References
Benam, K. H., Dauth, S., Hassell, B., Herland, A., Jain, A., Jang, K.-J., Karalis, K., Kim, H. J., MacQueen, L., Mahmoodian, R., Musah, S., Torisawa, Y., van der Meer, A. D., Villenave, R., Yadid, M., Parker, K. K., & Ingber, D. E. (2015). Engineered In Vitro Disease Models.Annual Review of Pathology: Mechanisms of Disease , 10 (1), 195–262. https://doi.org/10.1146/annurev-pathol-012414-040418
Beronius, A., Molander, L., Zilliacus, J., Rudén, C., & Hanberg, A. (2018). Testing and refining the Science in Risk Assessment and Policy (SciRAP) web-based platform for evaluating the reliability and relevance of in vivo toxicity studies. Journal of Applied Toxicology ,38 (12), 1460–1470. https://doi.org/10.1002/jat.3648
Biluca, F. C., da Silva, B., Caon, T., Mohr, E. T. B., Vieira, G. N., Gonzaga, L. V, Vitali, L., Micke, G., Fett, R., Dalmarco, E. M., & Costa, A. C. O. (2020). Investigation of phenolic compounds, antioxidant and anti-inflammatory activities in stingless bee honey (Meliponinae).Food Research International , 129 . https://doi.org/10.1016/j.foodres.2019.108756
Chen, L., Teng, H., Fang, T., & Xiao, J. (2016). Agrimonolide from Agrimonia pilosa suppresses inflammatory responses through down-regulation of COX-2/iNOS and inactivation of NF-kappaB in lipopolysaccharide-stimulated macrophages. Phytomedicine ,23 (8), 846–855. https://doi.org/10.1016/j.phymed.2016.03.016
Cicchitti, L., Martelli, M., & Cerritelli, F. (2015). Chronic inflammatory disease and osteopathy: A systematic review. PLoS ONE , 10 (3), 1–18. https://doi.org/10.1371/journal.pone.0121327
Ciesielska, A., Matyjek, M., & Kwiatkowska, K. (2021). TLR4 and CD14 trafficking and its influence on LPS-induced pro-inflammatory signaling.Cellular and Molecular Life Sciences , 78 (4), 1233–1261. https://doi.org/10.1007/s00018-020-03656-y
Dai, B., Wei, D., Zheng, N., Chi, Z., Xin, N., Ma, T., Zheng, L., Sumi, R., & Sun, L. (2018). Coccomyxa Gloeobotrydiformis Polysaccharide Inhibits Lipopolysaccharide-Induced Inflammation in RAW 264.7 Macrophages. Cellular Physiology and Biochemistry , 51 (6), 2523–2535. https://doi.org/10.1159/000495922
Da Silva, L. A. L., Sandjo, L. P., Fratoni, E., Kinoshita Moon, Y. J., Dalmarco, E. M., & Biavatti, M. W. (2019). A single-step isolation by centrifugal partition chromatography of the potential anti-inflammatory glaucolide B from Lepidaploa chamissonis. Journal of Chromatography A , 1605 , 460362. https://doi.org/10.1016/j.chroma.2019.460362
Duarte, L. J., Chaves, V. C., Nascimento, M. V. P. dos S., Calvete, E., Li, M., Ciraolo, E., Ghigo, A., Hirsch, E., Simões, C. M. O., Reginatto, F. H., & Dalmarco, E. M. (2018). Molecular mechanism of action of Pelargonidin-3- O -glucoside, the main anthocyanin responsible for the anti-inflammatory effect of strawberry fruits. Food Chemistry ,247 , 56–65. https://doi.org/10.1016/j.foodchem.2017.12.015
Elisia, I., Pae, H. B., Lam, V., Cederberg, R., Hofs, E., & Krystal, G. (2018). Comparison of RAW264.7, human whole blood and PBMC assays to screen for immunomodulators. Journal of Immunological Methods ,452 , 26–31. https://doi.org/10.1016/j.jim.2017.10.004
Fullerton, J. N., & Gilroy, D. W. (2016). Resolution of inflammation: a new therapeutic frontier. Nature Reviews Drug Discovery ,15 (8), 551–567. https://doi.org/10.1038/nrd.2016.39
Furman, D., Campisi, J., Verdin, E., Carrera-Bastos, P., Targ, S., Franceschi, C., Ferrucci, L., Gilroy, D. W., Fasano, A., Miller, G. W., Miller, A. H., Mantovani, A., Weyand, C. M., Barzilai, N., Goronzy, J. J., Rando, T. A., Effros, R. B., Lucia, A., Kleinstreuer, N., & Slavich, G. M. (2019). Chronic inflammation in the etiology of disease across the life span. Nature Medicine , 25 (12), 1822–1832. https://doi.org/10.1038/s41591-019-0675-0
Ghate, N. B., Chaudhuri, D., Panja, S., Singh, S. S., Gupta, G., Lee, C. Y., & Mandal, N. (2018). In Vitro Mechanistic Study of the Anti-inflammatory Activity of a Quinoline Isolated from Spondias pinnata Bark. Journal of Natural Products , 81 (9), 1956–1961. https://doi.org/10.1021/acs.jnatprod.8b00036
Guo, Z., Xu, H.-Y., Xu, L., Wang, S.-S., & Zhang, X.-M. (2016). In vivo and in vitro immunomodulatory and anti-inflammatory effects of total flavonoids of Astragalus. Africa Journal of Traditional Complementary and Alternative Medicine , 13 (4), 60–73. https://doi.org/10.21010/ajtcam.v13i4.10
He, C., Lin, H., Wang, C., Zhang, M., Lin, Y., Huang, F., Lin, Y., & Tan, G. (2019). Exopolysaccharide from Paecilomyces lilacinus modulates macrophage activities through the TLR4/NF‑κB/MAPK pathway.Molecular Medicine Reports , 20 , 4943–4952. https://doi.org/10.3892/mmr.2019.10746
Higgins, J. P. T., Thomas, J., Chandler, J., Cumpston, M., Li, T., Page, M. J., & Welch, V. A. (2019). Cochrane Handbook for Systematic Reviews of Intervention (2nd editio).
Hozo, S. P., Djulbegovic, B., & Hozo, I. (2005). Estimating the mean and variance from the median, range, and the size of a sample. BMC Medical Research Methodology , 5 (1), 13. https://doi.org/10.1186/1471-2288-5-13
Hobbs, S., Reynoso, M., Geddis, A. V, Mitrophanov, A. Y., & Matheny, R. W. (2018). LPS-stimulated NF-kappa B p65 dynamic response marks the initiation of TNF expression and transition to IL-10 expression in RAW 264.7 macrophages. Physiological Reports , 6 (21). https://doi.org/10.14814/phy2.13914
Jung, H. A., Jin, S. E., Ahn, B. R., Lee, C. M., & Choi, J. S. (2013). Anti-inflammatory activity of edible brown alga Eisenia bicyclis and its constituents fucosterol and phlorotannins in LPS-stimulated RAW264.7 macrophages. Food and Chemical Toxicology , 59 , 199–206. https://doi.org/10.1016/j.fct.2013.05.061
Kabir, I., & Ansari, I. (2018). a Review on in Vivo and in Vitro Experimental Models To Investigate the Anti-Inflammatory Activity of Herbal Extracts. Asian Journal of Pharmaceutical and Clinical Research , 11 (11), 29. https://doi.org/10.22159/ajpcr.2018.v11i11.26873
Karatoprak, G. S., Pasayeva, L., Safak, E. K., Göger, F., Tugay, O., & Kosar, M. (2019). Chemical composition and anti-inflammatory activity of Kitaibelia balansae BOISS. FARMACIA , 67 (6), 1054–1059. https://doi.org/10.31925/farmacia.2019.6.17
Kim, M.-J., Jeong, S.-M., Kang, B.-K., Kim, K.-B.-W.-R., & Ahn, D.-H. (2019). Anti-Inflammatory Effects of Grasshopper Ketone from Sargassum fulvellum Ethanol Extract on Lipopolysaccharide-Induced Inflammatory Responses in RAW 264.7 Cells. Journal of Microbiology and Biotechnology , 29 (5), 820–826. https://doi.org/10.4014/jmb.1901.01027
Kim, Y. S., Ahn, C. B., & Je, J. Y. (2016). Anti-inflammatory action of high molecular weight Mytilus edulis hydrolysates fraction in LPS-induced RAW264.7 macrophage via NF-kappa B and MAPK pathways.Food Chemistry , 202 , 9–14. https://doi.org/10.1016/j.foodchem.2016.01.114
Laksmitawati, D. R., Prasanti, A. P., Larasinta, N., Syauta, G. A., Hilda, R., Ramadaniati, H. U., Widyastuti, A., Karami, N., Afni, M., Rihibiha, D. D., Kusuma, H. S. W., & Widowati, W. (2016). Anti-Inflammatory Potential of Gandarusa (<I>Gendarussa vulgaris</I> Nees) and Soursoup (<I>Annona muricata</I> L) Extracts in LPS Stimulated-Macrophage Cell (RAW264.7). Journal of Natural Remedies , 16 (2), 73. https://doi.org/10.18311/jnr/2016/5367
Lawrence, T. (2009). The nuclear factor NF-kappaB pathway in inflammation. Cold Spring Harbor Perspectives in Biology ,1 (6), 1–10. https://doi.org/10.1101/cshperspect.a001651
Lee, H. A., Koh, E. K., Sung, J. E., Kim, J. E., Song, S. H., Kim, D. S., Son, H. J., Lee, C. Y., Lee, H. S., Bae, C. J., & Hwang, D. Y. (2017). Ethyl acetate extract from Asparagus cochinchinensis exerts anti-inflammatory effects in LPS-stimulated RAW264.7 macrophage cells by regulating COX-2/iNOS, inflammatory cytokine expression, MAP kinase pathways, the cell cycle and anti-oxidant activity. Molecular Medicine Reports , 15 (4), 1613–1623. https://doi.org/10.3892/mmr.2017.6166
Lee, S.-B., Lee, W. S., Shin, J.-S., Jang, D. S., & Lee, K. T. (2017). Xanthotoxin suppresses LPS-induced expression of iNOS, COX-2, TNF-α, and IL-6 via AP-1, NF-κB, and JAK-STAT inactivation in RAW 264.7 macrophages. International Immunopharmacology , 49 , 21–29. https://doi.org/10.1016/j.intimp.2017.05.021
Lim, D., Kim, M. K., Jang, Y.-P., & Kim, J. (2015). Sceptridium ternatum attenuates allergic contact dermatitis-like skin lesions by inhibiting T helper 2-type immune responses and inflammatory responses in a mouse model. Journal of Dermatological Science ,79 (3), 288–297. https://doi.org/10.1016/j.jdermsci.2015.06.012
Lim, D., Lee, E., Jeong, E., Jang, Y.-P., & Kim, J. (2015). Stemona tuberosa prevented inflammation by suppressing the recruitment and the activation of macrophages in vivo and in vitro. Journal of Ethnopharmacology , 160 , 41–51. https://doi.org/10.1016/j.jep.2014.11.032
Lind, M., Hayes, A., Caprnda, M., Petrovic, D., Rodrigo, L., Kruzliak, P., & Zulli, A. (2017). Inducible nitric oxide synthase: Good or bad?Biomedicine & Pharmacotherapy , 93 , 370–375. https://doi.org/10.1016/j.biopha.2017.06.036
Liu, T., Zhang, L., Joo, D., & Sun, S.-C. (2017). NF-κB signaling in inflammation. Signal Transduction and Targeted Therapy ,2 (1), 17023. https://doi.org/10.1038/sigtrans.2017.23
Medzhitov, R. (2010). Inflammation 2010: New Adventures of an Old Flame.Cell , 140 (6), 771–776. https://doi.org/10.1016/j.cell.2010.03.006
Meram, C., & Wu, J. (2017). Anti-inflammatory effects of egg yolk livetins (α, β, and γ-livetin) fraction and its enzymatic hydrolysates in lipopolysaccharide-induced RAW 264.7 macrophages. Food Research International , 100 , 449–459. https://doi.org/10.1016/j.foodres.2017.07.032
Mohr, E. T. B., dos Santos Nascimento, M. V. P., da Rosa, J. S., Vieira, G. N., Kretzer, I. F., Sandjo, L. P., & Dalmarco, E. M. (2019). Evidence That the Anti-Inflammatory Effect of Rubiadin-1-methyl Ether Has an Immunomodulatory Context. Mediators of Inflammation ,2019 , 1–12. https://doi.org/10.1155/2019/6474168
Moore, K., Howard, L., Brownmiller, C., Gu, I., Lee, S.-O., & Mauromoustakos, A. (2019). Inhibitory effects of cranberry polyphenol and volatile extracts on nitric oxide production in LPS activated RAW 264.7 macrophages. Food & Function , 10 (11), 7091–7102. https://doi.org/10.1039/C9FO01500K
Nathan, C., & Ding, A. (2010). Nonresolving Inflammation. Cell ,140 (6), 871–882. https://doi.org/10.1016/j.cell.2010.02.029
Ouzzani, M., Hammady, H., Fedorowicz, Z., & Elmagarmid, A. (2016). Rayyan-a web and mobile app for systematic reviews. Systematic Reviews , 5 (1), 1–10. https://doi.org/10.1186/s13643-016-0384-4
Page, M. J., McKenzie, J. E., Bossuyt, P. M., Boutron, I., Hoffmann, T. C., Mulrow, C. D., Shamseer, L., Tetzlaff, J. M., Akl, E. A., Brennan, S. E., Chou, R., Glanville, J., Grimshaw, J. M., Hróbjartsson, A., Lalu, M. M., Li, T., Loder, E. W., Mayo-Wilson, E., McDonald, S., … Moher, D. (2021). The PRISMA 2020 statement: an updated guideline for reporting systematic reviews. BMJ , n71. https://doi.org/10.1136/bmj.n71
Pang, Y., Gan, L., Wang, X., Su, Q., Liang, C., & He, P. (2019). Celecoxib aggravates atherogenesis and upregulates leukotrienes in ApoE mice and lipopolysaccharide-stimulated RAW264.7 macrophages.Atherosclerosis , 284 , 50–58. https://doi.org/10.1016/j.atherosclerosis.2019.02.017
Patil, K. R., Mahajan, U. B., Unger, B. S., Goyal, S. N., Belemkar, S., Surana, S. J., Ojha, S., & Patil, C. R. (2019). Animal Models of Inflammation for Screening of Anti-inflammatory Drugs: Implications for the Discovery and Development of Phytopharmaceuticals.International Journal of Molecular Sciences , 20 (18), 4367. https://doi.org/10.3390/ijms20184367
Poltorak, A., Smirnova, I., He, X., Liu, M.-Y., Huffel, C. Van, Birdwell, D., Alejos, E., Silva, M., Du, X., Thompson, P., Chan, E. K. L., Ledesma, J., Roe, B., Clifton, S., Vogel, S. N., & Beutler, B. (1998). Genetic and Physical Mapping of the Lps Locus: Identification of the Toll-4 Receptor as a Candidate Gene in the Critical Region.Blood Cells, Molecules and Diseases , 240 (170), 340–355.
Rahman, M. M., & McFadden, G. (2011). Modulation of NF-κB signalling by microbial pathogens. Nature Reviews Microbiology , 9 (4), 291–306. https://doi.org/10.1038/nrmicro2539
Ranaweera, S. S., Dissanayake, C. Y., Natraj, P., Lee, Y. J., & Han, C.-H. (2020). Anti-inflammatory effect of sulforaphane on LPS-stimulated RAW 264.7 cells and ob/ob mice. Journal of Veterinary Science ,21 (6). https://doi.org/10.4142/jvs.2020.21.e91
Romerio, A., & Peri, F. (2020). Increasing the Chemical Variety of Small-Molecule-Based TLR4 Modulators: An Overview. Frontiers in Immunology , 11 . https://doi.org/10.3389/fimmu.2020.01210
Saha, B. K., & Burns, S. L. (2020). The Story of Nitric Oxide, Sepsis and Methylene Blue: A Comprehensive Pathophysiologic Review.American Journal of the Medical Sciences , 360 (4), 329–337. https://doi.org/10.1016/j.amjms.2020.06.007
Sugimoto, M. a., Sousa, L. P., Pinho, V., Perretti, M., & Teixeira, M. M. (2016). Resolution of inflammation: What controls its onset?Frontiers in Immunology , 7 (APR). https://doi.org/10.3389/fimmu.2016.00160
Sun, H., Cai, W., Wang, X., Liu, Y., Hou, B., Zhu, X., & Qiu, L. (2017). Vaccaria hypaphorine alleviates lipopolysaccharide-induced inflammation via inactivation of NFκB and ERK pathways in Raw 264.7 cells. BMC Complementary and Alternative Medicine , 17 (1), 120. https://doi.org/10.1186/s12906-017-1635-1
Taciak, B., Białasek, M., Braniewska, A., Sas, Z., Sawicka, P., Kiraga, Ł., Rygiel, T., & Król, M. (2018). Evaluation of phenotypic and functional stability of RAW 264.7 cell line through serial passages.PLOS ONE , 13 (6), e0198943. https://doi.org/10.1371/journal.pone.0198943
Urbaniak, G. C., & Plous, S. (2013). Research Randomizer (Version 4.0) .
Yoon, S.-B., Lee, Y.-J., Park, S. K., Kim, H.-C., Bae, H., Kim, H. M., Ko, S.-G., Choi, H. Y., Oh, M. S., & Park, W. (2009). Anti-inflammatory effects of Scutellaria baicalensis water extract on LPS-activated RAW 264.7 macrophages. Journal of Ethnopharmacology , 125 (2), 286–290. https://doi.org/10.1016/j.jep.2009.06.027
Zarrin, A. A., Bao, K., Lupardus, P., & Vucic, D. (2021). Kinase inhibition in autoimmunity and inflammation. Nature Reviews Drug Discovery , 20 (1), 39–63. https://doi.org/10.1038/s41573-020-0082-8
Zhang, Y., Yan, R., & Hu, Y. (2015). Oxymatrine inhibits lipopolysaccharide-induced inflammation by down-regulating Toll-like receptor 4/nuclear factor-kappa B in macrophages. Canadian Journal of Physiology and Pharmacology , 93 (4), 253–260. https://doi.org/10.1139/cjpp-2014-0362