References
Atretkhany, K. N., Drutskaya, M. S., Nedospasov, S. A., Grivennikov, S.
I., & Kuprash, D. V. (2016).
Chemokines, cytokines, and exosomes help tumors to shape inflammatory
microenvironment. Pharmacol Ther, 168, 98-112.
Avraham, H. K., Jiang, S., Fu, Y., Nakshatri, H., Ovadia, H., &
Avraham, S. (2014). Angiopoietin-2 mediates
blood-brain barrier impairment and colonization of triple-negative
breast cancer cells in brain. J Pathol, 232(3), 369-381.
Bahiraee, A., Ebrahimi, R., Halabian, R., Aghabozorgi, A. S., & Amani,
J. (2019). The role of inflammation and
its related microRNAs in breast cancer: A narrative review. J Cell
Physiol , 234(11), 19480-19493.
Banerjee, K., & Resat, H. (2016). Constitutive activation of STAT3 in
breast cancer cells: A review. Int J Cancer ,
138(11), 2570-2578.
Banys-Paluchowski, M., Witzel, I., Riethdorf, S., Pantel, K., Rack, B.,
Janni, W., et al. (2018). The clinical
relevance of serum vascular endothelial growth factor (VEGF-A) in
correlation to circulating tumor cells and other serum biomarkers in
patients with metastatic breast cancer. Breast Cancer Res Treat,
172(1), 93-104.
Belli, C., Trapani, D., Viale, G., D’Amico, P., Duso, B. A., Della
Vigna, P., et al. (2018). Targeting the
microenvironment in solid tumors. Cancer Treat Rev , 65, 22-32.
Beloribi-Djefaflia, S., Vasseur, S., & Guillaumond, F. (2016). Lipid
metabolic reprogramming in cancer cells.
Oncogenesis , 5, e189.
Boire, A., Brastianos, P. K., Garzia, L., & Valiente, M. (2020). Brain
metastasis. Nat Rev Cancer, 20(1), 4-11.
Borcherding, N., Cole, K., Kluz, P., Jorgensen, M., Kolb, R., Bellizzi,
A., et al. (2018). Re-Evaluating E-Cadherin
and β-Catenin: A Pan-Cancer Proteomic Approach with an Emphasis on
Breast Cancer. Am J Pathol, 188(8), 1910-1920.
Bos, P. D., Zhang, X. H., Nadal, C., Shu, W., Gomis, R. R., Nguyen, D.
X., et al. (2009). Genes that mediate
breast cancer metastasis to the brain. Nature , 459(7249),
1005-1009.
Cacho-Díaz, B., García-Botello, D. R., Wegman-Ostrosky, T., Reyes-Soto,
G., Ortiz-Sánchez, E., & Herrera-
Montalvo, L. A. (2020). Tumor microenvironment differences between
primary tumor and brain metastases. J Transl Med, 18(1), 1.
Carbonetti, G., Wilpshaar, T., Kroonen, J., Studholme, K., Converso, C.,
D’oelsnitz, S., et al. (2019). FABP5
coordinates lipid signaling that promotes prostate cancer metastasis.Sci Rep , 9, 18944.
Cruceriu, D., Baldasici, O., Balacescu, O., & Berindan-Neagoe, I.
(2020). The dual role of tumor necrosis factor-
alpha (TNF-alpha) in breast cancer: molecular insights and therapeutic
approaches. Cellular Oncology , 43, 1-
Da Silva, J. L., Cardoso Nunes, N. C., Izetti, P., de Mesquita, G.G., &
de Melo, A.C. (2020). Triple negative
breast cancer: A thorough review of biomarkers. Crit Rev Oncol
Hematol , 145, 102855.
Guzman, M. (2010). A new age for MAGL. Chem Biol , 17(1), 4-6.
Hu, G., Kang, Y., & Wang, X. F. (2009). From Breast to the Brain:
Unravelling the Puzzle of Metastasis
Organotropism. Journal of Molecular Cell Biology , 1, 3-5.
Huang, P., Ouyang, D. J., Chang, S., Li, M. Y., Li, L., Li, Q. Y., et
al. (2018). Chemotherapy-driven increases in
the CDKN1A/PTN/PTPRZ1 axis promote chemoresistance by activating the
NF-kappaB pathway in breast
cancer cells. Cell Commun Signal , 16(1), 92.
Hubalek, M., Hubalek, M., Czech, T., & Müller, H. (2017). Biological
Subtypes of Triple-Negative Breast Cancer.
Breast Care (Basel) , 12(1), 8-14.
Jézéquel, P., Kerdraon, O., Hondermarck, H., Guérin-Charbonnel, C.,
Lasla, H., Gouraud, W., et al. (2019).
Identification of three subtypes of triple-negative breast cancer with
potential therapeutic implications. Breast Cancer Res, 21(1), 65.
Karki, R., Man, S. M., & Kanneganti, T. D. (2017). Inflammasomes and
Cancer. Cancer Immunol Res , 5(2), 94-
99.
King, J., Mir, H., & Singh, S. (2017). Association of Cytokines and
Chemokines in Pathogenesis of Breast Cancer.
Prog Mol Biol Transl Sci , 151, 113-136.
Lehmann, B.D., Jovanović, B., Chen, X., Estrada, M.V., Johnson, K.N.,
Shyr, Y., et al. (2016). Refinement of
Triple-Negative Breast Cancer Molecular Subtypes: Implications for
Neoadjuvant Chemotherapy Selection. PLoS One, 11(6), e0157368.
Leonard, M. Z., Alapafuja, S. O., Ji, L., Shukla, V. G., Liu, Y., Nikas,
S. P., et al. (2017). Cannabinoid CB1
Discrimination: Effects of Endocannabinoids and Catabolic Enzyme
Inhibitors. J Pharmacol Exp Ther, 363(3), 314-323.
Li, X., Gao, S., Li, W., Liu, Z., Shi, Z., Qiu, C., et al. (2019).
Effect of monoacylglycerol lipase on the tumor
growth in endometrial cancer. J Obstetric Gynecology Res , 45(10),
2043–2054.
Lim, B., Woodward, W. A., Wang, X., Reuben, J. M., & Ueno, N. T.
(2018). Inflammatory breast cancer biology:
the tumor microenvironment is key. Nat Rev Cancer , 18(8),
485-499.
Ma, Y., Ren, Y., Dai, Z. J., Wu, C. J., Ji, Y. H., & Xu, J. (2017).
IL-6, IL-8 and TNF-alpha levels correlate with
disease stage in breast cancer patients. Adv Clin Exp Med , 26(3),
421-426.
Masjedi, A., Hashemi, V., Hojjat-Farsangi, M., Ghalamfarsa, G., Azizi,
G., Yousefi, M., et al. (2018). The
significant role of interleukin-6 and it is signaling pathway in the
immunopathogenesis and treatment of breast
cancer. Biomed Pharmacotherapy , 108, 1415-1424.
Mery, B., Rowinski, E., Vallard, A., Jacquin, J. P., Simoens, X., Magné,
N., et al. (2019). Advocacy for a New
Oncology Research Paradigm: The Model of Bevacizumab in Triple-Negative
Breast Cancer in a French
Cohort Study. Oncology , 97(1), 1-6.
Morad, G., Carman, C. V., Hagedorn, E. J., Perlin, J. R., Zon, L. I.,
Mustafaoglu, N., et al. (2019). Tumor-Derived
Extracellular Vehicles Breach the Intact Blood-Brain Barrier via
Trancytosis. ACS Nano, 13(12), 13853-13865.
Mouchemore, K. A., Anderson, R. L., & Hamilton, J. A. (2018).
Neutrophils, G-CSF, and their contribution to
breast cancer metastasis. Febs j , 285(4), 665-679.
Nagarsheth, N., Wicha, M. S., & Zou, W. (2017). Chemokines in the
cancer microenvironment and their relevance
in cancer immunotherapy. Nat Rev Immunol , 17(9), 559-572.
Nakamura, K., & Smyth, M. J. (2017). Targeting cancer-related
inflammation in the era of immunotherapy.
Immunol Cell Biol , 95(4), 325-332.
Nomura, D. K., Long, J. Z., Niessen, S., Hoover, H. S., Ng, S. W., &
Cravatt, B. F. (2010). Monoacylglycerol
lipase regulates a fatty acid network that promotes cancer pathogenesis.Cell , 140(1), 49-61.
Omabe, M., Ezeani, M., & Omabe, K. N. (2014). Lipid metabolism and
cancer progression: The missing target
in metastatic cancer treatment. Journal of Applied Biomedicine ,
13.
Omabe, M., Ezeani, M., & Omabe, K. N. (2015). Lipid metabolism and
cancer progression: The missing target
in metastatic cancer treatment. J Appl Biomed , 13, 47-59.
Parker, L. A., Limebeer, C. L., Rock, E. M., Sticht, M. A., Ward, J.,
Turvey, G., et al. (2016). A comparison of
novel, selective fatty acid amide hydrolase (FAAH), monoacylglycerol
lipase (MAGL) or dual FAAH/MAGL
inhibitors to suppress acute and anticipatory nausea in rat models.Psychopharmacology (Berl), 233(12), 2265-2275.
Rodriguez, P.L., Jiang, S., Fu, Y., Avraham, S., & Avraham, H. K.
(2014). The proinflammatory peptide
substance P promotes blood-brain barrier breaching by breast cancer
cells through changes in microvascular endothelial cell tight junctions.Int J Cancer, 134(5), 1034-1044.
Roma-Rodrigues, C., Mendes, R., Baptista, P. V., & Fernandes, A. R.
(2019). Targeting Tumor
Microenvironment for Cancer Therapy. Int J Mol Sci , 20(4).
Sau, A., Cabrita, M. A., & Pratt, M. A. C. (2018). NF-kappaB at the
Crossroads of Normal Mammary Gland
Biology and the Pathogenesis and Prevention of BRCA1-Mutated Breast
Cancer. Cancer Prev Res (Phila), 11(2), 69-80.
Senga, S., Kobayashi, N., Kawaguchi, K., Ando, A., & Fujii, H. (2018).
Fatty acid-binding protein 5 (FABP5)
promotes lipolysis of lipid droplets, de novo fatty acid (FA) synthesis
and activation of nuclear factor-
kappa B (NF-κB) signaling in cancer cells. Biochim Biophys Acta
Mol Cell Biol Lipids , 1863(9), 1057-
1067.
Shao, W., Li, S., Li, L., Lin, K., Liu, X., Wang, H., et al. (2019).
Chemical genomics reveals inhibition of breast
cancer lung metastasis by Ponatinib via c-Jun. Protein Cell ,
10(3), 161-177.
Taïb, B., Aboussalah, A. M., Moniruzzaman, M., Chen, S., Haughey, N. J.,
Kim, S. F., et al. (2019). Lipid
accumulation and oxidation in glioblastoma multiforme. Sci Rep ,
9(1), 19593.
Taniguchi, K., & Karin, M. (2018). NF-kappaB, inflammation, immunity,
and cancer: coming of age. Nat Rev
Immunol , 18(5), 309-324.
Tuo, W., Leleu-Chavain, N., Spencer, J., Sansook, S., Millet, R., &
Chavatte, P. (2017). Therapeutic Potential of
Fatty Acid Amide Hydrolase, Monoacylglycerol Lipase, and
N-Acylethanolamine Acid Amidase Inhibitors. J Med Chem, 60(1),
4-46.
Tyukhtenko, S., Karageorgos, I., Rajarshi, G., Zvonok, N., Pavlopoulos,
S., Janero, D., et al. (2016). Specific
Inter-residue Interactions as Determinants of Human Monoacylglycerol
Lipase Catalytic Competency: A
ROLE FOR GLOBAL CONFORMATIONAL CHANGES. J Biol Chem , 291(6),
2556-2565.
Tyukhtenko, S., Ma, X., Rajarshi, G., Karageorgos, I., Anderson, K. W.,
Hudgens, J. W., et al. (2020).
Conformational gating, dynamics and allostery in human monoacylglycerol
lipase. Scientific Reports, 10, 18531.
Tyukhtenko, S., Rajarshi, G., Karageorgos, I., Zvonok, N., Gallagher, E.
S., Huang, H., et al. (2018). Effects of
Distal Mutations on the Structure, Dynamics, and Catalysis of Human
Monoacylglycerol Lipase. Scientific
Reports , 8(1), 1719.
Wang, W., Nag, S. A., & Zhang, R. (2015). Targeting the NFkappaB
signaling pathways for breast cancer
prevention and therapy. Curr Med Chem , 22(2), 264-289.
Yam, C., Mani, S. A., & Moulder, S. L. (2017). Targeting the Molecular
Subtypes of Triple Negative Breast
Cancer: Understanding the Diversity to Progress the Field.Oncologist , 22(9), 1086-1093.
Yates, L. R., Knappskog, S., Wedge, D., Farmery, J. H. R., Gonzalez, S.,
Martincorena, I., et al. (2017). Genomic
Evolution of Breast Cancer Metastasis and Relapse. Cancer Cell ,
32(2), 169-184.e167.
Yecies, J. L., & Manning, B. D. (2010). Chewing the fat on tumor cell
metabolism. Cell , 140(1), 28-30.
Zhang, H., Guo, W., Zhang, F., Li, R., Zhou, Y., Shao, F., et al.
(2020). Monoacylglycerol Lipase Knockdown
Inhibits Cell Proliferation and Metastasis in Lung Adenocarcinoma. Front
Oncol, 10, 559568.
Zhu, W., Zhao, Y., Zhou, J., Wang, X., Pan, Q., Zhang, N., et al.
(2016). Monoacylglycerol lipase promotes
progression of hepatocellular carcinoma via NF-κB-mediated
epithelial-mesenchymal transition. J Hematol Oncol, 9(1), 127.