 3 and K = 12. From the numerical results appeared in Fig. 4, we can observe that our ODM

algorithm improves the convergence and accuracy of the series solutions to Eq. (37) compared with

ADM.

4.2 Nonlinear fractional PDEs

Here, to display a clear comparison between the ADM and the ODM approaches and to examine the

accuracy of the suggested algorithm, we evaluated approximate solutions for the studied fractional PDEs

in the case of fixation of the space variable x.

Example 3. Next, we study the nonlinear time-fractional Fisher equation

Dα
t u(x, t) =

∂2

∂x2
u(x, t) + au(x, t) (1 − u(x, t)) , t > 0, 0 < α ≤ 1, (46)

where a > 0, subject to the initial condition

u(x, 0) = 1

(1+exp[
√

a

6
x])

2 . (47)

The exact solution of Fisher Eq. (46) together with the condition (47), when α = 1, is

u(x, t) = 1

(1+exp[− 5

6
at+

√
a

6
x])

2 . (48)

Fisher equation, which is used to describe the spreading of biological populations, is commonly arises

in chemistry, heat and mass transfer, ecology and biology [36,37]. Now, the first-order Taylor series

approximation of the function F (Dα
t u, uxx, u) = Dα

t u− ∂2

∂x2u− au (1 − u), at t = 0, can be obtained as

F (Dα
t u, uxx, u) ≈ Dα

t u− ∂2

∂x2
u− C0[M ](x)u, (49)

where M [u(t)] = au(x, t) (1 − u(x, t)) and

C0[M ](x) =
∂M

∂u

∣

∣

∣

t=0
= a− 2au(x, 0). (50)

The ADM gives the decomposition series solution u(t) =
∑∞

n=0 φn(t), such that the components

{φn(t)}∞n=0 are calculated by the recurrence relation















φ0(x, t) = 1

(1+exp(
√

a

6
x))

2 ,

φn(x, t) = Iα
t

[

An−1(x, t) + ∂2

∂x2φn−1(x, t)
]

, n ≥ 1,

(51)
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and the term An(x, t) is defined by

An(x, t) =
1

n!





dn

dλn



a

n
∑

k=0

λkφk(t) − a

(

n
∑

k=0

λkφk(t)

)2








λ=0

, n ≥ 0. (52)

In view of our proposed algorithm, presented in subsection 3.2, the ODM assumes the decomposition

series solution u(x, t) =
∑∞

n=0 ϕn(x, t), where the components {ϕn(x, t)}∞n=0 are derived recursively by

the formula































































ϕ0(x, t) = 1

(1+exp[
√

a

6
x])

2 ,

ϕ1(x, t) = Iα
t

[

Q0(x, t) + ∂2

∂x2ϕ0(x, t)
]

,

ϕ2(x, t) = Iα
t

[

Q1(x, t) + ∂2

∂x2ϕ1(x, t) − ( ∂2

∂x2 + C0[M ](x))ϕ1(x, t)
]

,

ϕn+1(x, t) = Iα
t

[

Qn(x, t) + ∂2

∂x2ϕn(x, t) − ( ∂2

∂x2 + C0[M ](x))(ϕn(t) − ϕn−1(t))
]

, n ≥ 2,

(53)

where the term Qn(x, t) is represented by the formula

Qn(x, t) =
1

n!





dn

dλn



a

n
∑

k=0

λkϕk(x, t) − a

(

n
∑

k=0

λkϕk(x, t)

)2








λ=0

, n ≥ 0. (54)

For n ≥ 1, simplifying the polynomial (54), the relation (53) can be reduced to

ϕn(x, t) = Iα
t

[

∂2

∂x2ϕn−1(x, t) + aϕn−1(x, t) − a
∑n−1

i=0 ϕi(x, t)ϕn−i−1(x, t)

−( ∂2

∂x2 + C0[M ](x))(χnϕn−1(x, t) − χn−1ϕn−2(x, t))
]

,

(55)

where

χn =

{

1, n > 1,

0, n ≤ 1.
(56)

Consequently, the first few components of the ODM solution can be derived as







































































ϕ0(x, t) = 1

(1+exp[
√

a

b
x])

2 ,

ϕ1(x, t) = Iα
t

[

∂2

∂x2ϕ0(x, t) + aϕ0(x, t) − aϕ2
0(x, t)

]

,

ϕ2(x, t) = 0,

ϕn(x, t) = Iα
t

[

∂2

∂x2ϕn−1(x, t) + aϕn−1(x, t) − a
∑n−1

i=0 ϕi(x, t)ϕn−i−1(x, t)

−C0[M ](x))(ϕn−1(x, t) − ϕn−2(x, t))
]

, n ≥ 3.

(57)

Fig. 5 pictures ADM approximate solutions
∑K

n=0 φn(x, t), ODM approximate solutions
∑K

n=0 ϕn(x, t)

and the exact solutions for the Fisher Eq. (46) when α = 1 and x = 1 for some specific values of a and K.

It is evident, from the numerical results shown in Fig. 5, that approximate solutions displayed using our
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ODM algorithm are more accurate than those found using the ADM. Fig. 6 draws ADM approximate

solutions
∑K

n=0 φn(x, t) and ODM approximate solutions
∑K

n=0 ϕn(x, t) for the fractional Fisher Eq. (46)

for some fractional orders α, when x = 1, a = 1 and K = 5. From the numerical results appeared in Fig.

6, we can observe that our ODM algorithm enhances the interval of convergence for the series solutions.

Example 4. Next, we consider the nonlinear time-fractional Klein-Gordon equation

Dα
t u(x, t) =

∂2

∂x2
u(x, t) + au(x, t) + bu2(x, t), t > 0, 0 < α ≤ 2, (58)

where a > 0 and b < 0, subject to the initial conditions










u(x, 0) = −3a
2b cosh2[

√
ax/2]

,

ut(x, 0) = 3a
b

√

a
2

sinh[
√

ax/2]
cosh3[

√
ax/2]

.

(59)

The exact solution of the Klein-Gordon Eq. (58) together with the conditions given in Eq. (59), when

α = 1, is

u(x, t) = −3a
2b cosh2[

√
a/2(x+

√
2t)]

. (60)

Now, the first-order Taylor series approximation of the function F (Dα
t u, uxx, u) = Dα

t u− ∂2

∂x2u−au−bu2,

at t = 0, can be derived as

F (Dα
t u, uxx, u) ≈ Dα

t u− ∂2

∂x2
u− C0[M ](x)u, (61)

where M [u(t)] = au(x, t) + bu2(x, t) and

C0[M ](x) =
∂M

∂u

∣

∣

∣

t=0
= a+ 2bu(x, 0). (62)

The ADM gives the decomposition series solution u(t) =
∑∞

n=0 φn(t), such that the components

{φn(t)}∞n=0 are calculated by the recurrence relation






















φ0(x, t) = −3a
2b cosh2[

√
ax/2]

+ 3a
b

√

a
2

sinh[
√

ax/2]
cosh3[

√
ax/2]

t,

φn(x, t) = Iα
t

[

An−1(x, t) + ∂2

∂x2φn−1(x, t)
]

, n ≥ 1,

(63)

and the term An(x, t) is defined by

An(x, t) =
1

n!





dn

dλn



a

n
∑

k=0

λkφk(t) + b

(

n
∑

k=0

λkφk(t)

)2








λ=0

, n ≥ 0. (64)

In view of our proposed algorithm, presented in subsection 3.2, the ODM suggests the decomposition

series solution u(x, t) =
∑∞

n=0 ϕn(x, t), where the components {ϕn(x, t)}∞n=0 are determined recursively

by using the formula



























































ϕ0(x, t) = −3a
2b cosh2[

√
ax/2]

+ 3a
b

√

a
2

sinh[
√

ax/2]
cosh3[

√
ax/2]

t,

ϕ1(x, t) = Iα
t

[

Q0(x, t) + ∂2

∂x2ϕ0(x, t)
]

,

ϕ2(x, t) = Iα
t

[

Q1(x, t) + ∂2

∂x2ϕ1(x, t) − ( ∂2

∂x2 + C0[M ](x))ϕ1(x, t)
]

,

ϕn+1(x, t) = Iα
t

[

Qn(x, t) + ∂2

∂x2ϕn(x, t) − ( ∂2

∂x2 + C0[M ](x))(ϕn(t) − ϕn−1(t))
]

, n ≥ 2,

(65)
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where the term Qn(x, t) is represented by the formula

Qn(x, t) =
1

n!





dn

dλn



a

n
∑

k=0

λkϕk(x, t) + b

(

n
∑

k=0

λkϕk(x, t)

)2








λ=0

, n ≥ 0. (66)

For n ≥ 1, simplifying the polynomial (66), the relation (65) can be reduced to

ϕn(x, t) = Iα
t

[

∂2

∂x2ϕn−1(x, t) + aϕn−1(x, t) + b
∑n−1

i=0 ϕi(x, t)ϕn−i−1(x, t)

−( ∂2

∂x2 + C0[M ](x))(χnϕn−1(x, t) − χn−1ϕn−2(x, t))
]

.

(67)

Fig. 7 pictures ADM approximate solutions
∑K

n=0 φn(x, t), ODM approximate solutions
∑K

n=0 ϕn(x, t)

and the exact solutions for the Klein-Gordon Eq. (58) when α = 1 and x = 1 for some specific values of

a, b and K. It is evident, from the numerical results shown in Fig. 7, that the approximate solutions dis-

played by the ODM are better than those found by the ADM. Fig. 8 draws ADM approximate solutions
∑K

n=0 φn(x, t) and ODM approximate solutions
∑K

n=0 ϕn(x, t) for the the fractional Klein-Gordon Eq.

(58) for some fractional orders α, when x = 1, a = 0.2, b = −0.4 and K = 4. From the numerical results

appeared in Fig. 8, we can deduce that our ODM algorithm improves the convergence and accuracy of

the series solutions to Eq. (58) compared with ADM.

5 Conclusions

The ODM has been demonstrated as a powerful tool for solving many classes of nonlinear functional

equations analytically compared with ADM. In this study, modified optimal decomposition algorithms for

producing series solutions to broad classes of nonlinear fractional ODEs and PDEs have been introduced.

There are some concluding remarks that should be mentioned here. Firstly, the proposed decomposition

algorithms, which implement Taylor series linearization of the nonlinear fractional operators, have been

optimally designed to produce analytical series solutions of the studied fractional functional equations.

Secondly, the suggested ODM algorithms offer the best accuracy and increase the interval of convergence

for the series solutions of the studied problems compared with ADM. Thirdly, it is believed that the

presented ideas regarding the optimal decomposition of the series solutions can be further implemented

for treating other nonlinear fractional functional equations.
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Figure 1: Graphs of approximate solutions and exact solution for Riccati Eq. (28), when α = 1: exact solu-

tion (solid line); ADM approximate solution
∑

K

n=0
φn(t) (dashed line); ODM approximate solution

∑

K

n=0
ψn(t)

(dashed-dotted line).
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Figure 2: Graphs of approximate solutions for fractional Riccati Eq. (28), for some fractional orders α, when

u0 = −0.4 and K = 10: ADM approximate solution
∑

K

n=0
φn(t) (dashed line); ODM approximate solution

∑

K

n=0
ψn(t) (dashed-dotted line).
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Figure 3: Graphs of approximate solutions and exact solution for differential Eq. (37), when α = 1: exact solu-

tion (solid line); ADM approximate solution
∑

K

n=0
φn(t) (dashed line); ODM approximate solution

∑

K

n=0
ψn(t)

(dashed-dotted line).
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Figure 4: Graphs of approximate solutions for fractional differential Eq. (37), for some fractional orders α, when

a = 0.1, u0 = 3 and K = 12: ADM approximate solution
∑

K

n=0
φn(t) (dashed line); ODM approximate solution

∑

K

n=0
ψn(t) (dashed-dotted line).
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Figure 5: Graphs of approximate solutions and exact solution for Fisher Eq. (46), when α = 1 and x = 1:

exact solution (solid line); ADM approximate solution
∑

K

n=0
φn(1, t) (dashed line); ODM approximate solution

∑

K

n=0
ϕn(1, t) (dashed-dotted line).
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Figure 6: Graphs of approximate solutions for fractional Fisher Eq. (46), for some fractional orders α, when

a = 1, K = 5 and x = 1: ADM approximate solution
∑

K

n=0
φn(1, t) (dashed line); ODM approximate solution

∑

K

n=0
ϕn(1, t) (dashed-dotted line).
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(a) a = 2.5, b = −0.55, K = 3 (b) a = 0.25, b = −0.1, K = 5

Figure 7: Graphs of approximate solutions and exact solution for Klein-Gordon Eq. (58), when α = 1 and x = 1:

exact solution (solid line); ADM approximate solution
∑

K

n=0
φn(1, t) (dashed line); ODM approximate solution

∑

K

n=0
ϕn(1, t) (dashed-dotted line).
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Figure 8: Graphs of approximate solutions for fractional Klein-Gordon Eq. (58), for some fractional orders α,

when a = 0.2, b = −0.4, K = 4 and x = 1: ADM approximate solution
∑

K

n=0
φn(1, t) (dashed line); ODM

approximate solution
∑

K

n=0
ϕn(1, t) (dashed-dotted line).


