References
Ahas, R., Jaagus, J., & Aasa, A. (2000). The phenological calendar of Estonia and its correlation with mean air temperature. Int J Biometeorol , 44(4), 159-166.
Albert, L. P., Restrepo‐Coupe, N., Smith, M. N., Wu, J., Chavana‐Bryant, C., Prohaska, N., … & Arain, M. A. (2019). Cryptic phenology in plants: Case studies, implications, and recommendations. Global Change Biol , 25(11), 3591-3608.
Aldridge, G., Inouye, D. W., Forrest, J. R. K., Barr, W. A., & Miller‐Rushing, A. J. (2011). Emergence of a mid‐season period of low floral resources in a montane meadow ecosystem associated with climate change. J Ecol , 99(4), 905–913.
Arft, A. M., Walker, M. D., Gurevitch, J. E. T. A., Alatalo, J. M., Bret-Harte, M. S., Dale, M., … & Hollister, R. D. (1999). Responses of tundra plants to experimental warming: meta‐analysis of the international tundra experiment.Ecol Monogr , 69(4), 491-511.
Brienen, R. J. W., Caldwell, L., Duchesne, L., Voelker, S., Barichivich, J., Baliva, M., … Locosselli, G. M. (2020).Forest carbon sink neutralized by pervasive growth-lifespan trade-offs. Nat Commun , 11(1), 1–10.
Chen, H., Zhu, Q., Peng, C., Wu, N., Wang, Y., Fang, X., … & Kang, X. (2013). The impacts of climate change and human activities on biogeochemical cycles on the Qinghai‐Tibetan Plateau. Global Change Biol , 19(10), 2940-2955.
Chen, L., Hnninen, H., Rossi, S., Smith, N. G., & Liu, J. (2020). Leaf senescence exhibits stronger climatic responses during warm than during cold autumns. Nat Clim Change , 1-4.
Chen, X., An, S., Inouye, D. W., & Schwartz, M. D. (2015). Temperature and snowfall trigger alpine vegetation green-up on the world’s roof. Global Change Biol , 21(10), 3635–3646.
Chuine, I., Bonhomme, M., Legave, J. M., García de Cortázar‐Atauri, I., Charrier, G., Lacointe, A., & Améglio, T. (2016). Can phenological models predict tree phenology accurately in the future? The unrevealed hurdle of endodormancy break. Global Change Biol , 22(10), 3444-3460.
Cleland, E. E., Allen, J. M., Crimmins, T. M., Dunne, J. A., Pau, S., Travers, S. E., … Wolkovich, E. M. (2012). Phenological tracking enables positive species responses to climate change. Ecology , 93(8), 1765–1771.
Dong, J., Zhang, G., Zhang, Y., & Xiao, X. (2013). Reply to Wang et al.: Snow cover and air temperature affect the rate of changes in spring phenology in the Tibetan Plateau.P Natl Acad Sci USA, 110(31), 201306813.
Dong, S., Shang, Z., Gao, J., & Boone, R. B. (2020). Enhancing sustainability of grassland ecosystems through ecological restoration and grazing management in an era of climate change on Qinghai-Tibetan Plateau. Agr Ecosyst Environ , 287, 106684.
Dorji, T., Totland, Ø., Moe, S. R., Hopping, K. A., Pan, J., & Klein, J. A. (2013). Plant functional traits mediate reproductive phenology and success in response to experimental warming and snow addition in Tibet. Global Change Biol , 19(2), 459-472.
Duparc, A., Redjadj, C., Viard‐Crétat, F., Lavorel, S., Austrheim, G., & Loison, A. (2013). Co-variation between plant above-ground biomass and phenology in sub-alpine grasslands. Appl Veg Sci , 16(2), 305–316.
Ernakovich, J. G., Hopping, K. A., Berdanier, A. B., Simpson, R. T., Kachergis, E. J., Steltzer, H., & Wallenstein, M. D. (2014). Predicted responses of arctic and alpine ecosystems to altered seasonality under climate change. Global Change Biol , 20(10), 3256-3269.
Fridley, J. D. (2012). Extended leaf phenology and the autumn niche in deciduous forest invasions.Nature , 485(7398), 359–362.
Fu, Y. H., Piao, S., Op de Beeck, M., Cong, N., Zhao, H., Zhang, Y., … & Janssens, I. A. (2014). Recent spring phenology shifts in western C entral E urope based on multiscale observations. Global Ecol Biogeogr , 23(11), 1255-1263.
Fu, Y. H., Piao, S., Zhou, X., Geng, X., Hao, F., Vitasse, Y., & Janssens, I. A. (2019). Short photoperiod reduces the temperature sensitivity of leaf‐out in saplings of Fagus sylvatica but not in horse chestnut. Global Change Biol , 25(5), 1696–1703.
Fu, Y. H., Zhao, H., Piao, S., Peaucelle, M., Peng, S., Zhou, G., … & Song, Y. (2015). Declining global warming effects on the phenology of spring leaf unfolding.Nature , 526(7571), 104-107.
Gallinat, A. S., Primack, R. B., & Wagner, D. L. (2015). Autumn, the neglected season in climate change research. Trends Ecol Evol , 30(3), 169–176.
Gonsamo, A., Chen, J. M., & Ooi, Y. W. (2018). Peak season plant activity shift towards spring is reflected by increasing carbon uptake by extratropical ecosystems. Global Change Biol , 24(5), 2117-2128.
Hansen, J., Sato, M., Ruedy, R., Lo, K., Lea, D. W., & Medina-Elizade, M. (2006). Global temperature change. P Natl Acad Sci USA, 103(39), 14288-14293.
IPCC (2013) Climate Change 2013: The Physical Science Basis. (Contribution of working group I to the Fifth assessment. Report of the intergovernmental panel on climate change). Cambridge University Press, Cambridge,1535.
Jiang, L. L., Wang, S. P., Meng, F. D., Duan, J. C., Niu, H. S., Xu, G. P., … & Li, Y. M. (2016). Relatively stable response of fruiting stage to warming and cooling relative to other phenological events. Ecology , 97(8), 1961-1969.
Jonas, T., Rixen, C., Sturm, M., & Stoeckli, V. (2008). How alpine plant growth is linked to snow cover and climate variability. J Geophys Res-Biogeo , 113(G3).
Kardol, P., Campany, C. E., Souza, L., Norby, R. J., Weltzin, J. F., & Classen, A. T. (2010). Climate change effects on plant biomass alter dominance patterns and community evenness in an experimental old‐field ecosystem. Global Change Biol , 16(10), 2676-2687.
Li, L., Li, Z., Cadotte, M. W., Jia, P., Chen, G., Jin, L. S., & Du, G. (2016). Phylogenetic conservatism and climate factors shape flowering phenology in alpine meadows. Oecologia , 182(2), 419-428.
Li, S., Dong, S., Shen, H., Han, Y., Zhang, J., Xu, Y., … & Liu, S. (2019). Different responses of multifaceted plant diversities of alpine meadow and alpine steppe to nitrogen addition gradients on Qinghai-Tibetan Plateau. Sci Total Environ , 688, 1405-1412.
Liu, H., Mi, Z., Lin, L., Wang, Y., Zhang, Z., Zhang, F., … & Zhao, X. (2018). Shifting plant species composition in response to climate change stabilizes grassland primary production. P Natl Acad SciUSA, 201700299.
Liu, Q., Fu, Y. H., Zhu, Z., Liu, Y., Liu, Z., Huang, M., … & Piao, S. (2016). Delayed autumn phenology in the Northern Hemisphere is related to change in both climate and spring phenology. Global Change Biol , 22(11), 3702-3711.
Ma, W., Liu, Z., Wang, Z., Wang, W., Liang, C., Tang, Y., … & Fang, J. (2010). Climate change alters interannual variation of grassland aboveground productivity: evidence from a 22-year measurement series in the Inner Mongolian grassland. J Plant Res , 123(4), 509-517.
Ma, Z., H. Liu, Z. Mi, Z. Zhang, Y. Wang, W. Xu, L. Jiang, and J. He. (2017). Climate warming reduces the temporal stability of plant community biomass production. Nat Commun 8:15378.
Millerrushing, A. J., & Primack, R. B. (2008). Global Warming And Flowering Times In Thoreau’s Concord: A Community Perspective. Ecology , 89(2), 332-341.
Munson, S. M., & Long, A. L. (2017). Climate drives shifts in grass reproductive phenology across the western USA. New Phytol , 213(4), 1945-1955.
Paine, C.E.T., Marthews, T.R., Vogt, D.R., Purves, D., Rees, M., Hector, A. et al. (2012). How to fit nonlinear plant growth models and calculate growth rates: an update for ecologists. Methods Ecol. Evol ., 3, 245–256.
Piao, S., Cui, M., Chen, A., Wang, X., Ciais, P., Liu, J., & Tang, Y. (2011). Altitude and temperature dependence of change in the spring vegetation green-up date from 1982 to 2006 in the Qinghai-Xizang Plateau. Agr Forest Meteorol , 151(12), 1599-1608.
Piao, S., Liu, Q., Chen, A., Janssens, I. A., Fu, Y., Dai, J., … & Zhu, X. (2019). Plant phenology and global climate change: Current progresses and challenges.Global Change Biol , 25(6), 1922-1940.
Piao, S., Tan, J., Chen, A., Fu, Y. H., Ciais, P., Liu, Q., … & Penuelas, J. (2015). Leaf onset in the northern hemisphere triggered by daytime temperature. Nat Commun , 6(1), 6911-6911.
Potter, C. S., Klooster, S., & Brooks, V. (1999). Interannual variability in terrestrial net primary production: Exploration of trends and controls on regional to global scales. Ecosystems , 2(1), 36-48.
Rammig, A., Jonas, T., Zimmermann, N. E., & Rixen, C. (2009). Changes in alpine plant growth under future climate conditions. Biogeosciences , 7(6), 2013–2024.
Reed, P. B., Pfeifermeister, L., Roy, B. A., Johnson, B. R., Bailes, G., Nelson, A. A., … & Bridgham, S. D. (2019).Prairie plant phenology driven more by temperature than moisture in climate manipulations across a latitudinal gradient in the Pacific Northwest, USA. Ecol Evol , 9(6), 3637-3650.
Richardson, A. D., Keenan, T. F., Migliavacca, M., Ryu, Y., Sonnentag, O., & Toomey, M. (2013). Climate change, phenology, and phenological control of vegetation feedbacks to the climate system. Agr Forest Meteorol , 169, 156-173.
Shen, M., Piao, S., Dorji, T., Liu, Q., Cong, N., Chen, X., … & Zhang, G. (2015). Plant phenological responses to climate change on the Tibetan Plateau: research status and challenges. Natl Sci Rev , 2(4), 454-467.
Sherry, R. A., Zhou, X., Gu, S., Arnone, J. A., Schimel, D. S., Verburg, P. S., … & Luo, Y. (2007). Divergence of reproductive phenology under climate warming. P Natl Acad Sci USA , 104(1), 198-202.
Shi, C., Sun, G., Zhang, H., Xiao, B., Ze, B., Zhang, N., & Wu, N. (2014). Effects of warming on chlorophyll degradation and carbohydrate accumulation of Alpine herbaceous species during plant senescence on the Tibetan Plateau.Plos One , 9(9).
Sparks, T. H., & Menzel, A. (2002). Observed changes in seasons: An overview. Int J Climatol , 22(14), 1715–1725.
Sun, S., & Frelich, L. E. (2011). Flowering phenology and height growth pattern are associated with maximum plant height, relative growth rate and stem tissue mass density in herbaceous grassland species. J Ecol , 99(4), 991-1000.
Suonan, J., Classen, A. T., Sanders, N. J., & He, J. (2019). Plant phenological sensitivity to climate change on the Tibetan Plateau and relative to other areas of the world. Ecosphere , 10(1).
Suonan, J., Classen, A. T., Zhang, Z., & He, J. (2017). Asymmetric winter warming advanced plant phenology to a greater extent than symmetric warming in an alpine meadow. Funct Ecol , 31(11), 2147–2156.
Swemmer, A. M., Knapp, A. K., & Snyman, H. A. (2007). Intra‐seasonal precipitation patterns and above‐ground productivity in three perennial grasslands. J Ecol , 95(4), 780-788.
Vitasse, Y., Delzon, S., Dufrêne, E., Pontailler, J.-Y., Louvet, J.-M., Kremer, A., & Michalet, R. (2009). Leaf phenology sensitivity to temperature in European trees: do within-species populations exhibit similar responses? Agr Forest Meteorol , 149(5), 735–744.
Walker, M. D., Ingersoll, R. C., & Webber, P. J. (1995). Effects of interannual climate variation on phenology and growth of two alpine forbs. Ecology , 76(4), 1067-1083.
Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., … & Bairlein, F. (2002). Ecological responses to recent climate change. Nature , 416(6879), 389-395.
Wang, H., Liu, H., Cao, G., Ma, Z., Li, Y., Zhang, F., … & Classen, A. T. (2020). Alpine grassland plants grow earlier and faster but biomass remains unchanged over 35 years of climate change. Ecol Lett , 23(4), 701-710.
Wang, S. P., Meng, F. D., Duan, J. C., Wang, Y. F., Cui, X. Y., Piao, S. L., … Zhang, Z. H. (2014). Asymmetric sensitivity of first flowering date to warming and cooling in alpine plants. Ecology , 95(12), 3387–3398.
Wang, Y., Yu, S., & Wang, J. (2007). Biomass‐dependent susceptibility to drought in experimental grassland communities. Ecol Lett , 10(5), 401-410.
Wingler, A. & Hennessy, D. (2016). Limitation of grassland productivity by low temperature and seasonality of growth. Front. Plant Sci ., 7, 1130.
Xie, Y., Wang, X., & Silander, J. A. (2015). Deciduous forest responses to temperature, precipitation, and drought imply complex climate change impacts. P Natl Acad SciUSA, 112(44), 13585–13590.
Xu, W., M. Zhu, Z. Zhang, Z. Ma, H. Liu, L. Chen, G. Cao, X. Zhao, B. Schmid, and J. He. (2018). Experimentally simulating warmer and wetter climate additively improves rangeland quality on the Tibetan Plateau.J Appl Ecol 00:1–12.
Yang, K., Wu, H., Qin, J., Lin, C., Tang, W., & Chen, Y. (2014). Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: A review. Global Planet Change , 112, 79-91.
Yang, Z., Jiang, L., Su, F., Zhang, Q., Xia, J., & Wan, S. (2016). Nighttime warming enhances drought resistance of plant communities in a temperate steppe. Sci Rep -UK, 6, 23267.
Yu, H., Luedeling, E., & Xu, J. (2010). Winter and spring warming result in delayed spring phenology on the Tibetan Plateau. P Natl Acad Sci USA, 107(51), 22151–22156.
Zhang, J., Wu, L., Huang, G., Zhu, W., & Zhang, Y. (2011). The role of May vegetation greenness on the southeastern Tibetan Plateau for East Asian summer monsoon prediction.J Geophys Res , 116.
Zhang, Q., Kong, D., Shi, P., Singh, V. P., & Sun, P. (2018). Vegetation phenology on the Qinghai-Tibetan Plateau and its response to climate change (1982–2013).Agr Forest Meteorol , 248, 408-417.
Zhou, B., Li, S., Li, F., Dong, S., Ma, F., Zhu, S., … Stufkens, P. (2019). Plant functional groups asynchrony keep the community biomass stability along with the climate change- a 20-year experimental observation of alpine meadow in eastern Qinghai-Tibet Plateau. Agr Ecosyst Environ , 282, 49–57.
Zhu, J., Zhang, Y., & Wang, W. (2016). Interactions between warming and soil moisture increase overlap in reproductive phenology among species in an alpine meadow. Biol Letters , 12(7), 20150749.
Zhu, Y., Zhang, Y., Zu, J., Wang, Z., Huang, K., Cong, N., & Tang, Z. (2019). Effects of data temporal resolution on phenology extractions from the alpine grasslands of the Tibetan Plateau. Ecol Indic , 104, 365-377.