Bibliography
1. Lindroos M, Kupari M, Heikkilä J, Tilvis R. Prevalence of
aortic valve abnormalities in the elderly: an echocardiographic study of
a random population sample. J Am Coll Cardiol. 1993;
21:1220-1225.
2. Otto CM, Kuusisto J, Reichenbach DD, Gown AM, O’Brien KD.
Characterization of the early lesion of ’degenerative’ valvular aortic
stenosis. Histological and immunohistochemical studies.Circulation. 1994; 90:844-853.
3. Kaden JJ, Dempfle CE, Grobholz R, et al. Interleukin-1 beta
promotes matrix metalloproteinase expression and cell proliferation in
calcific aortic valve stenosis. Atherosclerosis. 2003;
170:205-211.
4. Yetkin E, Waltenberger J. Molecular and cellular mechanisms
of aortic stenosis. Int J Cardiol. 2009;135:4-13.
5. Grim JC, Aguado BA, Vogt BJ, et al. Secreted Factors From
Proinflammatory Macrophages Promote an Osteoblast-Like Phenotype in
Valvular Interstitial Cells. Arterioscler Thromb Vasc Biol.2020;40:e296-e308.
6. Yu PJ, Skolnick A, Ferrari G, et al. Correlation between
plasma osteopontin levels and aortic valve calcification: potential
insights into the pathogenesis of aortic valve calcification and
stenosis. J Thorac Cardiovasc Surg. 2009;138:196-199.
7. Cao H, Li Q, Li M, et al. Osteoprotegerin/RANK/RANKL axis
and atrial remodeling in mitral valvular patients with atrial
fibrillation. Int J Cardiol. 2013;166:702-708.
8. Tastet L, Tribouilloy C, Maréchaux S, et al. Staging Cardiac
Damage in Patients With Asymptomatic Aortic Valve Stenosis. J Am
Coll Cardiol. 2019;74:550-563.
9. Soto ME, Salas JL, Vargas-Barron J, et al. Pre- and
post-surgical evaluation of the inflammatory response in patients with
aortic stenosis treated with different types of prosthesis. BMC
Cardiovasc Disord. 2017;17:100.
10. Schanen BC, Karakoti AS, Seal S, Drake DR, 3rd, Warren WL,
Self WT. Exposure to titanium dioxide nanomaterials provokes
inflammation of an in vitro human immune construct. ACS Nano.2009;3:2523-2532.
11. Gilmanov A, Stolarski H, Sotiropoulos F. Flow-Structure
Interaction Simulations of the Aortic Heart Valve at Physiologic
Conditions: The Role of Tissue Constitutive Model. J Biomech Eng.2018;140.
12. Persson M, Glaser N, Franco-Cereceda A, Nilsson J, Holzmann
MJ, Sartipy U. Porcine versus Bovine Bioprosthetic Aortic Valves:
Long-term Clinical Results. Ann Thorac Surg. 2020.
13. Du DT, McKean S, Kelman JA, et al. Early mortality after
aortic valve replacement with mechanical prosthetic vs bioprosthetic
valves among Medicare beneficiaries: a population-based cohort study.JAMA Intern Med. 2014;174:1788-1795.
14. Baumgartner HC, Hung JC-C, Bermejo J, et al.
Recommendations on the echocardiographic assessment of aortic valve
stenosis: a focused update from the European Association of
Cardiovascular Imaging and the American Society of Echocardiography.Eur Heart J Cardiovasc Imaging. 2017;18:254-275.
15. Baumgartner H, Falk V, Bax JJ, et al. 2017 ESC/EACTS
Guidelines for the management of valvular heart disease. Eur Heart
J. 2017;38:2739-2791.
16. Lang RM, Badano LP, Mor-Avi V, et al. Recommendations for
cardiac chamber quantification by echocardiography in adults: an update
from the American Society of Echocardiography and the European
Association of Cardiovascular Imaging. J Am Soc Echocardiogr.2015;28:1-39.e14.
17. Zoghbi WA, Chambers JB, Dumesnil JG, et al. Recommendations
for evaluation of prosthetic valves with echocardiography and doppler
ultrasound: a report From the American Society of Echocardiography’s
Guidelines and Standards Committee and the Task Force on Prosthetic
Valves, developed in conjunction with the American College of Cardiology
Cardiovascular Imaging Committee, Cardiac Imaging Committee of the
American Heart Association, the European Association of
Echocardiography, a registered branch of the European Society of
Cardiology, the Japanese Society of Echocardiography and the Canadian
Society of Echocardiography, endorsed by the American College of
Cardiology Foundation, American Heart Association, European Association
of Echocardiography, a registered branch of the European Society of
Cardiology, the Japanese Society of Echocardiography, and Canadian
Society of Echocardiography. J Am Soc Echocardiogr.2009;22:975-1014; quiz 1082-1014.
18. Crowther JR. ELISA. Theory and practice. Methods Mol
Biol. 1995;42:1-218.
19. Juárez Hernández A SnPrT. Nueva generación de bioprótesis
del Instituto Nacional de Cardiología “Ignacio Chávez”. Arch
Cardiol Mex. 2003;73:S73-S78.
20. Barone A, Benktander J, Teneberg S, Breimer ME.
Characterization of acid and non-acid glycosphingolipids of porcine
heart valve cusps as potential immune targets in biological heart valve
grafts. Xenotransplantation. 2014;21:510-522.
21. Adamczyk T, Mizia-Stec K, Mizia M, et al. Biomarkers of
calcification and atherosclerosis in patients with degenerative aortic
stenosis in relation to concomitant coronary artery disease. Pol
Arch Med Wewn. 2012;122:14-21.
22. Kassem KM, Ali M, Rhaleb NE. Interleukin 4: Its Role in
Hypertension, Atherosclerosis, Valvular, and Nonvalvular Cardiovascular
Diseases. J Cardiovasc Pharmacol Ther. 2020;25:7-14.
23. S. L. M. van Loon AIPMS, A. Driessen-Mol,, Bouten FPTBaCVC.
The Immune Response in In Situ Tissue Engineering of Aortic Heart
Valves. In: Aikawa E, ed. Calcific Aortic Valve Disease :
IntechOpen; 2013.
24. Rodriguez-Hernandez A, Elena Soto M, Vargas-Barron J, et
al. Immunologic Responses in Biological and Mechanical Valve Prostheses:
Inflammation and Functionality Are Not Always Related. J Heart
Valve Dis. 2017;26:334-343.
25. Lu F, Wu H, Bai Y, et al. Evidence of Osteogenic Regulation
in Calcific Porcine Aortic Valves. Heart Surg Forum.2018;21:E375-e381.
26. Makarović S, Makarović Z, Bilić-Ćurčić I, et al. Serum
Osteoprotegerin in Patients with Calcified Aortic Valve Stenosis in
Relation to Heart Failure. Acta Clin Croat. 2017;56:733-741.
27. Lis GJ, Czubek U, Jasek-Gajda E, et al. Influence of
osteoclasts and osteoprotegerin on the mode of calcific degeneration of
aortic valves. Pol Arch Med Wewn. 2016;126:149-158.
28. Peltonen T, Taskinen P, Näpänkangas J, et al. Increase in
tissue endothelin-1 and ETA receptor levels in human aortic valve
stenosis. Eur Heart J. 2009;30:242-249.
29. Chester AH. Endothelin-1 and the aortic valve. Curr
Vasc Pharmacol. 2005;3:353-357.
30. Majak P, Bjørnstad JL, Braathen B, et al. Endothelin-1 in
the human myocardium and circulating plasma: evaluation before, during
and after correction of aortic stenosis with aortic valve replacement.Cardiology. 2012;123:1-10.
31. Raffa GM, Jackson V, Liska J, et al. Endothelin-1 and brain
natriuretic peptide plasma levels decrease after aortic surgery. J
Heart Valve Dis. 2010;19:724-730.
32. Nadlonek N, Lee JH, Reece TB, et al. Interleukin-1 Beta
induces an inflammatory phenotype in human aortic valve interstitial
cells through nuclear factor kappa Beta. Ann Thorac Surg.2013;96:155-162.
33. Kloxin AM, Benton JA, Anseth KS. In situ elasticity
modulation with dynamic substrates to direct cell phenotype.Biomaterials. 2010;31:1-8.
34. Pho M, Lee W, Watt DR, Laschinger C, Simmons CA, McCulloch
CA. Cofilin is a marker of myofibroblast differentiation in cells from
porcine aortic cardiac valves. Am J Physiol Heart Circ Physiol.2008;294:H1767-1778.
35. Walker GA, Masters KS, Shah DN, Anseth KS, Leinwand LA.
Valvular myofibroblast activation by transforming growth factor-beta:
implications for pathological extracellular matrix remodeling in heart
valve disease. Circ Res. 2004;95:253-260.
36. Rattazzi M, Donato M, Bertacco E, et al. l-Arginine
prevents inflammatory and pro-calcific differentiation of interstitial
aortic valve cells. Atherosclerosis. 2020;298:27-35.