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Abstract. In this paper, we consider an optimal control problem governed by linear parabolic differential equations
with memory. Under the assumption that the corresponding linear parabolic differential equation without memory term
is approximately controllable, it is shown that the set of approximate controls is nonempty. The problem is first viewed
as a constrained optimal control problem, and then it is approximated by an unconstrained problem with a suitable
penalty function. The optimal pair of the constrained problem is obtained as the limit of the optimal pair sequence of the
unconstrained problem. The result is proved by using the theory of strongly continuous semigroups and the Banach fixed
point theorem. The approximation theorems, which guarantee the convergence of the numerical scheme to the optimal pair
sequence, are also proved. Finally, we also present a numerical example to validate our main theoretical results.
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1. Introduction. Consider the following linear parabolic differential equation with memory and
distributed control in abstract form

∂y

∂t
+Ay(t) =

∫ t

0

B(t, s)y(s)ds+Gu(t), t ∈ [0, T ],(1.1)

y(0) = y0 ∈ X,

where X denotes a real Hilbert space, y is a state variable, u represents a control variable, A is a self-
adjoint, positive definite linear operator in X with dense domain D(A) ⊂ X, B(t, s) is also a linear and
unbounded operator with D(A) ⊂ D(B(t, s)) ⊂ X for 0 ≤ s ≤ t ≤ T and G is a bounded linear operator
from the control space L2(0, T ;U) to L2(0, T ;X).

In applications that we have in mind, A represents a second-order linear self-adjoint elliptic partial
differential operator defined on bounded domain Ω in Rd of the form

A = −
d∑

i,j=1

∂

∂xj

(
aij(x)

∂

∂xi

)
+ a0(x)I(1.2)

with homogeneous Dirichlet boundary condition, where the matrix (aij(x)) is symmetric and positive
definite, a0 ≥ 0 on Ω̄. Here, B(t, s) is a general second-order partial differential operator of the form

B(t, s) = −
d∑

i,j=1

∂

∂xj

(
bi,j(t, s;x)

∂

∂xi

)
+

d∑
j=1

bj(t, s;x)
∂

∂xj
+ b0(t, s;x)I,(1.3)

and G = I. For the abstract form (1.1), we choose here X = L2(Ω), D(A) = H2(Ω) ∩ H1
0 (Ω) and

D(B) = H2(Ω) and throughout the article, we assume that the coefficients bi,j , bj ,b0, are smooth. Our
subsequent analysis includes Gu as uχω, where ω is a nonempty subdomain of Ω and χω is a characteristic
function which takes value 1 on ω and zero elsewhere.

Parabolic integro-differential equations of the type (1.1) occur in many applications such as heat
conduction in materials with memory, compression of poroviscoelastic media, nuclear reactor dynamics,
etc. (see, Cushman et al. [5], Dagan [6], Renardy et al. [28]).
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For control problems of the heat equation with memory, that is, when A = −∆ and B(t, s) =
−a(t − s)∆u(s) in (1.1), where a(·) is a completely monotone convolution kernel, Barbu et al. [1] have
discussed approximate controllability using Carleman estimates, see also [20] and [35]. Later on, Pan-
dolfi [25] has considered Dirichlet boundary controllability of heat equation with memory in one space
dimension by employing Riesz systems. Subsequently, Fu et al. [7] have established controllability and
observability results for a heat equation with hyperbolic memory kernel under general geometric condi-
tions and using Carleman estimates. Further, Pandolfi [24] has employed a cosine operator approach to
discussing the exact controllability results for the Dirichlet boundary control of the Gurtin-Pipkin model,
which displays a hyperbolic behaviour. On second-order integro-differential equations, Kim [13, 14] has
established reachability results using continuation arguments and multiplier techniques combined with
compactness property. Wang et al. [33] have proved some sufficient conditions for the controllability of
parabolic integro-differential systems in a Banach space. A result in the direction of approximate con-
trollability of integro-differential equations (IDE) using Carleman estimates and continuation argument
has been proved in [21] and using spectral analysis in [31] and [34]. However, Chaves-Silva et al. [2]
established null controllability results for parabolic equations with memory terms by means of duality
arguments and Carleman estimates. Loreti et al. [23] have analyzed reachability problems for a class
of integro-differential equations using Hilbert uniqueness results. Kumar et al. [16] discussed controlla-
bility of mixed Volterra–Fredholm type integro-differential third-order dispersion equation by using the
theory of semigroups and the Banach fixed point theorem. However, several negative results like lack of
controllability of such systems are discussed in [9], [10] and [11].

Numerical solution by means of finite element methods has been investigated by several authors when
u is a given function and G = I. In [32], Thomée et al. have considered the backward Euler method and
obtained related error estimates for non-smooth data. Pani et al. [26] have used energy arguments and the
duality technique to get error estimates for time-dependent parabolic integro-differential equations with
smooth and non-smooth initial conditions. Lasiecka [17, 18] have considered optimal control problems
for linear parabolic equations, which are approximated by a semidiscrete finite element method or Ritz-
Galerkin scheme and then the convergence of optimal controls are derived. Moreover, Shen et al. [30]
have developed the finite element and backward Euler scheme for space and time approximation of a
constrained optimal control problem governed by a parabolic integro-differential equation. Further, in
[29] Shen et al. have discussed mathematical formulation and optimality conditions for a quadratic
optimal control problem for a quasi-linear integral differential equation and a prior error estimates are
also established.

In the present article, an attempt has been made to discuss the approximate controllability of a
distributed control problem for a general class of partial integro-differential equations of parabolic type
(1.1), under the assumption that the corresponding parabolic equation without the memory term is ap-
proximately controllable. Firstly, the control problem is viewed as an optimal control problem, and using
operator theoretic form, an optimal pair of the solution is derived, which, in turn, provides proof for the
approximate controllability. The present proof is constructive in its approach and avoids using Carleman
estimates and continuation of argument etc. Finally, some approximate theorems are established, and one
numerical experiment using the finite element method are conducted to confirm our theoretical findings.

In order to motivate our main results, we first define the operator B̃ as

(B̃y)(t) =

∫ t

0

B(t, τ)y(τ)dτ.

Since A generates a C0-semigroup {S(t)}t≥0 of bounded linear operators on X, then for a given
u(t) ∈ U and y0 ∈ X, the mild solution for the system (1.1) is given by

(1.4) y(t) = S(t)y0 +

∫ t

0

S(t− τ)B̃y(τ) dτ +

∫ t

0

S(t− τ)Gu(τ) dτ

(see, Pazy [27]). This correspondence which assigns a unique y ∈ L2(0, T ;X) to a given u(t) ∈ U , will be
denoted by a solution operator, say W i.e. Wu(t) = y(t).
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The system (1.1) is said to be approximately controllable if for given functions y0, ŷ ∈ X and a
δ > 0, there exists a control u(t) ∈ U such that the corresponding solution y of system (1.1) also satisfies
∥y(T )− ŷ∥X ≤ δ.

In view of (1.4), for such control u, we arrive at

(1.5) ŷ = S(T )y0 +

∫ T

0

S(T − τ)B̃y(τ) dτ +

∫ T

0

S(T − τ)Gu(τ)dτ,

where ŷ = y(T ).

Setting an operator L as

(1.6) Lu =

∫ T

0

S(T − τ)u(τ)dτ,

such that D(L) =
{
u ∈ L2(0, T ;U) : Lu exists in X

}
. Since u ∈ L2(0, T ;U) or u ∈ C([0, T ];U) implies

Lu ∈ C(X) and hence, we have that D(L) is dense in L2(0, T ;U). Moreover, L is a closed opera-
tor, see Lasiecka et al. [19] (chapter 0, below equation 0.32). Its adjoint L∗, defined by (Lu, y)X =
(u, L∗y)L2(0,T ;U) is the closed operator defined by

(L∗y)(t) = S(T − t)y, 0 ≤ t ≤ T, y ∈ D(L∗),

where D(L∗) = {y ∈ X : L∗y ∈ L2(0, T ;U)}. If G∗ is the adjoint operator of the operator G, then it
follows that

(G∗L∗y)(t) = G∗S(T − t)y, t ∈ [0, T ] and y ∈ X.

Thus, the equation (1.5) can be written equivalently as an operator equation

(1.7) ẑ = LB̃y + LGu,

where ẑ = ŷ − S(T )y0. Define for δ > 0, the set Uδ ⊂ L2(0, T ;U) of admissible controls of (1.1) by

Uδ =
{
u ∈ L2(0, T ;U) : ∥LB̃y + LGu− ẑ∥X ≤ δ

}
.

It is a closed, convex and bounded (possibly empty) subset of Y. Setting Z = L2(0, T ;X) and
Y = L2(0, T ;U).

Definition 1.1. Let y0, ŷ ∈ X and T > 0. We say the problem (1.1) is approximately controllable if
for δ > 0, there exists u ∈ Y such that Uδ ̸= ∅.

Now, our main problem is to prove Uδ ̸= ∅ and then to determine u∗δ ∈ Uδ such that

(1.8) J(u∗δ) = inf
u∈Uδ

J(u)

where J(u) = 1
2∥u∥

2
Y .

Definition 1.2. For a given δ > 0, let u∗δ ∈ Uδ be a solution of the problem (1.8) with y∗δ ∈ X as
the corresponding mild solution of the system (1.1). Then the pair (u∗δ , y

∗
δ ) is called optimal pair of the

constrained optimal control problem (1.8).

Our main thrust is to establish an existence of an optimal pair (u∗δ , y
∗
δ ) of the constrained optimal

control problem (1.8) and thereafter, present a numerical scheme for approximating the optimal pair.
Under the assumption B ≡ 0, in section 2, we first show that the set Uδ of admissible controls is
nonempty. Then the optimal pair (u∗δ , y

∗
δ ) is obtained as a limit of the sequence of an optimal pair

(u∗ϵ , y
∗
ϵ ), where u

∗
ϵ minimizes the unconstrained functional Jϵ(u) over the whole space Y defined by

(1.9) Jϵ(u) = J(u) +
1

2ϵ

∥∥∥Lu+ LB̃Wu− ẑ
∥∥∥2
X
,
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whereW is an operator which assigns to each control u∗ϵ the solution y∗ϵ of (1.1). We shall refer to (u∗ϵ , y
∗
ϵ )

as the optimal pair corresponding to the unconstrained problem.
The plan of this paper is as follows. In Section 2, it is shown that the set of admissible control

Uδ is nonempty under the assumption that the corresponding system with B ≡ 0 is approximately
controllable. The optimal pair (u∗δ , y

∗
δ ) of the constrained problem (1.8) is obtained as a limit of the

optimal pair sequence {(u∗ϵ , y∗ϵ )}, where u∗ϵ minimizes the unconstrained functional Jϵ(u) defined by (1.9).
Approximation theorems that guarantee the convergence of the numerical scheme to the optimal pair are
proved in Section 3. In Section 4, we discuss a technique for the computation of optimal pair {(un, yn)}
through the finite-dimensional approximation scheme and demonstrate one numerical experiment to show
the existence of the optimal control and the applicability of our results.

2. Existence of optimal control and convergence to the control problem. In this section,
we first show that the set Uδ of admissible controls is nonempty. Here, we first make the following
assumptions for the problem (1.1):
(A1) The set {S(t)}t≥0 of C0-semigroup of bounded linear operators on X, generated by (−A) is

uniformly bounded, that is, there exists β > 0 such that ∥S(t)∥X ≤ β, for all t ∈ [0, T ].
(A2) The operator B(t, τ) is dominated by A together with certain derivatives with respect to t and τ ,

that is, ∥A−1B(t, τ)φ∥ ≤ α∥φ∥ ∀ φ ∈ D(B(t, τ)), 0 ≤ τ ≤ t ≤ T.
(A3) The system (1.1) with B ≡ 0 is approximately controllable.
(A4) The operator G : L2(0, T ;U) → L2(0, T ;X) is a bounded linear operator.

The condition (A2) is not restrictive as it shows the dominance property of the main operator A, see
Thomée and Zhang [32]. The assumption (A3) is on the approximate controllability of the corresponding
linear parabolic problem.

The following lemma is related to the assumption (A3).

Lemma 2.1. The system (1.1) with B ≡ 0 is approximately controllable on [0, T ] if and only if one
of the following statement holds:
(i) Range(LG) = X.
(ii) Kernel(G∗L∗) = {0}.
(iii) For all z ∈ X, there holds for δ ∈ (0, 1)

LGuδ = z − δ
(
δI + LGG∗L∗

)−1

z,

where uδ := G∗L∗
(
δI + LG G∗L∗

)−1

z.

(iv) lim
δ→0+

δ
(
δI + LG G∗L∗

)−1

z = 0.

For a proof, we refer to Curtain et al. [3, 4] and Leiva et al. [22]. As a consequence, it is observed
that

lim
δ→0+

LGuδ = z,

and the error eδz due to this approximation is given by

eδz = δ
(
δI + LGG∗L∗

)−1

z,

which tends to zero as δ → 0.
For approximate controllability of the problem (1.1), we rewrite its controllability equation as

(2.1) uδ := G∗L∗
(
δI + LGG∗L∗

)−1

(ẑ − LB̃y),

where z̃ = y(T )− S(T )y0.
Now for a fixed z ∈ Z, consider the following linear parabolic integro-differential system which is
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indexed by z

∂yz
∂t

+Ayz =

∫ t

0

B(t, τ)z(τ)dτ +Guz, t ∈ [0, T ],(2.2)

yz(0) = y0 ∈ X.

The mild solution yz ∈ Z of the above system is given by

yz(t) = S(t)y0 +

∫ t

0

S(t− τ)B̃z(τ) dτ +

∫ t

0

S(t− τ)Guz(τ)dτ,(2.3)

and hence,

ỹz ≡ yz(T )− S(T )y0 =

∫ T

0

S(T − τ)B̃z(τ) dτ +

∫ T

0

S(T − τ)Guz(τ) dτ.(2.4)

In operator theoretic form, (2.4) reduces to the operator equation

LGuz = ŷz − LB̃z,(2.5)

for each fixed z.
Now under the assumption (A3), the system (1.1) with B ≡ 0 is approximately controllable, and

hence, Lemma 2.1 implies that (δI +G∗L∗LG) is boundedly invertible. For approximate controllability
of (2.2), we observe that for a given state ẑ = ŷ − S(T )y0 ∈ X, and for δ > 0, a control uδ,z solves

uδ,z = G∗L∗(δI + LG G∗L∗)−1
[
ẑ − LB̃z

]
.(2.6)

To keep the notation simple and wherever there is no confusion, we write uδ,z simply by uz.

Denote the operator Mz := G∗L∗(δI+LGG∗L∗)−1
[
ẑ − LB̃z

]
and consider for δ ∈ (0, 1], the family

of operators Rδ : Z → Z which assigns a solution yz of (1.1) (given by (2.3)), corresponding to z ∈ Z,
that is,

Rδz(t) = S(t)y0 +

∫ t

0

S(t− τ)
(
B̃z(τ) + LGMz(τ)

)
dτ.(2.7)

Now, define the operator K : L2(0, T ;X) → L2(0, T ;D(A)) by

(2.8) (Ky)(t) =

∫ t

0

S(t− τ)y(τ)dτ

which is linear and continuous. Rewriting equation (2.7) in operator form as

(2.9) Rδz(t) = S(t)y0 +KB̃z(t) +KGMz(t).

First of all, we need to prove that for each fixed δ ∈ (0, 1], the operator Rδ has fixed point, say, zδ.
The following lemmas deal with some properties of K and L.

Lemma 2.2. Let the assumptions (A1) and (A2) be satisfied and let the operators L : L2(0, T ;U) → X
and K : L2(0, T ;X) → L2(0, T ;D(A)) be defined by (1.6) and (2.8), respectively. Then, the following
estimates hold

∥(KB̃y)(t)∥X ≤ C

∫ t

0

∥y(s)∥Xds,

and

∥LB̃y∥X ≤ C

∫ T

0

∥y(s)∥Xds.



6 A. KUMAR, A.K. PANI AND M.C. JOSHI

Proof. From the definition of K and B̃, we rewrite using semigroup property as

(KB̃y)(t) =

∫ t

0

S(t− τ)

∫ τ

0

B(τ, s)y(s)dsdτ

= −
∫ t

0

d

dτ
S(t− τ)

∫ τ

0

A−1B(τ, s)y(s)dsdτ.

After integration by parts, we arrive at

(KB̃y)(t) =

∫ t

0

A−1B(t, s)y(s)ds−
∫ t

0

S(t− τ)

∫ τ

0

A−1Bτ (τ, s)y(s)dsdτ

−
∫ t

0

S(t− τ)A−1Bτ (τ, τ)y(τ)dτ.

We note that

∥(KB̃y)(t)∥X ≤
∫ t

0

∥A−1B(t, s)y(s)∥ds+
∫ t

0

∥S(t− τ)∥
∫ τ

0

∥A−1Bτ (τ, s)y(s)∥dsdτ

+

∫ t

0

∥S(t− τ)∥ ∥A−1Bτ (τ, τ)y(τ)∥dτ,

and hence,

∥(KB̃y)(t)∥X ≤ α

∫ t

0

∥y(s)∥Xds+ α∥A−1∥(1 + β)

∫ t

0

∥y(τ)∥Xdτ + αβ

∫ t

0

∥y(τ)∥Xdτ

≤ α(1 + β)(1 + ∥A−1∥)
∫ t

0

∥y(τ)∥Xdτ.

Thus, we now arrive at

∥(KB̃y)(t)∥X ≤ C

∫ t

0

∥y(τ)∥Xdτ,

where C is a generic constant, which depends on α, β and ∥A−1∥. Similarly, a use of definition of L and
B̃ yields

∥LB̃y∥X ≤ C

∫ T

0

∥y(τ)∥Xdτ.

This completes the proof of the lemma. □

On the lines of Lemma 2.2, we have the following result.

Lemma 2.3. Under the assumptions (A1), (A2) and (A4), the following estimate holds∥∥∥(KLGMy
)
(t)

∥∥∥
X

≤ C1

(
∥ẑ∥+ C

∫ t

0

∥y(τ)∥Xdτ
)
,

where C1 depends on T, β, ∥LG∥, ∥G∗L∗∥ and ∥(δI + LGG∗L∗)−1∥.
A variation of the Banach contraction mapping principle will help in the proof of the following

theorem, which provides the approximate controllability of the system (1.1).

Theorem 2.4. Under the assumption (A1)− (A4), the operator Rn
δ is a contraction on the space Z

for some positive integer n. Moreover, for any arbitrary z0 ∈ X, the sequence of iterates {zδ,k}, defined
by

(2.10) zδ,k+1 = Rn
δ zδ,k, k = 0, 1, 2, . . .

with zδ,0 = y0 converges to y∗δ , which is a mild solution of the system (1.1). Further, uδ,k = Mzδ,k is
such that uδ,k converges to u∗δ = My∗δ , and the system (1.1) is approximately controllable.
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Proof. Let z1, z2 ∈ Z. Then, a use of (2.9) yields

(Rδz1 −Rδz2)(t) = KB̃(z1(t)− z2(t)) +KGM(z1(t)− z2(t)).

Apply Lemma 2.2 and 2.3 and obtain

∥(Rδz1 −Rδz2)(t)∥X ≤ C

∫ t

0

∥z1(τ)− z2(τ)∥Xdτ,

where C depends on β, α, T, ∥LG∥, ∥G∗L∗∥ and ∥(δI + LGG∗L∗)−1∥. Hence,

∥Rδz1 −Rδz2∥Z ≤ CT√
2
∥z1 − z2∥Z .

Proceeding inductively, we obtain a constant γn = (2CT )n√
2n(3·5···2n−1)

, such that

∥Rn
δ z1 −Rn

δ z2∥Z ≤ γn∥z1 − z2∥Z .

Choose n large enough (independent of T and C) such that γn < 1, and hence, Rn
δ is a contraction.

Therefore, by Banach contraction mapping theorem, Rn
δ has a unique fixed point, say, y∗δ , which is the

limit of the sequence defined by (2.10). This y∗δ is also the unique fixed point of the operator Rδ, for fixed
δ ∈ (0, 1].

In order to show Mzδ,k → My∗δ , set uδ,k = Mzδ,k, where zδ,k is the mild solution of the system (2.2)
with control uδ,k. Then, we obtain∥∥∥(Mzδ,k −My∗δ

)∥∥∥
Z
≤ CT∥G∗L∗(ϵI + LGG∗L∗)−1∥ ∥zδ,k − y∗δ∥Z .

Since for each fixed δ ∈ (0, 1], the sequence zδ,k → y∗δ in Z. This implies that Mzδ,k → My∗δ = u∗δ . As y∗δ
is the mild solution of the system (1.1) with control u∗δ , as zδ,k → y∗δ , it follows that Rδzδ,k → Rδy

∗
δ = y∗δ .

Using the definition of Rδ and with similar arguments as earlier, it follows that

Rδzδ,k(t) = S(t)y0 +

∫ t

0

S(t− τ)B̃zδ,k(τ) dτ +

∫ t

0

S(t− τ)Guδ,k(τ) dτ.

As k → ∞, we obtain

y∗δ (t) = S(t)y0 +

∫ t

0

S(t− τ)B̃y∗δ (τ) dτ +

∫ t

0

S(t− τ)Gu∗δ(τ) dτ,

and y∗δ is the mild solution of the system (1.1), corresponding to control u∗δ given by

u∗δ = My∗δ(2.11)

= G∗L∗
(
δI + LGG∗L∗

)−1 [
ẑ − LB̃y∗δ

]
.(2.12)

It remains to show that the problem (1.1) is approximately controllable. To this end, we observe that

LGu∗δ = LGG∗L∗
(
δI + LGG∗L∗

)−1 [
ẑ − LB̃y∗δ

]
=

(
(δI + LGG∗L∗)− δI

) (
δI + LGG∗L∗

)−1 [
ẑ − LB̃y∗δ

]
= [ẑ − LB̃y∗δ ]− δ

(
δI + LGG∗L∗

)−1 [
ẑ − LB̃y∗δ

]
.(2.13)

Since ∥ẑ − LB̃y∗δ∥ is bounded, a use of Lemma 2.1 (iv) yields

lim
δ→0+

∥∥∥∥−δ (δI + LGG∗L∗
)−1 [

ẑ − LB̃y∗δ

]∥∥∥∥ = 0,



8 A. KUMAR, A.K. PANI AND M.C. JOSHI

and hence,

lim
δ→0+

∥LGu∗δ + LB̃y∗δ − ẑ∥ = 0,

that is, for given any given δ1 > 0, there exists a δ0 > 0 such that for 0 < δ ≤ δ0

∥LGu∗δ + LB̃y∗δ − ẑ∥ < δ1.

Hence, the system (1.1) is approximately controllable. This completes the rest of the proof. □

Remark 2.5. Note that Uδ ̸= ∅. Further, the error of the approximation in this case is given by

eδz
∗
δ = δ

(
δI + LGG∗L∗

)−1 [
ẑ − LB̃y∗δ

]
.

Remark 2.6. Under assumption (A1)-(A4), Theorem 2.4 implies that the system (1.1) is controllable
without any inequality constraint on T .

Thus, we have Uδ ̸= ∅. The pair (u∗δ , y
∗
δ ) so obtained need not be an optimal pair satisfying (1.8),

and hence, the problem (1.8) remains unanswered.
We now change our strategy and examine the process of obtaining the optimal pair of the constrained

problem through a sequence of optimal pairs of the unconstrained problems, as indicated in Section 1.
For this purpose, we first define a sequence of functionals {Jϵ} with ϵ > 0 as

Jϵ(u) =
1

2
J(u) +

1

2ϵ
P (u), u ∈ Y,(2.14)

where penalty function P (u) is of the form

P (u) =
∥∥∥LGu+ LB̃Wu− ẑ

∥∥∥2
X
, u ∈ Y.(2.15)

Now the problem under investigation is to seek u∗ϵ ∈ U such that

Jϵ(u
∗
ϵ ) = inf

u∈Y
Jϵ(u).(2.16)

As in [8], roughly speaking, the approximate controllability can be viewed as the limit of a sequence
of optimal control problems (2.16). We now make further assumption that

(A5) The solution operator W : U → Z is completely continuous.

Remark 2.7. One of the sufficient condition for W to be completely continuous is that the semigroup
{S(t)} is compact.

Denote by E the operator Eu = LGu+LB̃Wu, where the operators L, B̃ andW are as defined before.
Then, the functional Jϵ defined through (2.14) can be written as

Jϵ(u) =
1

2
∥u∥2Y +

1

2ϵ
∥Eu− ẑ∥2X .(2.17)

Note that the operator E is a sum of continuous linear operator L and a completely continuous
operator W , and hence, it is a weakly continuous operator.

Theorem 2.8. Under assumptions (A1)-(A5), the unconstrained optimal control problem (2.16) has
an optimal pair (u∗ϵ , y

∗
ϵ ) such that u∗ϵ ∈ U minimizes Jϵ(u) and y

∗
ϵ solves (1.1) corresponding to the control

u∗ϵ .

Proof. We first prove the weakly lower semicontinuity of the functional Jϵ. Let unϵ ⇀ u∗ϵ in Y , then, it
follows that

lim inf
n→∞

Jϵ(u
n
ϵ ≥ lim inf

n→∞

1

2
∥unϵ ∥2Y + lim inf

n→∞

1

2ϵ
∥Eunϵ − ẑ∥2X .
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Observe that

∥Eunϵ − ẑ∥2X = ∥LGunϵ ∥2X + ∥LB̃Wunϵ − ẑ∥2X + 2
(
Lunϵ , LB̃Wunϵ − ẑ

)
X
,

and hence,

lim inf
n→∞

∥Eunϵ − ẑ∥2X ≥ lim inf
n→∞

∥LGunϵ ∥2X + lim inf
n→∞

∥LB̃Wunϵ − ẑ∥2X

+2 lim inf
n→∞

(
LGunϵ , LB̃Wunϵ − ẑ

)
X
.

From Lemma 2.2, we arrive at

∥LB̃ (Wunϵ −Wu∗ϵ ) ∥X ≤ C

∫ T

0

∥(Wunϵ −Wu∗ϵ )∥Xds

≤ CT 1/2∥Wunϵ −Wu∗ϵ∥Z .

Since unϵ ⇀ u∗ϵ in Y , andW is completely continuous, this implies thatWunϵ →Wu∗ϵ in Z and hence,
LB̃Wunϵ − ẑ → LB̃Wu∗ϵ − ẑ in X. Using the fact that L is weakly continuous and W is completely

continuous, we obtain LGunϵ ⇀ LGu∗ϵ , LB̃Wunϵ − ẑ → LB̃Wu∗ϵ − ẑ and
(
LGunϵ , LB̃Wϵn − ẑ

)
→(

LGu∗ϵ , LB̃Wu∗ϵ − ẑ
)
and along with the fact that the norm is weakly lower semicontinuous functional,

we find that

lim inf
n→∞

Jϵ(u
n
ϵ ) ≥

1

2
∥u∗ϵ∥2Y +

1

2ϵ
∥Eu∗ϵ − ẑ∥2X .

This proves the weakly lower semi-continuity of Jϵ. Let {unϵ } be a minimizing sequence for the
functional Jϵ, that is, infu∈Y Jϵ(u) = limn→∞ Jϵ(u

n
ϵ ). Since Jϵ is coercive, the sequence {unϵ } is bounded

in Y . Then, there exists a subsequence which is also denoted by {unϵ } such that unϵ ⇀ u∗ϵ weakly in Y .
Since the functional (2.17) is weakly lower semicontinuous in Y , we arrive at

inf
u∈Y

Jϵ(u) = lim
n→∞

Jϵ(u
n
ϵ ) = lim inf

n→∞
Jϵ(u

n
ϵ ) ≥ Jϵ(u

∗
ϵ ).

Therefore, we obtain
Jϵ(u

∗
ϵ ) = inf

u∈Y
Jϵ(u).

As ynϵ =Wunϵ and unϵ ⇀ u∗ϵ , the complete continuity of W implies ynϵ → y∗ϵ , where y
∗
ϵ =Wu∗ϵ . Thus,

(u∗ϵ , y
∗
ϵ ) is the optimal pair for the unconstrained optimal control problem (2.16) and this completes the

proof of the theorem. □
In our subsequent analysis, we need the following properties of the sequence of minimizers {u∗ϵ}.
Lemma 2.9. Let ϵ > 0 be arbitrary and let uϵ ∈ Y be a minimizer of Jϵ(u) in Y , where Jϵ(u) as

defined by (2.14). For ϵ′ < ϵ, the followings holds:
(i) Jϵ(uϵ) ≤ Jϵ′(uϵ′).
(ii) P (uϵ) ≥ P (uϵ′).
(iii) J(uϵ) ≤ J(uϵ′).

(iv) J(uϵ) ≤ Jϵ(uϵ) ≤ J(u∗) +
δ20
2ϵ .

Proof. As uϵ minimizes Jϵ, it follows that

Jϵ(uϵ) = J(uϵ) +
1

2ϵ
P (uϵ) ≤ J(uϵ′) +

1

2ϵ
P (uϵ′) ≤ J(uϵ′) +

1

2ϵ′
P (uϵ′) = Jϵ′(uϵ′).

This proves (i). For (ii), let uϵ and uϵ′ be the minimizers of Jϵ and Jϵ′ , respectively, then, we arrive at

Jϵ(uϵ) = J(uϵ) +
1

2ϵ
P (uϵ) ≤ J(uϵ′) +

1

2ϵ
P (uϵ′)
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and

Jϵ′(uϵ′) = J(uϵ′) +
1

2ϵ′
P (uϵ′) ≤ J(uϵ) +

1

2ϵ′
P (uϵ).

On adding above inequalities, we get
P (uϵ) ≥ P (uϵ′).

For (iii), note that

Jϵ(uϵ) = J(uϵ) +
1

2ϵ
P (uϵ) ≤ J(uϵ′) +

1

2ϵ
P (uϵ′).

Hence, using (ii) it follows that

J(uϵ)− J(uϵ′) ≤
1

2ϵ
(P (uϵ′)− P (uϵ)) ≤ 0

and
J(uϵ) ≤ J(uϵ′).

For (iv), again we observe that

J(uϵ) ≤ Jϵ(uϵ) = J(uϵ) +
1

2ϵ
P (uϵ) ≤ J(u∗) +

1

2ϵ
P (u∗) ≤ J(u∗) +

δ20
2ϵ
.

This completes the rest of the proof. □

We are now in a position to state the main theorem of this article.

Theorem 2.10. Assume that for a fixed δ > 0, Uδ ̸= ∅ and assumptions (A1)-(A4) hold. Let (u∗ϵ , y
∗
ϵ )

be an optimal pair of the unconstrained problem (2.16). As ϵ → 0, there exists a subsequence of (u∗ϵ , y
∗
ϵ )

converges to (u∗δ , y
∗
δ ), where (u∗δ , y

∗
δ ) is an optimal pair of the constrained optimal control problem (1.8).

Furthermore, if Uδ is a singleton then the entire sequence (u∗ϵ , y
∗
ϵ ) converges to (u∗δ , y

∗
δ ).

Proof. For a fixed δ > 0, Uδ ̸= ∅; the existence of the optimal pair (u∗ϵ , y
∗
ϵ ) to the unconstrained problem

(2.16) follows from the Theorem 2.8. Let u∗ϵ′ ∈ Uδ. From Lemma 2.9, we have

Jϵ(u
∗
ϵ ) ≤ Jϵ′(u

∗
ϵ′) for ϵ

′ < ϵ.

Thus, {Jϵ(u∗ϵ )} is a monotone decreasing sequence which is bounded below and hence it converges.
Similarly, {J(u∗ϵ )} is also a convergent sequence. Now 1

ϵP (u
∗
ϵ ), being the difference of two convergent

sequence, also converges, which in turn, implies that P (u∗ϵ ) → 0 as ϵ→ 0. Hence,

lim
ϵ→0

∥Eu∗ϵ − ẑ∥X = 0.

Since {u∗ϵ} is a uniformly bounded sequence in Y , it has a subsequence, again denoted by {u∗ϵ} such
that u∗ϵ ⇀ u∗δ in Y. Weak continuity of E implies that Eu∗ϵ ⇀ Eu∗δ . Hence Eu∗δ = ẑ and u∗δ ∈ Uδ. By the
weak lower semicontinuity of the norm functional and Lemma 2.9, we arrive at

∥u∗δ∥Y ≤ lim inf
ϵ→0

∥u∗ϵ∥Y ≤ lim sup
ϵ→0

∥u∗ϵ∥Y ≤ ∥u∗δ∥Y ,

and hence,
lim
ϵ→0

∥u∗ϵ∥Y = ∥u∗δ∥Y .

This along with the weak convergence of u∗ϵ to u∗δ , implies that

u∗ϵ → u∗δ as ϵ→ 0.

Again from Lemma 2.9 and weak lower semicontinuity of the norm functional, we obtain the inequality

J(u∗δ) ≤ lim inf
ϵ→0

J(u∗ϵ ) ≤ J(ũ), ũ ∈ Uδ.
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This, in turn, implies that
J(u∗δ) ≤ J(ũ) ∀ ũ ∈ Uδ.

Therefore, (u∗δ , y
∗
δ ) is the optimal pair for the constrained optimal problem (1.8). It is also clear that

if Uδ is a singleton then the entire sequence u∗ϵ converges to u∗δ in Y.
Next, we show the convergence of y∗ϵ to y∗δ in Z. From (1.4) and Lemma 2.2, we obtain

∥y∗ϵ (t)− y∗δ (t)∥X ≤ C

∫ t

0

∥y∗ϵ (τ)− y∗δ (τ)∥Xdτ + β

∫ t

0

∥u∗ϵ (τ)− u∗δ(τ)∥Xdτ

≤ C

∫ t

0

∥y∗ϵ (τ)− y∗δ (τ)∥Xdτ + βT 1/2∥u∗ϵ − u∗δ∥Y .

Using Gronwall’s lemma, we arrive that

∥y∗ϵ (t)− y∗δ (t)∥X ≤ βT 1/2∥u∗ϵ − u∗δ∥Y eCT ,

and hence,

∥y∗ϵ − y∗δ∥Z ≤ βTeCT ∥u∗ϵ − u∗δ∥Y .(2.18)

Since u∗ϵ → u∗δ in Y , from (2.18), we obtain y∗ϵ → y∗δ in Z as ϵ → 0. This completes the rest of the
proof. □

3. Approximation theorems. In our analysis, we are interested in the computation of the optimal
control pair for the unconstrained problem. We first begin by establishing some properties of the operator
arising from the derivative of the functional Jϵ, which is defined as follows:

Jϵ(u) =
1

2
∥u∥2Y +

1

2ϵ
∥Eu− ẑ∥2X ,(3.1)

where ẑ is a fixed element in X. We first recall the unconstrained optimal control problem

Jϵ(u) = inf
v∈Y

Jϵ(v).(3.2)

Lemma 3.1. The critical point of the functional Jϵ is given by the solution of the operator equation

u+
1

ϵ
K (Eu− ẑ) = 0(3.3)

where K = (LG+ LB̃W )∗, Eu = (LG+ LB̃W )u and y =Wu.

Proof. We note that

Jϵ(u+ hv)− Jϵ(u) =
1

2
⟨u+ hv, u+ hv⟩

+
1

2ϵ

(
(LG+ LB̃W )(u+ hv)− ẑ, (LG+ LB̃W )(u+ hv)− ẑ

)
−1

2
(u, u)− 1

2ϵ

(
(LG+ LB̃W )(u)− ẑ, (LG+ LB̃W )(u)− ẑ

)
= h (u, v) +

h2

2
(v, v) +

h

ϵ

(
LGu+ LB̃Wu− ẑ, (LG+ LB̃W )(v)

)
+
h2

2ϵ

(
(LG+ LB̃W )(v), (LG+ LB̃W )(v)

)
.

Then, J
′

ϵ(u) is given by

J
′

ϵ(u)v = lim
h→0

Jϵ(u+ hv)− Jϵ(u)

h

= (u, v) +
1

ϵ

(
LGu+ LB̃Wu− ẑ, (LG+ LB̃W )(v)

)
= (u, v) +

1

ϵ

(
(LG+ LB̃W )∗(LG+ LB̃W )u− ẑ, v

)
,
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and hence,

J
′

ϵ(u) = u+
1

ϵ
(LG+ LB̃W )∗(LG+ LB̃W )u− ẑ).

If u is a critical point of Jϵ, then it follows that

u+
1

ϵ
K(LGu+ LB̃Wu− ẑ) = 0,

where K = (LG+ LB̃W )∗. This concludes the proof. □
Note that, in the literature, the operator equation (3.3) is known as the Hammerstein equation (see,

Joshi et al. [12]) Also, note that the operator K is bounded linear operator. We first assume that the
critical point of Jϵ is the unique minimizer of Jϵ. Then the minimizing problem (3.2) is equivalent to the
following solvability problem in the space Y :

u+
1

ϵ
KEu = ŵ,(3.4)

where ŵ = 1
ϵKẑ. We now first begin approximating the main problem in the following way. Consider a

family {Xm} of finite dimensional subspaces of X such that

X1 ⊂ X2 ⊂ . . . ⊂ Xm . . . ⊂ X with

∞⋃
m=1

Xm = X.

Let {ϕi}∞i=1 be a basis forX. The approximating scheme for the space Z = L2(0, T ;X) is then defined
in a natural way by the family of subspaces Zm = L2(0, T ;Xm). Then the projection Pm : X → Xm is
given by

Pm[y(t)] =

m∑
i=1

αiϕi, t ∈ [0, T ],

where Xm = span{ϕ1, ϕ2, . . . , ϕm}. Similarly, let Um be the finite dimensional spaces of U and {ψi}∞i=1

be a basis for U such that Um = span{ψ1, ψ2, . . . , ψm} and naturally the approximating scheme for the
space Y = L2(0, T ;U) is given by Ym = L2(0, T ;Um) which induces a projection P̃m : Y → Ym given by

(P̃mu)(t) = PmGu(t).

The projections Pm and P̃m generate the approximating operators Km and Em defined by Km = P̃mK
and Emu = PmEu. Then, the approximated minimization problem is stated as: Find um ∈ Ym such that

Jϵ,m(um) = inf
u∈Ym

[
Jϵ,m(u) =

1

2
∥P̃mu∥2Ym

+
1

2ϵ
∥PmEP̃mu− Pmẑ∥2Xm

]
.(3.5)

As in the case of problem (2.16), one can show that the problem (3.5) has a solution um ∈ Ym, and
hence, its critical point satisfying the operator equation in the approximating space Ym as

um +
1

ϵ
Km (Emum − Pmẑ) = 0.(3.6)

Let um =
∑m

i=1 βiψi be the solution of (3.5) and ym =
∑m

i=1 αiϕi be the corresponding solution of
the state equation. Then for each m, we shall refer to (um, ym) as approximating optimal pair of (3.5) in
(Ym, Zm).

Following theorem shows that the solution for the problem (3.6) is uniformly bounded in Ym and the
approximating pair (u∗m, y

∗
m) converges to (u∗, y∗), where (u∗, y∗) is an optimal pair of the constrained

problem (1.8).

Theorem 3.2. Let Uδ ̸= ∅ and u∗m be the solution to the problem (3.5). Then {u∗m} is uniformly
bounded in Ym. If in addition, Jϵ possesses a unique minimizer in Y which is also the only critical point
of Jϵ, then (3.5) has an optimal pair (u∗m, y

∗
m) which converges to (u∗, y∗) in Y ×Z, where (u∗, y∗) is an

optimal pair of the constrained problem (1.8).
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Proof. Existence of the optimal pair (u∗m, y
∗
m) to the optimal control problem (3.5) follows from Theorem

2.8. Let u∗ ∈ Uδ, then from the definition of Uδ, we have ∥Eu∗ − ẑ∥ ≤ δ. Define u∗m = P̃mu
∗. Then

1

2
∥u∗m∥2 ≤ Jϵ,m(u∗m) =

1

2
∥P̃mu

∗∥2 + 1

2ϵ
∥PmEu∗m − Pmẑ∥2

≤ 1

2
∥P̃mu

∗∥2 + 1

2ϵ
∥Pm∥2∥Eu∗m − ẑ∥2

≤ 1

2
∥P̃m∥2 ∥u∗∥2 + 1

ϵ
∥Pm∥2

(
∥Eu∗m − Eu∗∥2 + ∥Eu∗ − ẑ∥2

)
.

Since u∗m = P̃mu
∗ → u∗ and E is weakly continuous, we have Eu∗m ⇀ Eu∗. Hence, both the term on

right hand side is bounded. Therefore {u∗m} is uniformly bounded.
Since {u∗m} is uniformly bounded, it has a subsequence, still denoted by u∗m, which converges weakly

to u∗ in Y . Then from the weak lower semicontinuity of the norm functional and Lemma 2.9, we arrive
at

∥u∗∥ ≤ lim inf
m→∞

∥u∗m∥ ≤ lim sup
m→∞

∥u∗m∥ ≤ ∥u∗∥.

This implies

lim
m→∞

∥u∗m∥ = ∥u∗∥.

Together with the fact that u∗m ⇀ u∗ in Y , we obtain

u∗m → u∗ in Y, as m→ ∞.

As y∗m = Wu∗m and u∗m → u∗, then continuity of the solution operator W implies that y∗m → y∗ =
Wu∗. This now completes the rest of the theorem. □

In the next step, we discretize in the direction of t. This leads to finite dimensional subspaces Zk
m of

each fixed Zm which satisfy the following property

Z1
m ⊂ Z2

m ⊂ . . . Zk
m ⊂ . . . ⊂ Zm with

∞⋃
k=1

Zk
m = Zm.

Denoting the orthogonal projection Qk
m from Zm to Zk

m which introduced the operators Kk
m = Qk

mKm

and Ek
mu = Qk

mEmu. For a fixed m, we approximate the minimization problem (3.5) by the following
minimization problem in the finite dimensional subspace Y k

m of Ym.
Find ukm ∈ Y k

m such that

Φϵ(u
k
m) = inf

um∈Y k
m

[
Jk
ϵ,m(um) =

1

2
∥Qk

mum∥2Y k
m
+

1

2ϵ
∥Qk

mEmum − ẑm∥2Xm

]
.(3.7)

The unique minimizer of the problem (3.7) is given by the critical point of Φϵ, which is equivalent to
the following solvability problem in the space Y k

m.

ukm +
1

ϵ
Kk

m

(
Ek
mu

k
m − Pmẑ

)
= 0.(3.8)

Let ukm =
∑m

i=1 β
k
i ψi be the solution of the minimization problem (3.7) and let ykm =

∑m
i=1 α

k
i ϕ, where

αk
i = αi(k∆t) and βk

i = βi(k∆t), 1 ≤ k ≤ N,N = T/∆t. For each m, we shall refer to (ukm, y
k
m) as

approximating optimal pair of the problem (3.7) in (Y k
m, Z

k
m).

On the lines of Theorem 3.2, we have the following theorem giving the convergence of the approxi-
mation optimal pair (ukm, y

k
m) as k → ∞ with m fixed.

Theorem 3.3. Let the assumptions (A1) - (A5) be satisfied and {ukm} be the solution of the problem
(3.8). Then the approximating optimal pair (ukm, y

k
m) converges to (u∗m, y

∗
m) in (Ym, Zm).
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4. Application. Let Ω be a bounded domain in Rd with smooth boundary ∂Ω. For fixed T > 0,
let Q = (0, T )× Ω and Σ = (0, T )× ∂Ω. Let A be a second order uniformly elliptic differential operator
given by (1.2). Further, assume that the operator B(t, s) is an unbounded partial differential operator of
order β ≤ 2 given by (1.3). Set X = L2(Ω), V = H1

0 (Ω), D(A) = H2(Ω) ∩H1
0 (Ω) and D(B) = H2(Ω).

Then the weak formulation of the problem (1.1) is given by

(yt, ϕ) +A(y, ϕ) =

∫ t

0

B(t, s; y(s), ϕ)ds+ (Gu, ϕ) ∀ϕ ∈ V, t ∈ [0, T ](4.1)

y(0) = y0,

where A(·, ·) : H1
0 (Ω) × H1

0 (Ω) → R and B(t, s; ·, ·) : H1
0 (Ω) × H1

0 (Ω) → R are the continuous bilinear
forms corresponding the operators A and B(t, s) given respectively by (1.2) and (1.3).

From Lumer–Phillips theorem (see, Pazy [27]), (−A) generates a C0–semigroup. For y0 ∈ D(A), the
unique mild solution for the system (1.1) is given by

y(t) = S(t)y0 +

∫ t

0

S(t− s)B̃y(s)ds+

∫ t

0

S(t− s)Gu(s)ds,(4.2)

where S(t) = e−tA generates a C0-semigroup.
For final time t = T , we obtain

y(T ) = S(T )y0 + LB̃y + LGu(4.3)

where the operator B̃ and L are defined as before in Section 1. Since the linear operator A is self-adjoint
and positive definite, one can show that A−1 exists and hence ∥A−1B(t, s)φ∥ ≤ α∥φ∥ for φ ∈ D(B) and
0 ≤ s ≤ t ≤ T , is satisfied.

Since all the hypotheses (A1-A4) are satisfied, an appeal to Theorem 2.4 ensures the approximate
controllability of (4.1). Also, set U = L2(Ω) and Y = L2(0, T, U), the solution operator W : U → Y is
compact and an application to Theorem 2.8 and 2.10 shows the existence of optimal control.

Let {Jh} be a family of regular triangulation of Ω with 0 < h < 1. For K ∈ Jh, set hK = diam(K)
and h = max(hK). Let

Xh =
{
vh ∈ C0(Ω̄) : vh|K ∈ P1(K),K ∈ Jh, vh = 0 on ∂Ω

}
,

where P1(K) is the space of linear polynomials on K. Let Uh be the finite dimensional subspace of U con-
sisting constant elements defined on the triangulation Jh. Then, the semidiscrete Galerkin approximation
of (4.1) is defined by

(yh,t, χ) +A(yh, χ) =

∫ t

0

B(t, s; yh(s), χ)ds+ (Guh, χ) ∀χ ∈ Xh, t ∈ [0, T ](4.4)

yh(0) = y0h,

where, y0h is the approximation of y0 in Xh.
Let Ph : X → Xh is the L2–projection and let {Sh(t)} denote the finite element analogue of S(t),

defined by the semidiscrete equation (4.4) with u = 0 and B = 0. This operator on Xh may be defined
as the semigroup generated by the discrete analogue Ah : Xh → Xh of A, where

(Ahv, χ) = A(v, χ) ∀ v, χ ∈ Vh.

Define the discrete analogue Bh = Bh(t, s) : Xh → Xh of B = B(t, s) by

(Bh(t, s)v, χ) = B(t, s; v, χ) ∀ v, χ ∈ Xh, 0 ≤ s ≤ t ≤ T.

Now we write the semidiscrete problem (4.4) in an abstract form

yh,t +Ahyh =

∫ t

0

Bh(t, s)yh(s)ds+ PhGuh ≡ B̃hyh + PhGuh, for t ∈ [0, T ],(4.5)

yh(0) = Phy0.
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where uh(t) ∈ Uh and yh(t) ∈ Xh. Using Duhamel’s principle, the solution yh of the semidiscrete problem
(4.5) may be written as

yh(t) = Sh(t)Phy0 +

∫ t

0

Sh(t− s)B̃hyh(s)ds+

∫ t

0

Sh(t− s)PhGuh(s)ds,(4.6)

where the discrete counter part of S(t) = e−tA is defined by Sh(t) = e−tAh .
At time t = T , equation (4.6) becomes

yh(T ) = Sh(T )Phy0 + LhB̃hyh + LhPhGuh.(4.7)

where Lh is defined by

Lhvh =

∫ T

0

Sh(T − s)vh(s)ds.(4.8)

When m is replaced by h in equation (3.6), then the critical point u∗h of the functional Jϵ,h given by
(3.5), is the solution of the following equation

uh +
1

ϵ
Kh (Ehuh − Phẑ) = 0,

Here, Ph is the L2-projection from the space X to Xh. Since all the conditions of Theorem 3.2 are
satisfied, there exists an optimal pair (u∗h, y

∗
h) of (3.5) which converges to the optimal optimal pair of the

constrained problem (1.8).

Full Discretization. In order to discretize in the direction of t, we partition the t-axis in a uniform
partition (not necessary) by 0 = t0 < t1 · · · < tn < · · · < tN with tN = T and set In = (tn−1, tn]. Let
WN denotes the set of scalar functions on [0, T ] which reduces to polynomial of degree q − 1 on each
In. Let ZN

h = WN ⊗Xh and Y N
h = WN ⊗ Uh. In fact, ZN

h consists of functions defined on [0, T ] whose
restrictions to In is a polynomial of degree ≤ q − 1 with its coefficients in Xh, that is, ZN

h consists of
piecewise constant on each In. Similarly, Y N

h is defined for q = 1.
Let ∆t be the step size in time, tn = n∆t, n = 1, 2, · · · , N , where N = T/∆t. Let ϕn = ϕ(tn). For

ϕ ∈ C[0, T ], set

∂̄tϕ(tn) =
ϕ(tn)− ϕ(tn−1)

∆t

Backward Euler Scheme: For yNh ∈ Zn
h and uNh ∈ Un

h with yNh |In denoted by ynh ∈ Xh and uNh |In = unh ∈ Uh

for n = 1, 2, . . . , N and replacing the integral term by the left hand rectangular rule as∫ tn

0

φ(s)ds ≈ ∆t

n−1∑
j=0

φ(tj).(4.9)

Then the backward Euler scheme is given by

(
∂̄ty

n
h , χ

)
+A(ynh , χ) = ∆t

n−1∑
j=0

Bh(tn, tj ; y
j
h, χ) + (Gunh, χ), χ ∈ Xh,(4.10)

y0h = y0h in Ω,

Let ynh =
∑Nh

i=1 α
n
i φi and unh =

∑Mh

i=1 β
n
i ψi, where {φ1, φ2, . . . , φNh

} and {ψ1, ψ2, . . . , ψMh
} are

basis of Xh and Uh, respectively. Note that the space Y N
h can be identify as the space of matrices M

of dimension Mh × (N + 1). Therefore, the minimization problem (3.7) is equivalent to the following
minimization problem in M:

Find β∗ ∈ M such that

Φϵ(β
∗) = inf

β∈M

(
Φϵ(β) =

1

2
∥β∥2M +

1

2ϵ
∥Ek

mβ − ẑm∥Xh

)
(4.11)
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We shall use the following Matrix Optimization Algorithm (MOA) (for more details, see [15]) to get
β∗ ∈ M iteratively.
Step 1: Start with the initial guess β(i)(i = 0), and ϵ. Set G(i) = Φ

′

ϵ(β
(i)) and D(i) = −G(i).

Step 2: Set β(i+1) = β(i) + α(i)D(i), where α(i) minimizes

Φϵ(β
(i+1)) = Φϵ(β

(i) + α(i)D(i))

Step 3: If ∥β(i+1) − β(i)∥ ≤ ϵ1, then set β(i) = β(i+1) and go to Step (6) else go to Step (4).
Step 4: Compute G(i+1) = Φ

′

ϵ(β
(i+1)) and set

D(i+1) = −G(i+1) + ζ(i)D(i)

where ζ(i) =
⟨G(i+1),G(i+1)⟩
⟨G(i),G(i)⟩ , ⟨·, ·⟩ represents the inner product in M.

Step 5: Set i = i+ 1 and go to Step (2).
Step 6: Set β(i) = β(i+1) and ϵ = ϵ+ δ, δ > 0.
Step 7: If ∥β(i+1) − β(i)∥ ≤ ϵ2, then set β∗ = β(i) and stop. Else set i = i+ 1 and go to Step (2).

We note that corresponding to this minimizer β∗, yNh ∈ ZN
h with yNh |In = ynh ∈ Xh is computed

through the backward Euler scheme (4.10). From the algorithm, it is clear that the inner loop finds the
optimal control uNh for fixed values of N,h and ϵ and in the outer loop, we increment ϵ to find the optimal
control u∗ which is the optimal solution to the problem (1.8).

4.1. Numerical experiment. In this section, we present a numerical experiment to illustrate the
computation of the minimizer u∗ with the operator G = I, identity operator. We consider the following
one-dimensional initial-boundary value problem

∂y

∂t
=
∂2y

∂x2
+

∫ t

0

B(t, s)y(s)ds+ u(t, x), on (0, T )× (0, 1)

y(0, x) = y0(x) x ∈ (0, 1)(4.1)

y(t, 0) = 0 = y(1, t) t ∈ [0, T ]

Set T = 1, Ω = (0, 1) ⊂ R1 withB(t, s) = exp (−π2(t− s))I, y0(x) = sin(πx) and ŷ = exp(−π2) sin(πx).
Note that for the above problem, ŷ ∈ R(T, y0), set of reachable states, since y(t, x) = exp(−π2t) sin(πx) is
an exact solution of the system (4.1) corresponding to the control function u(t, x) = −t exp(−π2t) sin(πx)
with y(T, x) = exp(−π2) sin(πx).

Fig. 1. Comparison between y(T ) and ŷ.

Here, we choose ∆t, h and N = 1/∆t. Using MOA algorithm, we compute unh, n = 1, 2, . . . , N and
then plot the graph of numerical results for N = 40. In Fig. 1, we plot the graph of the approximated
state at time T = 1 and the given final state ŷ = exp(−π2) sin(πx) corresponding to the approximated
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optimal control u∗. Solution profile of the exact solution y(t, x) = exp(−π2t) sin(πx) corresponding to
the control function u(t, x) = −t exp(−π2t) sin(πx) is shown in Fig. 2. Fig. 3 shows the solution profile
of the optimal solution corresponding to the optimal control computed by using the MOA algorithm.

(a) (b)

Fig. 2. Profile of exact solution with the control function u(t, x) = −t exp(−π2t) sin(πx).

(a) (b)

Fig. 3. Profile of the approximate optimal solution with respect to the computed optimal control.

5. Conclusion. In this work, the approximate controllability of the parabolic integro-differential
equation is proved under a set of sufficient conditions. We note that such problems require a specific
approach as the kernel B(t, s) is unbounded. We develop this approach to obtain the optimal control u∗.
In this approach, we have shown that the set of admissible controls Uδ is nonempty, and the approximate
controllability is proved using the Banach fixed point theorem. We also proved approximation theorems,
which guaranteed the convergence of the numerical scheme to the optimal pair sequence and presented a
numerical example to validate our main theoretical results. Note that the system (1.1) is considered as a
more general linear integro-differential equations, and the approximate controllability results are proved
neither using multiplier techniques nor continuation arguments.
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