REFERENCE
Afonso, C.L, Piccone, M.E., Zaffuto, K.M., Neilan, J., Kutish, G.F., Lu, Z., Balinsky, C. A, Gibb, T. R, Bean, T. J, Zsak, L., & Rock, D. L. (2004). African swine fever virus multigene family 360 and 530 genes affect host interferon response. Journal of Virology. 78:1858-64.
Afonso, C.L., Zsak, L., Carrillo, C., Borca, M.V., & Rock, D.L. (1998b). African swine fever virus NL gene is not required for virus virulence. J. Gen. Virol. 79 (Pt 10), 2543–2547.
Alcami, A., Angulo, A., Lopezotin, C., Munoz, M., Freije, J.M.P., Carrascosa, A.L., & Vinuela, E. (1992). Amino-acid-Sequence and structural-properties of Protein-P12, an African swine fever virus attachment protein. J. Virol. 66 (6), 3860–3868.
Alcami, A., Carrascosa, A.L., & Vinuela, E. (1989). Saturable binding sites mediate the entry of African swine fever virus into vero cells. Virology. 168, 393–398. [CrossRef]
Alejo, A., Matamoros, T., Guerra, M., & Andres, G. (2018). A proteomic atlas of the African swine fever virus particle. J. Virol. 92 (23).
Banjara, S., Caria, S., Dixon, L.K., Hinds, M.G., & Kvansakul, M. (2017). Structural insight into African swine fever virus A179L-mediated inhibition of apoptosis. J. Virol. 91 (6).
Bastos, A.D.S., Penrith, M.L., Cruciere, C., Edrich, J.L., Hutchings, G., Roger, F., Couacy- Hymann, E., & Thomson, G.R. (2003). Genotyping field strains of African swine fever virus by partial p72 gene characterisation. Arch. Virol. 148 (4), 693–706.
Boinas, F.S., Hutchings, G.H., Dixon, L.K., & Wilkinson, P.J. (2004). Characterization of pathogenic and non-pathogenic African swine fever virus isolates from Ornithodoros erraticus inhabiting pig premises in Portugal. J. Gen. Virol. 85, 2177–2187.
Borca, M.V., Carrillo, C., Zsak, L., Laegreid, W.W., Kutish. G.F., Neilan, J.G., Burrage, T.G., & Rock, D.L. (1998). 274 Deletion of a CD2-like gene, 8-DR, from African swine fever virus affects viral infection in domestic 275 swine. Journal of Virology. 72:2881-9.
Borca, M.V., O’Donnell, V., Holinka, L.G., Ramirez-Medina, E., Clark, B.A., Vuono, E.A., Berggren, K., Alfano, M., Carey, L.B., Richt, J.A., Risatti, G.R., & Gladue, D.P. (2018). The L83L ORF of African swine fever virus strain Georgia encodes for a nonessential gene that interacts with the host protein IL-1 beta. Virus Res. 249, 116–123.
Brun, A., Rivas, C., Esteban, M., Escribano, J.M., & Alonso, C. (1996). African swine fever virus gene A179L, a viral homologue of bcl- 2, protects cells from programmed cell death. Virology 225 (1), 227–230.
Correia, S., Ventura, S., & Parkhouse, R.M. (2013). Identification and utility of innate immune system evasion mechanisms of ASFV. Virus Res. 173 (1), 87–100.
Costard, S., Wieland, B., de Glanville W., Jori, F., Rowlands, R., Vosloo, W., Roger, F., Pfeiffer, D.U., & Dixon, L. K. (2009). African swine fever: how can global spread be prevented? Philosophical Transactions of the Royal Society B-Biological Sciences. 364:2683-96.
Cuesta-Geijo, M.A., Chiappi, M., Galindo, I., Barrado-Gil, L., Munoz-Moreno, R., Carrascosa, J.L., & Alonso, C. (2015). Cholesterol flux is required for endosomal progression of african swine fever virions during the initial establishment of infection. J. Virol. 90, 1534–1543. [CrossRef] [PubMed]
Cuesta-Geijo, M.A., Galindo, I., Hernaez, B., Quetglas, J.I., Dalmau-Mena, I., & Alonso, C. (2012) Endosomal maturation, Rab7 GTPase and phosphoinositides in African swine fever virus entry. PLoS ONE. 7, e48853. [CrossRef] [PubMed]
de Oliveira, V.L., Almeida, S.C.P., Soares, H.R., Crespo, A., Marshall-Clarke, S., & Parkhouse, R.M.E. (2011). A novel TLR3 inhibitor encoded by African swine fever virus (ASFV). Arch. Virol. 156 (4), 597–609.
Dixon, L.K., Ana, L.R., Netherton, C., & Linda K. (2016). Unravelling the armour of a killer: E 1 vasion of host defence’s by African swine fever virus Journal of Virology. doi:10.1128/JVI.02338-16
Dixon, L.K., Abrams, C.C., Chapman, D.G., & Zhang, F. (2008). African swine fever virus. In: Animal Viruses: Molecular Biology, pp. 457–521.
Dixon, L.K., Escribano, J.M., Martins, C., Rock, D.L., Salas, M.L., & Wilkinson, P.J. (2005). Asfarviridae. In: Fauquet, C.M., Mayo, M.A., Maniloff, J., Desselberger, U., Ball, L.A. (Eds.), Virus Taxonomy, VIIIth Report of the ICTV. Elsevier/Academic Press, London, pp. 135–143.
Dixon, L.K., Islam, M., Nash, R., & Reis, A.L. (2019). African swine fever virus evasion of host defences Virus Research 266 25–33 https://doi.org/10.1016/j.virusres.2019.04.002 journal homepage: www.elsevier.com/locate/virusres
Galindo, I., Hernaez, B., Diaz-Gil, G., Escribano, J.M., & Alonso, C. (2008). A 179L, a viral Bcl-2 homologue, targets the core Bcl-2 apoptotic machinery and its upstream BH3 activators with selective binding restrictions for Bid and Noxa. Virology 375 (2), 561–572.
Gallardo, C., Soler, A., Nieto, R., Sanchez, M.A., Martins, C., & Pelayo, V. (2015). Experimental Transmission of African Swine Fever (ASF) Low Virulent Isolate NH/P68 by Surviving Pigs. Transbound Emerg Dis 62(6), 612-622. doi:10.1111/tbed.12431.
Goatley, L.C., & Dixon, L.K. (2011). Processing and localization of the african swine fever virus CD2v transmembrane protein. J. Virol. 85 (7), 3294–3305.
Golding, J.P., Goatley, L., Goodbourn, S., Dixon, L.K., Taylor, G., & Netherton, C.L. (2016). Sensitivity of African swine fever virus to type I interferon is linked to genes within multigene families 360 and 505. Virology. 493:154-1.
Gomez-Puertas, P., Rodriguez, F., Oviedo, J.M., Brun, A., Alonso, C., & Escribano, J.M. (1998). The African swine fever virus proteins p54 and p30 are involved in two distinct steps of virus attachment and both contribute to the antibody-mediated protective immune response. Virology 243 (2), 461–471.
GomezPuertas, P., Rodriguez, F., Oviedo, J.M., RamiroIbanez, F., RuizGonzalvo, F., Alonso, C., & Escribano, J.M. (1996). Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J. Virol. 70 (8), 5689–5694.
Granja, A.G., Sabina, P., Salas, M.L., Fresno, M., & Revilla, Y. (2006). Regulation of inducible nitric oxide synthase expression by viral A238L-mediated inhibition of p65/RelA acetylation and p300 transactivation. Journal of Virology. 80:10487-96.
Granja, A.G., Nogal, M.L., Hurtado, C., del Aguila, C., Carrascosa, A.L., Salas, M.L., Fresno, M., & Revilla, Y. (2006). The viral protein A238L inhibits TNF-alpha expression through a CBP/p300 transcriptional coactivators pathway. J. Immunol. 176 (1), 451–462.
Granja, A.G., Nogal, M.L., Hurtado, C., Salas, J., Salas, M.L., Carrascosa, A.L., & Revilla, Y. (2004a). Modulation of p53 cellular function and cell death by African swine fever virus. J. Virol. 78 (13), 7165–7174.
Granja, A.G., Nogal, M.L., Hurtado, C., Vila, V., Carrascosa, A.L., Salas, M.L., Fresno, M., & Revilla, Y. (2004b). The viral protein A238L inhibits cyclooxygenase-2 expression through a nuclear factor of activated T cell-dependent transactivation pathway. J. Biol. Chem. 279 (51), 53736–53746.
Granja, A.G., Perkins, N.D., & Revilla, Y. (2008). A238L inhibits NF-ATc2, NF-kappa B, and c- Jun activation through a novel mechanism involving protein kinase C-theta-mediated up-regulation of the amino- terminal transactivation domain of p300. J. Immunol. 180 (4), 2429–2442.
Haig, D.M. (2001). Subversion and piracy: DNA viruses and immune evasion. Res. Vet. Sci.70 (3):205–219. [PubMed] [Google Scholar]
Hernaez, B., & Alonso, C. (2010). Dynamin- and clathrin-dependent endocytosis in African swine fever virus entry. J. Virol. 84 (4), 2100–2109.
Hernaez, B., Cabezas, M., Munoz-Moreno, R., Galindo, I., Cuesta-Geijo, M.A., & Alonso, C. (2013). A179L, a new viral Bcl2 homolog targeting beclin 1 autophagy related protein. Curr. Mol. Med. 13 (2), 305–316.
Hernaez, B., Guerra, M., Salas, M.L., & Andres, G. (2016). African swine fever virus undergoes outer envelope disruption, capsid disassembly and inner envelope fusion before core release from multivesicular endosomes. PLoS Pathog. 12 (4).
Hurtado, C., Granja, A.G., Bustos, M.J., Nogal, M.L., de Buitrago, G.G., de Yebenes, V.G., Salas, M. L., Revilla, Y., & Carrascosa, A. L. (2004). The C-type lectin homologue gene (EP153R) of African swine fever virus inhibits apoptosis both in virus infection and in heterologous expression. Virology. 326:160-70.
Inmaculada, G., & Alonso, C. (2017). African Swine Fever Virus: A Review. Viruses, 9, 103; doi:10.3390/v9050103 www.mdpi.com/journal/viruses
Iyer, L.A., Balaji, S., Koonin, E.V., & Aravind, L. (2006). Evolutionary genomics of nucleocytoplasmic large DNA viruses. Virus Research 117 (1), 156–184.
Janeway, C.A., & Medzhitov, R. (2002). Innate immune recognition. Annu. Rev. Immunol.20:197–216. [PubMed] [Google Scholar]
Kawai, T., & Akira, S. (2009). The roles of TLRs, RLRs and NLRs in pathogen recognition. Int. Immunol. 21 (4), 317–337.
Kay-Jackson, P.C., Goatley, L.C., Cox, L., Miskin, J.E., Parkhouse, R.M.E., Wienands, J., & Dixon, L.K. (2004). The CD2v protein of African swine fever virus interacts with the actin-binding adaptor protein SH3P7. J. Gen. Virol. 85, 119–130.
Kuznar, J., Salas, M.L., & Vinuela, E. (1980b). RNAs synthesized invitro by purified African swine fever virus. Archivos de Biologia y Medicina Experimentales 13 (4), 465.
Kvansakul, M., Caria, S., & Hinds, M.G. (2017). The Bcl-2 family in host-virus interactions. Viruses-Basel 9 (10).
Lang, K.S., Burow, A., & Kurrer, M. (2007). The role of the innate immune response in autoimmune disease. Journal Autoimmunity 29:206–12.
Leitao, A., Cartaxeiro, C., Coelho, R., Cruz, B., Parkhouse, R.M.E., Portugal, F.C., Vigario, J.D., & Martins, C.L.V. (2001). The non-haemadsorbing African swine fever virus isolate ASFV/NH/P68 provides a model for defining the protective anti- virus immune response. J. Gen. Virol. 82, 513–523.
McCullough, K.C., Basta, S., Knotig, S., Gerber, H., Schaffner, R., Kim, Y.B., & Saalmuller, A. (1999). Intermediate stages in monocyte-macrophage differentiation modulate phenotype and susceptibility to virus infection. Immunology 98 (2), 203–212.
Miskin, J.E., Abrams, C.C., & Dixon, L.K. (2000). African swine fever virus protein A238L interacts with the cellular phosphatase calcineurin via a binding domain similar to that of NFAT. J. Virol. 74 (20), 9412–9420.
Miskin, J.E., Abrams, C.C., Goatley, L.C., & Dixon, L.K. (1998). A viral mechanism for inhibition of the cellular phosphatase calcineurin. Science 281 (5376), 562–565.
Mogensen, T.H. (2009). Pathogen recognition and inflammatory signaling in innate immune defenses. Clin. Microbiol. Rev. 22 (2), 240–273 Table of Contents.
Monteagudo, P.L., Lacasta, A., Lopez, E., Bosch, L., Collado, J., Pina-Pedrero, S., Correa- Fiz, F., Accensi, F., Navas, M.J., Vidal, E., Bustos, M.J., Rodriguez, J.M., Gallei, A., Nikolin, V., Salas, M.L., & Rodriguez, F. (2017). BA71 Delta cd2: a new recombinant live attenuated african swine fever virus with cross-protective capabilities. J. Virol. 91 (21).
Mosser, D.M., & Edwards, J.P. (2008). Exploring the full spectrum of macrophage activation. Nat. Rev. Immunol. 8 (12), 958–969.
Munoz-Moreno, R., Cuesta-Geijo, M.A., Martinez-Romero, C., Barrado-Gil, L., Galindo, I,. Garcia-Sastre, A., & Alonso, C. (2016). Antiviral Role of IFITM Proteins in African Swine Fever Virus Infection. Plos One. 2016;11.
Neilan, J.G., Lu, Z., Kutish, G.F., Zsak, L., Burrage, T.G., Borca, M.V., Carrillo, C., & Rock, D.L. (1997a). A BIR motif containing gene of African swine fever virus, 4CL, is nonessential for growth in vitro and viral virulence. Virology 230 (2), 252–264.
Netherton, C.L., Simpson, J., Haller, O., Wileman, T.E., Takamatsu, H.H., Monaghan, P., & Taylor, G. (2009). Inhibition of a Large Double-Stranded DNA Virus by MxA Protein. Journal of Virology. 83:2310-20.
Nogal, M.L., de Buitrago, G.G., Rodriguez, C., Cubelos, B., Carrascosa, A.L., Salas, M.L., & Revilla, Y. (2001). African swine fever virus IAP homologue inhibits caspase activation and promotes cell survival in mammalian cells. J. Virol. 75 (6), 2535–2543.
O’Donnell, V., Holinka, L.G., Gladue, D.P., Sanford, B., Krug, P.W., Lu, X., Arzt, J., Reese, B., Carrillo, C., Risatti, Guillermo, R., & Borca, M.V. (2015). African Swine Fever Virus Georgia Isolate Harboring Deletions of MGF360 and MGF505 Genes Is Attenuated in Swine and Confers Protection against Challenge with Virulent Parental Virus. Journal of Virology. 89:6048-56.
Perez-Nunez, D., Garcia-Urdiales, E., Martinez-Bonet, M., Nogal, M.L., Barroso, S., Revilla, Y., & Madrid, R. (2015). CD2v interacts with adaptor protein AP-1 during african swine fever infection. PLoS One 10 (4).
Popescu, L., Gaudreault, N.N., Whitworth, M. K., Murgia, V. M., Nietfeld, C. J., Mileham, A., Samuel, M., Prather, S. R., & Rowland R.R. (2017). Genetically edited pigs lacking CD163 show no resistance following infection with the African Swine Fever Virus isolate, Georgia 2007/1. journal homepage: www.elsevier.com/locate/virusres DOI: 10.1016/j.virol.2016.11.012
Powell, P.P., Dixon, L.K., & Parkhouse, R.M.E. (1996). An I kappa B homolog encoded by African swine fever virus provides a novel mechanism for downregulation of proinflammatory cytokine responses in host macrophages. J. Virol. 70 (12), 8527–8533.
Redrejo-Rodriguez, M., & Salas, M.L. (2014). Repair of base damage and genome maintenance in the nucleo-cytoplasmic large DNA viruses. Virus Res. 179, 12–25.
Reis, A.L., Abrams, C.C., Goatley, L.C., Netherton, C., Chapman, D.G., Sanchez-Cordon, P., & Dixon, L.K. (2016). Deletion of African swine fever virus interferon inhibitors from the genome of a virulent isolate reduces virulence in domestic pigs and induces a protective response. Vaccine. 34:4698-705.
Reis, A.L., Goatley, L.C., Jabbar, T., Sanchez-Cordon, P.J., Netherton, C.L., Chapman, D.A.G., & Dixon, L.K. (2017). Deletion of the african swine fever virus gene DP148R does not reduce virus replication in culture but reduces virus virulence in pigs and induces high levels of protection against challenge. J. Virol. 91 (24).
Revilla, Y., Cebrian, A., Baixeras, E., Martinez, C., Vinuela, E., & Salas, M.L. (1997). Inhibition of apoptosis by the African swine fever virus bcl-2 homologue: role of the BH1 domain. Virology 228 (2), 400–404.
Rivera, J., Abrams, C., Hernaez, B., Alcazar, A., Escribano, J.M., Dixon, L., & Alonso, C. (2007). The MyD116 African swine fever virus homologue interacts with the catalytic subunit of protein phosphatase 1 and activates its phosphatase activity. J. Virol. 81 (6), 2923–2929.
Rodriguez, C.I., Nogal, M.L., Carrascosa, A.L., Salas, M.L., Fresno, M., & Revilla, Y. (2002). African swine fever virus IAP-like protein induces the activation of nuclear factor kappa B. J. Virol. 76 (8), 3936–3942.
Rodriguez, J.M., Yanez, R.J., Almazan, F., Vinuela, E., & Rodriguez, J.F. (1993). African swine fever virus encodes a Cd2 homolog responsible for the adhesion of erythrocytes to infected-cells. J. Virol. 67 (9), 5312–5320.
Rowlands, R.J., Duarte, M.M., Boinas, F., Hutchings, G., & Dixon, L.K. (2009). The CD2v protein enhances African swine fever virus replication in the tick vector, Ornithodoros erraticus. Virology. 393:319-28.
Rowlands, R.J., Duarte, M.M., Boinas, F., Hutchings, G., & Dixon, L.K. (2009). The CD2v protein enhances African swine fever virus replication in the tick vector, Ornithodoros erraticus. Virology 393 (2), 319–328.
Salas, M.L., Kuznar, J., & Vinuela, E. (1983). RNA synthesis by African swine fever (ASF) virus. African Swine Fever, Commission of the European Communities, Report EUR 8466 EN, pages 235–239.
Salguero, F.J., Gil, S., Revilla, Y., Gallardo, C., Arias, M., & Martins, C. (2008). Cytokine mRNA expression and pathological findings in pigs inoculated with African swine fever virus (E-70) deleted on A238L. Vet. Immunol. Immunopathol. 124 (1-2), 107–119.
Sanchez, E.G., Quintas, A., Perez-Nunez, D., Nogal, M., Barroso, S., Carrascosa, A.L., & Revilla, Y. (2012). African swine fever virus uses macropinocytosis to enter host cells. PLoS Pathog. 8 (6).
Sanchez-Torres, C., Gomez-Puertas, P., Gomez-del-Moral, M., Alonso, F., Escribano, J.M., Ezquerra, A., & Dominguez, J. (2003). Expression of porcine CD163 on monocytes/macrophages correlates with permissiveness to African swine fever infection. Arch. Virol. 148 (12), 2307–2323.
Sanford, B., Holinka, L.G., O’Donnell, V., Krug, P.W., Carlson, J., Alfano, M., Carrillo, C., Wu, P., Lowe, A., Risatti, G.R., Gladue, D.P., & Borca, M.V. (2016). Deletion of the thymidine kinase gene induces complete attenuation of the Georgia isolate of African swine fever virus. Virus Res. 213, 165–171.
Silk, R.N., Bowick, G.C., Abrams, C.C., & Dixon, L.K. (2007). African swine fever virus A238L inhibitor of NF-kappa B and of calcineurin phosphatase is imported actively into the nucleus and exported by a CRM1-mediated pathway. J. Gen. Virol. 88, 411–419.
Stenmark, H. (2009). Rab GTPases as coordinators of vesicle traffic. Nat. Rev. Mol. Cell Biol. 10, 513–525. [CrossRef] [PubMed]
Valdeira, M.L., & Geraldes, A. (1985). Morphological study on the entry of African swine fever virus into cells. Biol. Cell. 55, 35–40. [CrossRef] [PubMed]
Youle, R.J., & Strasser, A. (2008). The BCL-2 protein family: opposing activities that mediate cell death. Nat. Rev. Mol. Cell Biol. 9 (1), 47–59.
Yutin, N., Wolf, Y.I., Raoult, D., & Koonin, E.V. (2009). Eukaryotic large nucleo-cytoplasmic DNA viruses: clusters of orthologous genes and reconstruc-tion of viral genome evolution. Virology Journal 6, http://dx.doi.org/10. 1186/1743-422X-6-223, Article Number: 223.
Zhang, F., Moon, A., Childs, K., Goodbourn, S., & Dixon, L.K. (2010). The African swine fever virus DP71L protein recruits the protein phosphatase 1 catalytic subunit to dephosphorylate eIF2alpha and inhibits CHOP induction but is dispensable for these activities during virus infection. J. Virol. 84 (20), 10681–10689.
Zsak, L., Lu, Z., Kutish, G.F., Neilan, J.G., & Rock, D.L. (1996). An African swine fever virus virulence-associated gene NL-S with similarity to the herpes simplex virus ICP34.5 gene. J. Virol. 70 (12), 8865–8871.
Fig. 1. ASFV enters the host cell and progress to endosomal compartments where it got decapitated and synthesized new virions for viral factory (Galindo and Alonso 2017).
Fig. 2. ASFV modulation of host immune response through Mechanisms of apoptosis inhibition and others (Dixon et al., 2017).