References
[1] Huang C, Wang Y, Li X, Ren L, Zhao J, Hu Y, et al. Clinical
features of patients infected with 2019 novel coronavirus in Wuhan,
China. Lancet 2020;395:497–506.
https://doi.org/10.1016/S0140-6736(20)30183-5.
[2] Ghinai I, McPherson TD, Hunter JC, Kirking HL, Christiansen D,
Joshi K, et al. First known person-to-person transmission of severe
acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in the USA. Lancet
(London, England) 2020;395:1137–44.
https://doi.org/10.1016/S0140-6736(20)30607-3.
[3] Organization WH. WHO Director-General’s opening remarks at the
media briefing on COVID-19-11 March 2020 2020.
[4] Search of: COVID-19 - List Results - ClinicalTrials.gov n.d.
https://clinicaltrials.gov/ct2/results?cond=COVID-19 (accessed February
15, 2021).
[5] Gautret P, Lagier J-C, Parola P, Hoang VT, Meddeb L, Mailhe M,
et al. Hydroxychloroquine and azithromycin as a treatment of COVID-19:
results of an open-label non-randomized clinical trial. Int J Antimicrob
Agents 2020;56:105949.
https://doi.org/10.1016/j.ijantimicag.2020.105949.
[6] Biot C, Daher W, Chavain N, Fandeur T, Khalife J, Dive D, et al.
Design and synthesis of hydroxyferroquine derivatives with antimalarial
and antiviral activities. J Med Chem 2006;49:2845–9.
[7] Mercuro NJ, Yen CF, Shim DJ, Maher TR, McCoy CM, Zimetbaum PJ,
et al. Risk of QT interval prolongation associated with use of
hydroxychloroquine with or without concomitant azithromycin among
hospitalized patients testing positive for coronavirus disease 2019
(COVID-19). JAMA Cardiol 2020;5:1036–41.
[8] Roden DM. Predicting drug-induced QT prolongation and torsades
de pointes. J Physiol 2016;594:2459–68.
https://doi.org/10.1113/JP270526.
[9] Naksuk N, Lazar S, Peeraphatdit T. Cardiac safety of off-label
COVID-19 drug therapy: a review and proposed monitoring protocol. Eur
Hear J Acute Cardiovasc Care 2020;9:215–21.
[10] Wu R, Wang L, Kuo H-CD, Shannar A, Peter R, Chou PJ, et al. An
Update on Current Therapeutic Drugs Treating COVID-19. Curr Pharmacol
Reports 2020;6:56–70. https://doi.org/10.1007/s40495-020-00216-7.
[11] Hayden FG, Shindo N. Influenza virus polymerase inhibitors in
clinical development. Curr Opin Infect Dis 2019;32.
[12] Vanderlinden E, Vrancken B, Van Houdt J, Rajwanshi VK, Gillemot
S, Andrei G, et al. Distinct effects of T-705 (favipiravir) and
ribavirin on influenza virus replication and viral RNA synthesis.
Antimicrob Agents Chemother 2016;60:6679–91.
[13] Wang M, Cao R, Zhang L, Yang X, Liu J, Xu M, et al. Remdesivir
and chloroquine effectively inhibit the recently emerged novel
coronavirus (2019-nCoV) in vitro. Cell Res 2020;30:269–71.
[14] Cai Q, Yang M, Liu D, Chen J, Shu D, Xia J, et al. Experimental
treatment with favipiravir for COVID-19: an open-label control study.
Engineering 2020;6:1192–8.
[15] Chen C, Huang J, Cheng Z, Wu J, Chen S, Zhang Y, et al.
Favipiravir versus arbidol for COVID-19: a randomized clinical trial.
MedRxiv 2020.
[16] Ghasemiyeh P, Borhani-Haghighi A, Karimzadeh I,
Mohammadi-Samani S, Vazin A, Safari A, et al. Major neurologic adverse
drug reactions, potential drug-drug interactions and pharmacokinetic
aspects of drugs used in covid-19 patients with stroke: A narrative
review. Ther Clin Risk Manag 2020;16:595.
[17] Borobia AM, Mora-Rillo M, Olivencia GR, Lago M, Arsuaga M, De
La Calle F, et al. High dose favipiravir: first experience in a patient
with Ebola. Clin Ther 2015;37:e15–6.
[18] Pilkington V, Pepperrell T, Hill A. A review of the safety of
favipiravir–a potential treatment in the COVID-19 pandemic? J Virus
Erad 2020;6:45–51.
[19] Saleh M, Gabriels J, Chang D, Soo Kim B, Mansoor A, Mahmood E,
et al. Effect of Chloroquine, Hydroxychloroquine, and Azithromycin on
the Corrected QT Interval in Patients With SARS-CoV-2 Infection. Circ
Arrhythm Electrophysiol 2020;13:e008662.
https://doi.org/10.1161/CIRCEP.120.008662.
[20] BURRELL ZLJ, MARTINEZ AC. Chloroquine and hydroxychloroquine in
the treatment of cardiac arrhythmias. N Engl J Med 1958;258:798–800.
https://doi.org/10.1056/NEJM195804172581608.
[21] Chorin E, Wadhwani L, Magnani S, Dai M, Shulman E,
Nadeau-Routhier C, et al. QT interval prolongation and torsade de
pointes in patients with COVID-19 treated with
hydroxychloroquine/azithromycin. Hear Rhythm 2020;17:1425–33.
https://doi.org/10.1016/j.hrthm.2020.05.014.
[22] Jankelson L, Karam G, Becker ML, Chinitz LA, Tsai M-C. QT
prolongation, torsades de pointes, and sudden death with short courses
of chloroquine or hydroxychloroquine as used in COVID-19: A systematic
review. Hear Rhythm 2020;17:1472–9.
https://doi.org/10.1016/j.hrthm.2020.05.008.
[23] Wilders R, Verkerk AO. Long QT Syndrome and Sinus Bradycardia-A
Mini Review. Front Cardiovasc Med 2018;5:106.
https://doi.org/10.3389/fcvm.2018.00106.
[24] Khan Q, Ismail M, Haider I. High prevalence of the risk factors
for QT interval prolongation and associated drug-drug interactions in
coronary care units. Postgrad Med 2018;130:660–5.
https://doi.org/10.1080/00325481.2018.1516106.
[25] Chen C-Y, Wang F-L, Lin C-C. Chronic hydroxychloroquine use
associated with QT prolongation and refractory ventricular arrhythmia.
Clin Toxicol (Phila) 2006;44:173–5.
https://doi.org/10.1080/15563650500514558.
[26] Kaur RJ, Charan J, Dutta S, Sharma P, Bhardwaj P, Sharma P, et
al. Favipiravir Use in COVID-19: Analysis of Suspected Adverse Drug
Events Reported in the WHO Database. Infect Drug Resist
2020;13:4427–38. https://doi.org/10.2147/IDR.S287934.
[27] Michaud V, Dow P, Al Rihani SB, Deodhar M, Arwood M, Cicali B,
et al. Risk Assessment of Drug-Induced Long QT Syndrome for Some
COVID-19 Repurposed Drugs. Clin Transl Sci 2021;14:20–8.
https://doi.org/10.1111/cts.12882.
[28] Chinello P, Petrosillo N, Pittalis S, Biava G, Ippolito G,
Nicastri E. QTc interval prolongation during favipiravir therapy in an
Ebolavirus-infected patient. PLoS Negl Trop Dis 2017;11:e0006034.
https://doi.org/10.1371/journal.pntd.0006034.
[29] Tsikouris JP, Peeters MJ, Cox CD, Meyerrose GE, Seifert CF.
Effects of three fluoroquinolones on QT analysis after standard
treatment courses. Ann Noninvasive Electrocardiol Off J Int Soc Holter
Noninvasive Electrocardiology, Inc 2006;11:52–6.
https://doi.org/10.1111/j.1542-474X.2006.00082.x.
[30] Noel GJ, Natarajan J, Chien S, Hunt TL, Goodman DB, Abels R.
Effects of three fluoroquinolones on QT interval in healthy adults after
single doses. Clin Pharmacol Ther 2003;73:292–303.
https://doi.org/10.1016/s0009-9236(03)00009-2.
[31] Strle F, Maraspin V. Is azithromycin treatment associated with
prolongation of the Q-Tc interval? Wien Klin Wochenschr 2002;114:396–9.
[32] Kezerashvili A, Khattak H, Barsky A, Nazari R, Fisher JD.
Azithromycin as a cause of QT-interval prolongation and torsade de
pointes in the absence of other known precipitating factors. J Interv
Card Electrophysiol an Int J Arrhythm Pacing 2007;18:243–6.
https://doi.org/10.1007/s10840-007-9124-y.
[33] Avedissian SN, Rhodes NJ, Ng TMH, Rao AP, Beringer PM. The
Potential for QT Interval Prolongation with Chronic Azithromycin Therapy
in Adult Cystic Fibrosis Patients. Pharmacotherapy 2019;39:718–23.
https://doi.org/10.1002/phar.2270.