Reference
Zust, T., & Agrawal, A. A. (2016). Mechanisms and evolution of plant resistance to aphids. Nat Plants, 2, 15206. doi:10.1038/nplants.2015.206
Xu, Y., & Gray, S. M. (2020). Aphids and their transmitted potato viruses: A continuous challenges in potato crops. Journal of Integrative Agriculture, 19 (2), 367-375. doi:10.1016/s2095-3119(19)62842-x
Li, Y.-F., An, J.-J., Dang, Z.-H., Pan, W.-L., & Gao, Z.-L. (2018). Systemic control efficacy of neonicotinoids seeds dressing on English grain aphid (Hemiptera: Aphididae). Journal of Asia-Pacific Entomology, 21 (1), 430-435. doi: 10.1016/j.aspen.2018.01.003
Ali, A., Desneux, N., Lu, Y., & Wu, K. (2018). Key aphid natural enemies showing positive effects on wheat yield through biocontrol services in northern China. Agriculture, Ecosystems & Environment, 266 , 1-9. doi: 10.1016/j.agee.2018.07.012
Jacques, S., Reidy-Crofts, J., Sperschneider, J., Kamphuis, L. G., Gao, L. L., Edwards, O. R., & Singh, K. B. (2020). An RNAi supplemented diet as a reverse genetics tool to control bluegreen aphid, a major pest of legumes. Sci Rep, 10 (1), 1604. doi:10.1038/s41598-020-58442-4
He, J., Liu, Y., Yuan, D., Duan, M., Liu, Y., Shen, Z., . . . Wan, J. (2020). An R2R3 MYB transcription factor confers brown planthopper resistance by regulating the phenylalanine ammonia-lyase pathway in rice. Proc Natl Acad Sci U S A, 117 (1), 271-277. doi:10.1073/pnas.1902771116
Qi, X., Chen, M., Liang, D., Xu, Q., Zhou, F., & Chen, X. (2020). Jasmonic acid, ethylene and ROS are involved in the response of cucumber (Cucumis sativus L.) to aphid infestation. Scientia Horticulturae, 269 , 109421. doi: 10.1016/j.scienta.2020.109421
Varsani, S., Grover, S., Zhou, S., Koch, K. G., Huang, P. C., Kolomiets, M. V., . . . Louis, J. (2019). 12-Oxo-Phytodienoic Acid Acts as a Regulator of Maize Defense against Corn Leaf Aphid. Plant Physiol, 179 (4), 1402-1415. doi:10.1104/pp.18.01472
NIEMEYER., H. M. (2009). Hydroxamic Acids Derived from 2-Hydroxy-2H-1,4-Benzoxazin-3(4H)-one: Key Defense Chemicals of Cereals.J. Agric. Food Chem., 57 , 1677–1696.
Chapman, K. M., Marchi-Werle, L., Hunt, T. E., Heng-Moss, T. M., & Louis, J. (2018). Abscisic and Jasmonic Acids Contribute to Soybean Tolerance to the Soybean Aphid (Aphis glycines Matsumura). Sci Rep, 8 (1), 15148. doi:10.1038/s41598-018-33477-w
Bapat, G., Zinjarde, S., & Tamhane, V. (2020). Evaluation of silica nanoparticle mediated delivery of protease inhibitor in tomato plants and its effect on insect pest Helicoverpa armigera. Colloids Surf B Biointerfaces, 193 , 111079. doi: 10.1016/j.colsurfb.2020.111079
Ahmad, P., Abd Allah, E. F., Hashem, A., Sarwat, M., & Gucel, S. (2016). Exogenous Application of Selenium Mitigates Cadmium Toxicity in Brassica juncea L. (Czern & Cross) by Up-Regulating Antioxidative System and Secondary Metabolites. Journal of Plant Growth Regulation, 35 (4), 936-950. doi:10.1007/s00344-016-9592-3
Zhang, X., Chen, L., Leng, R., Zhang, J., Zhou, Y., Zhang, Y., . . . Huang, B. (2020). Mechanism study of the beneficial effect of sodium selenite on metabolic disorders in imidacloprid-treated garlic plants.Ecotoxicol Environ Saf, 200 , 110736. doi: 10.1016/j.ecoenv.2020.110736
Li, Y., Zhu, N., Liang, X., Zheng, L., Zhang, C., Li, Y. F., . . . Zhao, J. (2020). A comparative study on the accumulation, translocation and transformation of selenite, selenate, and SeNPs in a hydroponic-plant system. Ecotoxicol Environ Saf, 189 , 109955. doi: 10.1016/j.ecoenv.2019.109955
Zahedi, S. M., Abdelrahman, M., Hosseini, M. S., Hoveizeh, N. F., & Tran, L. P. (2019). Alleviation of the effect of salinity on growth and yield of strawberry by foliar spray of selenium-nanoparticles.Environ Pollut, 253 , 246-258. doi: 10.1016/j.envpol.2019.04.078
Colin F Quinn1†, J. L. F., 2,4†, Ray JB Reynolds1, Jennifer J Cappa1, Sirine C Fakra3, Matthew A Marcus3, Stormy D Lindblom1, Erin K Quinn1, Lindsay E Bennett1, Elizabeth AH Pilon-Smits1. (2010). Selenium hyperaccumulation offers protection from cell disruptor herbivores.BMC Ecology, 10:19 , 1472-6785.
Li, M. Q., Hasan, M. K., Li, C. X., Ahammed, G. J., Xia, X. J., Shi, K., . . . Zhou, J. (2016). Melatonin mediates selenium-induced tolerance to cadmium stress in tomato plants. J Pineal Res, 61 (3), 291-302. doi:10.1111/jpi.12346
Ulhassan, Z., Huang, Q., Gill, R. A., Ali, S., Mwamba, T. M., Ali, B., . . . Zhou, W. (2019). Protective mechanisms of melatonin against selenium toxicity in Brassica napus: insights into physiological traits, thiol biosynthesis and antioxidant machinery. BMC Plant Biol, 19 (1), 507. doi:10.1186/s12870-019-2110-6
War, A. R., Sharma, H. C., Paulraj, M. G., War, M. Y., & Ignacimuthu, S. (2011). Herbivore induced plant volatiles: their role in plant defense for pest management. Plant Signal Behav, 6 (12), 1973-1978. doi:10.4161/psb.6.12.18053
Mitra, P., Das, S., Debnath, R., Mobarak, S. H., & Barik, A. (2021). Identification of Lathyrus sativus plant volatiles causing behavioral preference of Aphis craccivora. Pest Manag Sci, 77 (1), 285-299. doi:10.1002/ps.6018
Xiao, Y., Wang, Q., Erb, M., Turlings, T. C., Ge, L., Hu, L., . . . Lou, Y. (2012). Specific herbivore-induced volatiles defend plants and determine insect community composition in the field. Ecol Lett, 15 (10), 1130-1139. doi:10.1111/j.1461-0248.2012. 01835.x
Mechora, S. (2019). Selenium as a Protective Agent Against Pests: A Review. Plants, 8 (8), 262. doi:10.3390/plants8080262
Li, D., Zhou, C., Zou, N., Wu, Y., Zhang, J., An, Q., . . . Pan, C. (2021). Nanoselenium foliar application enhances biosynthesis of tea leaves in metabolic cycles and associated responsive pathways.Environ Pollut, 273 , 116503. doi: 10.1016/j.envpol.2021.116503
Li, D., An, Q., Wu, Y., Li, J.-Q., & Pan, C. (2020). Foliar Application of Selenium Nanoparticles on Celery Stimulates Several Nutrient Component Levels by Regulating the α-Linolenic Acid Pathway. ACS Sustainable Chemistry & Engineering, 8 (28), 10502-10510.
Kong, C. H., Zhang, S. Z., Li, Y. H., Xia, Z. C., Yang, X. F., Meiners, S. J., & Wang, P. (2018). Plant neighbor detection and allelochemical response are driven by root-secreted signaling chemicals. Nat Commun, 9 (1), 3867. doi:10.1038/s41467-018-06429-1 doi:10.1021/acssuschemeng.0c02819
Czerniewicz, P., Sytykiewicz, H., Durak, R., Borowiak-Sobkowiak, B., & Chrzanowski, G. (2017). Role of phenolic compounds during antioxidative responses of winter triticale to aphid and beetle attack. Plant Physiol Biochem, 118 , 529-540. doi: 10.1016/j.plaphy.2017.07.024
Jamieson, M. A., Burkle, L. A., Manson, J. S., Runyon, J. B., Trowbridge, A. M., & Zientek, J. (2017). Global change effects on plant-insect interactions: the role of phytochemistry. Curr Opin Insect Sci, 23 , 70-80. doi: 10.1016/j.cois.2017.07.009
El Mehdawi, A. F., Quinn, C. F., & Pilon-Smits, E. A. (2011). Selenium hyperaccumulators facilitate selenium-tolerant neighbors via phytoenrichment and reduced herbivory. Curr Biol, 21 (17), 1440-1449. doi: 10.1016/j.cub.2011.07.033
Hawrylak-Nowak, B., Hasanuzzaman, M., & Matraszek-Gawron, R. (2018). Mechanisms of Selenium-Induced Enhancement of Abiotic Stress Tolerance in Plants. Plant Nutrients and Abiotic Stress Tolerance , 269-295. doi:10.1007/978-981-10-9044-8_12
Li, D., Zhou, C., Zhang, J., An, Q., Wu, Y., Li, J. Q., & Pan, C. (2020). Nanoselenium Foliar Applications Enhance the Nutrient Quality of Pepper by Activating the Capsaicinoid Synthetic Pathway. J Agric Food Chem, 68 (37), 9888-9895. doi: 10.1021/acs.jafc.0c03044
Wang, W., Zhou, P., Mo, X., Hu, L., Jin, N., Chen, X., . . . Lou, Y. (2020). Induction of defense in cereals by 4-fluorophenoxyacetic acid suppresses insect pest populations and increases crop yields in the field. Proc Natl Acad Sci U S A, 117 (22), 12017-12028. doi:10.1073/pnas.2003742117
Xu, J., Jia, W., Hu, C., Nie, M., Ming, J., Cheng, Q., . . . Zhao, X. (2020). Selenium as a potential fungicide could protect oilseed rape leaves from Sclerotinia sclerotiorum infection. Environ Pollut, 257 , 113495. doi: 10.1016/j.envpol.2019.113495
Jiang, L., Peng, L. L., Cao, Y. Y., Thakur, K., Hu, F., Tang, S. M., & Wei, Z. J. (2020). Effect of Dietary Selenium Supplementation on Growth and Reproduction of Silkworm Bombyx mori L. Biol Trace Elem Res, 193 (1), 271-281. doi:10.1007/s12011-019-01690-x
Scheys, F., De Schutter, K., Subramanyam, K., Van Damme, E. J. M., & Smagghe, G. (2020). Protection of rice against Nilaparvata lugens by direct toxicity of sodium selenate. Arch Insect Biochem Physiol, 103 (3), e21644. doi:10.1002/arch.21644
Xu, Z., Qi, C., Zhang, M., Zhu, J., Hu, J., Feng, K., . . . He, L. (2021). Selenium mediated host plant-mite conflict: defense and adaptation. Pest Manag Sci . doi:10.1002/ps.6337
Hanson, B., Lindblom, S. D., Loeffler, M. L., & Pilon‐Smits, E. A. H. (2004). Selenium protects plants from phloem‐feeding aphids due to both deterrence and toxicity. New Phytologist, 162 (3), 655-662. doi:10.1111/j.1469-8137.2004. 01067.x
Erb, M., Meldau, S., & Howe, G. A. (2012). Role of phytohormones in insect-specific plant reactions. Trends Plant Sci, 17 (5), 250-259. doi: 10.1016/j.tplants.2012.01.003
Lortzing, T., & Steppuhn, A. (2016). Jasmonate signalling in plants shapes plant-insect interaction ecology. Curr Opin Insect Sci, 14 , 32-39. doi: 10.1016/j.cois.2016.01.002
Kerchev, P. I., Fenton, B., Foyer, C. H., & Hancock, R. D. (2012). Plant responses to insect herbivory: interactions between photosynthesis, reactive oxygen species and hormonal signalling pathways. Plant Cell Environ, 35 (2), 441-453. doi:10.1111/j.1365-3040.2011. 02399.x
Tripathi, D. K., Vishwakarma, K., Singh, V. P., Prakash, V., Sharma, S., Muneer, S., . . . Corpas, F. J. (2021). Silicon crosstalk with reactive oxygen species, phytohormones and other signaling molecules. J Hazard Mater, 408 , 124820. doi: 10.1016/j.jhazmat.2020.124820
Barbera, M., Escriva, L., Collantes-Alegre, J. M., Meca, G., Rosato, E., & Martinez-Torres, D. (2020). Melatonin in the seasonal response of the aphid Acyrthosiphon pisum. Insect Sci, 27 (2), 224-238. doi:10.1111/1744-7917.12652
Liu, C., Chen, L., Zhao, R., Li, R., Zhang, S., Yu, W., . . . Shen, L. (2019). Melatonin Induces Disease Resistance to Botrytis cinerea in Tomato Fruit by Activating Jasmonic Acid Signaling Pathway. J Agric Food Chem, 67 (22), 6116-6124. doi: 10.1021/acs.jafc.9b00058
Arnao, M. B., & Hernandez-Ruiz, J. (2019). Melatonin: A New Plant Hormone and/or a Plant Master Regulator? Trends Plant Sci, 24 (1), 38-48. doi: 10.1016/j.tplants.2018.10.010
Tiwari, R. K., Lal, M. K., Naga, K. C., Kumar, R., Chourasia, K. N., S, S., . . . Sharma, S. (2020). Emerging roles of melatonin in mitigating abiotic and biotic stresses of horticultural crops. Scientia Horticulturae, 272 , 109592. doi: 10.1016/j.scienta.2020.109592
Meihls, L. N., Handrick, V., Glauser, G., Barbier, H., Kaur, H., Haribal, M. M., . . . Jander, G. (2013). Natural variation in maize aphid resistance is associated with 2,4-dihydroxy-7-methoxy-1,4-benzoxazin-3-one glucoside methyltransferase activity. Plant Cell, 25 (6), 2341-2355. doi:10.1105/tpc.113.112409
HANSEN, L. M. (2006). Effect of 6-Methoxybenzoxazolin-2-one (MBOA) on the Reproduction Rate of the Grain Aphid (Sitobion avenae F.). J. Agric. Food Chem., 54 , 1031-1035.
Clavijo McCormick, A., Unsicker, S. B., & Gershenzon, J. (2012). The specificity of herbivore-induced plant volatiles in attracting herbivore enemies. Trends Plant Sci, 17 (5), 303-310. doi: 10.1016/j.tplants.2012.03.012
Park, J., Thomasson, J. A., Gorman, Z., Brewer, M. J., Rooney, W. L., & Kolomiets, M. V. (2020). Multivariate analysis of sorghum volatiles for the fast screening of sugarcane aphid infestation. Journal of Asia-Pacific Entomology, 23 (4), 901-908. doi: 10.1016/j.aspen.2020.07.014
Zhuang, X., Fiesselmann, A., Zhao, N., Chen, H., Frey, M., & Chen, F. (2012). Biosynthesis and emission of insect herbivory-induced volatile indole in rice. Phytochemistry, 73 (1), 15-22. doi: 10.1016/j.phytochem.2011.08.029
Zhang, Y., Teng, B., Wang, D., & Jiang, J. (2021). Discovery of a specific volatile substance from rice grain and its application in controlling stored-grain pests. Food Chem, 339 , 128014. doi: 10.1016/j.foodchem.2020.128014