Bibliography
1. Lindroos M, Kupari M, Heikkilä J, Tilvis R. Prevalence of aortic valve abnormalities in the elderly: an echocardiographic study of a random population sample. J Am Coll Cardiol. 1993; 21:1220-1225.
2. Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O’Brien KD. Characterization of the early lesion of ’degenerative’ valvular aortic stenosis. Histological and immunohistochemical studies.Circulation. 1994; 90:844-853.
3. Kaden JJ, Dempfle CE, Grobholz R, et al. Interleukin-1 beta promotes matrix metalloproteinase expression and cell proliferation in calcific aortic valve stenosis. Atherosclerosis. 2003; 170:205-211.
4. Yetkin E, Waltenberger J. Molecular and cellular mechanisms of aortic stenosis. Int J Cardiol. 2009;135:4-13.
5. Grim JC, Aguado BA, Vogt BJ, et al. Secreted Factors From Proinflammatory Macrophages Promote an Osteoblast-Like Phenotype in Valvular Interstitial Cells. Arterioscler Thromb Vasc Biol.2020;40:e296-e308.
6. Yu PJ, Skolnick A, Ferrari G, et al. Correlation between plasma osteopontin levels and aortic valve calcification: potential insights into the pathogenesis of aortic valve calcification and stenosis. J Thorac Cardiovasc Surg. 2009;138:196-199.
7. Cao H, Li Q, Li M, et al. Osteoprotegerin/RANK/RANKL axis and atrial remodeling in mitral valvular patients with atrial fibrillation. Int J Cardiol. 2013;166:702-708.
8. Tastet L, Tribouilloy C, Maréchaux S, et al. Staging Cardiac Damage in Patients With Asymptomatic Aortic Valve Stenosis. J Am Coll Cardiol. 2019;74:550-563.
9. Soto ME, Salas JL, Vargas-Barron J, et al. Pre- and post-surgical evaluation of the inflammatory response in patients with aortic stenosis treated with different types of prosthesis. BMC Cardiovasc Disord. 2017;17:100.
10. Schanen BC, Karakoti AS, Seal S, Drake DR, 3rd, Warren WL, Self WT. Exposure to titanium dioxide nanomaterials provokes inflammation of an in vitro human immune construct. ACS Nano.2009;3:2523-2532.
11. Gilmanov A, Stolarski H, Sotiropoulos F. Flow-Structure Interaction Simulations of the Aortic Heart Valve at Physiologic Conditions: The Role of Tissue Constitutive Model. J Biomech Eng.2018;140.
12. Persson M, Glaser N, Franco-Cereceda A, Nilsson J, Holzmann MJ, Sartipy U. Porcine versus Bovine Bioprosthetic Aortic Valves: Long-term Clinical Results. Ann Thorac Surg. 2020.
13. Du DT, McKean S, Kelman JA, et al. Early mortality after aortic valve replacement with mechanical prosthetic vs bioprosthetic valves among Medicare beneficiaries: a population-based cohort study.JAMA Intern Med. 2014;174:1788-1795.
14. Baumgartner HC, Hung JC-C, Bermejo J, et al. Recommendations on the echocardiographic assessment of aortic valve stenosis: a focused update from the European Association of Cardiovascular Imaging and the American Society of Echocardiography.Eur Heart J Cardiovasc Imaging. 2017;18:254-275.
15. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur Heart J. 2017;38:2739-2791.
16. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. J Am Soc Echocardiogr.2015;28:1-39.e14.
17. Zoghbi WA, Chambers JB, Dumesnil JG, et al. Recommendations for evaluation of prosthetic valves with echocardiography and doppler ultrasound: a report From the American Society of Echocardiography’s Guidelines and Standards Committee and the Task Force on Prosthetic Valves, developed in conjunction with the American College of Cardiology Cardiovascular Imaging Committee, Cardiac Imaging Committee of the American Heart Association, the European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography and the Canadian Society of Echocardiography, endorsed by the American College of Cardiology Foundation, American Heart Association, European Association of Echocardiography, a registered branch of the European Society of Cardiology, the Japanese Society of Echocardiography, and Canadian Society of Echocardiography. J Am Soc Echocardiogr.2009;22:975-1014; quiz 1082-1014.
18. Crowther JR. ELISA. Theory and practice. Methods Mol Biol. 1995;42:1-218.
19. Juárez Hernández A SnPrT. Nueva generación de bioprótesis del Instituto Nacional de Cardiología “Ignacio Chávez”. Arch Cardiol Mex. 2003;73:S73-S78.
20. Barone A, Benktander J, Teneberg S, Breimer ME. Characterization of acid and non-acid glycosphingolipids of porcine heart valve cusps as potential immune targets in biological heart valve grafts. Xenotransplantation. 2014;21:510-522.
21. Adamczyk T, Mizia-Stec K, Mizia M, et al. Biomarkers of calcification and atherosclerosis in patients with degenerative aortic stenosis in relation to concomitant coronary artery disease. Pol Arch Med Wewn. 2012;122:14-21.
22. Kassem KM, Ali M, Rhaleb NE. Interleukin 4: Its Role in Hypertension, Atherosclerosis, Valvular, and Nonvalvular Cardiovascular Diseases. J Cardiovasc Pharmacol Ther. 2020;25:7-14.
23. S. L. M. van Loon AIPMS, A. Driessen-Mol,, Bouten FPTBaCVC. The Immune Response in In Situ Tissue Engineering of Aortic Heart Valves. In: Aikawa E, ed. Calcific Aortic Valve Disease : IntechOpen; 2013.
24. Rodriguez-Hernandez A, Elena Soto M, Vargas-Barron J, et al. Immunologic Responses in Biological and Mechanical Valve Prostheses: Inflammation and Functionality Are Not Always Related. J Heart Valve Dis. 2017;26:334-343.
25. Lu F, Wu H, Bai Y, et al. Evidence of Osteogenic Regulation in Calcific Porcine Aortic Valves. Heart Surg Forum.2018;21:E375-e381.
26. Makarović S, Makarović Z, Bilić-Ćurčić I, et al. Serum Osteoprotegerin in Patients with Calcified Aortic Valve Stenosis in Relation to Heart Failure. Acta Clin Croat. 2017;56:733-741.
27. Lis GJ, Czubek U, Jasek-Gajda E, et al. Influence of osteoclasts and osteoprotegerin on the mode of calcific degeneration of aortic valves. Pol Arch Med Wewn. 2016;126:149-158.
28. Peltonen T, Taskinen P, Näpänkangas J, et al. Increase in tissue endothelin-1 and ETA receptor levels in human aortic valve stenosis. Eur Heart J. 2009;30:242-249.
29. Chester AH. Endothelin-1 and the aortic valve. Curr Vasc Pharmacol. 2005;3:353-357.
30. Majak P, Bjørnstad JL, Braathen B, et al. Endothelin-1 in the human myocardium and circulating plasma: evaluation before, during and after correction of aortic stenosis with aortic valve replacement.Cardiology. 2012;123:1-10.
31. Raffa GM, Jackson V, Liska J, et al. Endothelin-1 and brain natriuretic peptide plasma levels decrease after aortic surgery. J Heart Valve Dis. 2010;19:724-730.
32. Nadlonek N, Lee JH, Reece TB, et al. Interleukin-1 Beta induces an inflammatory phenotype in human aortic valve interstitial cells through nuclear factor kappa Beta. Ann Thorac Surg.2013;96:155-162.
33. Kloxin AM, Benton JA, Anseth KS. In situ elasticity modulation with dynamic substrates to direct cell phenotype.Biomaterials. 2010;31:1-8.
34. Pho M, Lee W, Watt DR, Laschinger C, Simmons CA, McCulloch CA. Cofilin is a marker of myofibroblast differentiation in cells from porcine aortic cardiac valves. Am J Physiol Heart Circ Physiol.2008;294:H1767-1778.
35. Walker GA, Masters KS, Shah DN, Anseth KS, Leinwand LA. Valvular myofibroblast activation by transforming growth factor-beta: implications for pathological extracellular matrix remodeling in heart valve disease. Circ Res. 2004;95:253-260.
36. Rattazzi M, Donato M, Bertacco E, et al. l-Arginine prevents inflammatory and pro-calcific differentiation of interstitial aortic valve cells. Atherosclerosis. 2020;298:27-35.