REFERENCES
Arora, V.K. & Montenegro, A.
(2011). Small temperature benefits provided by realistic afforestation
efforts. Nat. Geos. , 4, 514-518.
Baldocchi, D., Falge, E., Gu, L., Olson, R., Hollinger, D., Running, S.et al. (2001). Fluxnet: a new tool to study the temporal and
spatial variability of ecosystem-scale carbon dioxide,water vapor, and
energy flux densities. B. Am.Meteorol. Soc. , 82, 2415-2434.
Baldocchi, D.D. (2003). Assessing the eddy covariance technique for
evaluating carbon dioxide exchange rates of ecosystems: past, present
and future. Glob. Chang. Biol. , 9, 479-492.
Bonan, G.B. (2008). Forests and climate change: forcings, feedbacks, and
the climate benefits of forests. Science , 320, 1444-1449.
Campbell, J.E., Berry, J.A., Seibt, U., Smith, S.J., Montzka, S.A.,
Launois, T. et al. (2017). Large historical growth in global
terrestrial gross primary production. Nature , 544, 84-87.
Cramer, W. & Field, C.B. (1999). Comparing global models of terrestrial
net primary productivity (NPP): introduction. Glob. Chang. Biol. ,
5, 1-15.
Falkowski, P., Scholes, R.J., Boyle, E., Canadell, J., Canfield, D.,
Elser, J. et al. (2000). The global carbon cycle: a test of our
knoledge of earth as a system. Science , 290, 291-296.
Garbulsky, M.R., Penuelas, J., Papale, D., Ardö, J., Goulden, M.L.,
Kiely, G. et al. (2010). Patterns and controls of the variability
of radiation use efficiency and primary productivity across terrestrial
ecosystems. Global Ecol. Biogeogr. , 19, 253-267.
Gitelson, A.A., Peng, Y., Viña, A., Arkebauer, T. & Schepers, J.S.
(2016). Efficiency of chlorophyll in gross primary productivity: A proof
of concept and application in crops. J. Plant. Physiol. , 201,
101-110.
Gower, S.T., Kucharik, C.J. & Norman, J.M. (1999). Direct and indirect
estimation of leaf area index, fAPAR, and net primary production of
terrestrial ecosystems. Remote Sens. Environ. , 70, 29-51.
Gustafson, E.J. (2013). When relationships estimated in the past cannot
be used to predict the future: using mechanistic models to predict
landscape ecological dynamics in a changing world. Landscape
Ecol. , 28, 1429-1437.
Harris, A. & Dash, J. (2011). A new approach for estimating northern
peatland gross primary productivity using a satellite-sensor-derived
chlorophyll index. J. Geophys. Res. Biogeosci. , 116.
Heinsch, F.A., Reeves, M., Votava, P., Kang, S., Milesi, C., Zhao, M.et al. (2003). User’s guide GPP and NPP (MOD17A2/A3) products
NASA MODIS land algorithm. Version , 2, 666-684.
Helliker, B.R. & Richter, S.L. (2008). Subtropical to boreal
convergence of tree-leaf temperatures. Nature , 454, 511-514.
Huete, A.R., Restrepo-Coupe, N., Ratana, P., Didan, K., Saleska, S.R.,
Ichii, K. et al. (2008). Multiple site tower flux and remote
sensing comparisons of tropical forest dynamics in Monsoon Asia.Agr. Forest Meteorol. , 148, 748-760.
IPCC. (2013). Climate change 2013: The physical science basis. Cambridge
University Press, Cambridge.
Jackson, R.B., Randerson, J.T., Canadell, J.G., Anderson, R.G., Avissar,
R., Baldocchi, D.D. et al. (2008). Protecting climate with
forests. Environ. Res. Lett. , 3, 1748-9326.
Jiang, C. & Ryu, Y. (2016). Multi-scale evaluation of global gross
primary productivity and evapotranspiration products derived from
Breathing Earth System Simulator (BESS). Remote Sens. Environ. ,
186, 528-547.
Kosugi, Y., Takanashi, S., Ohkubo, S., Matsuo, N., Tani, M., Mitani, T.et al. (2008). CO2 exchange of a tropical
rainforest at Pasoh in Peninsular Malaysia. Agr. Forest
Meteorol. , 148, 439-452.
Law, B.E., Waring, R.H., Anthoni, P.M. & Aber, J.D. (2000).
Measurements of gross and net ecosystem productivity and water vapour
exchange of a Pinus ponderosa ecosystem, and an evaluation of two
generalized models. Glob. Chang Biol. , 6, 155-168.
Lawrence, D. & Vandecar, K. (2014). Effects of tropical deforestation
on climate and agriculture. Nat. Clim. Change , 5, 27-36.
Le Quere, C. et al. (2018). Global carbon budget 2018.Earth Syst. Data. , 10, 2141-2194.
Lee, X., Goulden, M.L., Hollinger, D.Y., Barr, A., Black, T.A., Bohrer,
G. et al. (2011). Observed increase in local cooling effect of
deforestation at higher latitudes. Nature , 479, 384-387.
Lin, H., Chen, Y., Zhang, H., Fu, P., Fan, Z. & Watling, J. (2017).
Stronger cooling effects of transpiration and leaf physical traits of
plants from a hot dry habitat than from a hot wet habitat. Funct.
Ecol. , 31, 2202-2211.
Lin, H., Tu, C., Fang, J., Gioli, B., Loubet, B., Gruening, C., et
al. 2020. Forests buffer thermal fluctuation better than non-forests.Agr. Forest Meteorol. , 288–289.
Loarie, S.R., Lobell, D.B., Asner, G.P., Mu, Q. & Field, C.B. (2011).
Direct impacts on local climate of sugar-cane expansion in Brazil.Nat. Clim. Change , 1, 105-109.
Ma, X., Huete, A., Yu, Q., Restrepo-Coupe, N., Beringer, J., Hutley,
L.B. et al. (2014). Parameterization of an ecosystem
light-use-efficiency model for predicting savanna GPP using MODIS EVI.Remote Sens. Environ. , 154, 253-271.
Michel, D., Philipona, R., Ruckstuhl, C., Vogt, R. & Vuilleumier, L.
(2008). Performance and uncertainty of CNR1 net radiometers during a
one-year field comparison. J. Atmos. Ocean. Tech. , 25, 442-451.
Monteith, J.L. (1972). Solar radiation and productivity in tropical
ecosystems. J. Appl Ecol. , 9, 747-766.
Pitman, A.J., Avila, F.B., Abramowitz, G., Wang, Y.P., Phipps, S.J. &
de Noblet-Ducoudré, N. (2011). Importance of background climate in
determining impact of land-cover change on regional climate. Nat.
Clim. Change , 1, 472-475.
Prince, S.D. (1991). A model of regional primary production for use with
coarse resolution satellite data. Int. J. Remote. Sens. , 12,
1313-1330.
Reichstein, M., Falge, E., Baldocchi, D., Papale, D., Aubinet, M.,
Berbigier, P. et al. (2005). On the separation of net ecosystem
exchange into assimilation and ecosystem respiration: review and
improved algorithm. Glob. Chang. Biol. , 11, 1424-1439.
Rotenberg, E. & Yakir, D. (2010). Contribution of semi-arid forests to
the climate system. Science , 327, 451-454.
Running, S.W., Thornton, P.E., Nemani, R. & Glassy, J.M. (2000). Global
terrestrial gross and net primary productivity from the earth observing
system. Methods in ecosystem science. (Sala, O.E., Jackson, R.B.,
Mooney, H.A. and Howarth, R.W. editors.). Springer-Verlag, New York,
USA, pp. 44-57.
Running, S.W., Nemani, R.R., Heinsch, F.A., Maosheng Zhao, Reeves, M. &
Hashimoto, H. (2004). A continuous satellite-derived measure of global
terrestrial primary production. Bioscience , 54, 547-560.
Sims, D., Rahman, A., Cordova, V., Elmasri, B., Baldocchi, D., Bolstad,
P. et al. (2008). A new model of gross primary productivity for
North American ecosystems based solely on the enhanced vegetation index
and land surface temperature from MODIS. Remote Sens. Environ. ,
112, 1633-1646.
Sims, D.A., Rahman, A.F., Cordova, V.D., El-Masri, B.Z., Baldocchi,
D.D., Flanagan, L.B. et al. (2006). On the use of MODIS EVI to
assess gross primary productivity of North American ecosystems. J.
Geophys. Res. Atmos. , 111, 1-16.
Sjöström, M., Zhao, M., Archibald, S., Arneth, A., Cappelaere, B., Falk,
U. et al. (2013). Evaluation of MODIS gross primary productivity
for Africa using eddy covariance data. Remote Sens. Environ. ,
131, 275-286.
Tang, X., Li, H., Huang, N., Li, X., Xu, X., Ding, Z. et al.(2015). A comprehensive assessment of MODIS-derived GPP for forest
ecosystems using the site-level FLUXNET database. Environ. Earth.
Sci. , 74, 5907-5918.
Turner, D.P., Urbanski, S., Bremer, D., Wofsy, S.C., Meyers, T., Gower,
S.T. et al. (2003). A cross-biome comparison of daily light use
efficiency for gross primary production. Glob. Chang. Biol. , 9,
383-395.
Tuzet, A., Castell, J.F., Perrier, A. & Zurfluh, O. (1997). Flux
heterogeneity and evapotranspiration partitioning in a sparse canopy:
the fallow savanna. J. Hydrol. , 188-189, 482-493.
Verma, M., Friedl, M.A., Richardson, A.D., Kiely, G., Cescatti, A., Law,
B.E. et al. (2014). Remote sensing of annual terrestrial gross
primary productivity from MODIS: an assessment using the FLUXNET La
Thuile data set. Biogeosciences , 11, 2185-2200.
Wonsick, M.M. & Pinker, R.T. (2014). The radiative environment of the
Tibetan Plateau. Internat. J. Climatol., 34(7), 2153-2162.
Wu, C., Munger, J.W., Niu, Z. & Kuang, D. (2010). Comparison of
multiple models for estimating gross primary production using MODIS and
eddy covariance data in Harvard Forest. Remote Sens. Environ. ,
114, 2925-2939.
Xiao, J., Zhuang, Q., Law, B.E., Chen, J., Baldocchi, D.D., Cook, D.R.et al. (2010). A continuous measure of gross primary production
for the conterminous United States derived from MODIS and AmeriFlux
data. Remote Sens. Environ. , 114, 576-591.
Xiao, X., Zhang, Q., Hollinger, D., Aber, J. & III, B.M. (2005).
Modeling gross primary production of an evergreen needleleaf forest
using MODIS and climate data. Ecol. Appl. , 15, 954-969.
Xin, Q., Broich, M., Suyker, A.E., Yu, L. & Gong, P. (2015).
Multi-scale evaluation of light use efficiency in MODIS gross primary
productivity for croplands in the Midwestern United States. Agr.
Forest Meteorol. , 201, 111-119.
Yanagi, S.N.M. & Costa, M.H. (2011). Simulations of tropical rainforest
albedo: is canopy wetness important? Annals of the Brazilian
Academy of Sciences , 83, 1171-1180.
Zhang, Y., Xiao, X., Jin, C., Dong, J., Zhou, S., Wagle, P. et
al. (2016). Consistency between sun-induced chlorophyll fluorescence
and gross primary production of vegetation in North America.Remote Sens. Environ. , 183, 154-169.
Zhang, Y. & Zhao, W. (2014). Effects of variability in land surface
characteristics on the summer radiation budget across desert-oasis
region in Northwestern China. Theor. Appl. Climatol. , 119,
771-780.
Zhou, L., Dickinson, R.E., Tian, Y., Vose, R.S. & Dai, Y. (2007).
Impact of vegetation removal and soil aridation on diurnal temperature
range in a semiarid region: Application to the Sahel. Proc. Nat.
Acad. Sci. USA. , 104, 17937-17942.