References

[1] Gozuacik, D., Yagci-Acar, H., Akkoç, Y., Kosar, A., et al. , Anticancer use of nanoparticles as nucleic acid carriers.Journal of biomedical nanotechnology 2014, 10 , 1751-1783.
[2] Sudhakar, A., History of cancer, ancient and modern treatment methods. Journal of cancer science & therapy 2009, 1 , 1.
[3] Eliyahu, H., Makovitzki, A., Azzam, T., Zlotkin, A., et al. , Novel dextran–spermine conjugates as transfecting agents: comparing water-soluble and micellar polymers. Gene therapy 2005,12 , 494-503.
[4] Schaffer, D. V., Lauffenburger, D. A., Optimization of cell surface binding enhances efficiency and specificity of molecular conjugate gene delivery. Journal of Biological Chemistry 1998,273 , 28004-28009.
[5] Teixeira, H. F., Bruxel, F., Fraga, M., Schuh, R. S., et al. , Cationic nanoemulsions as nucleic acids delivery systems.International journal of pharmaceutics 2017, 534 , 356-367.
[6] Wong, S. Y., Pelet, J. M., Putnam, D., Polymer systems for gene delivery—past, present, and future. Progress in Polymer Science2007, 32 , 799-837.
[7] Cho, K., Wang, X., Nie, S., Shin, D. M., Therapeutic nanoparticles for drug delivery in cancer. Clinical cancer research 2008, 14 , 1310-1316.
[8] Mykhaylyk, O., Antequera, Y. S., Vlaskou, D., Plank, C., Generation of magnetic nonviral gene transfer agents and magnetofection in vitro. Nature protocols 2007, 2 , 2391.
[9] Yin, H., Kanasty, R. L., Eltoukhy, A. A., Vegas, A. J., et al. , Non-viral vectors for gene-based therapy. Nature Reviews Genetics 2014, 15 , 541-555.
[10] Ye, S., Cole-Strauss, A., Frank, B., Kmiec, E. B., Targeted gene correction: a new strategy for molecular medicine. Molecular medicine today 1998, 4 , 431-437.
[11] Nóbrega, C., Mendonça, L., Matos, C. A., A Handbook of Gene and Cell Therapy , Springer 2020.
[12] Sohrabijam, Z., Saeidifar, M., Zamanian, A., Enhancement of magnetofection efficiency using chitosan coated superparamagnetic iron oxide nanoparticles and calf thymus DNA. Colloids and Surfaces B: Biointerfaces 2017, 152 , 169-175.
[13] Putnam, D., Gentry, C. A., Pack, D. W., Langer, R., Polymer-based gene delivery with low cytotoxicity by a unique balance of side-chain termini. Proceedings of the National Academy of Sciences 2001, 98 , 1200-1205.
[14] Azzam, T., Eliyahu, H., Makovitzki, A., Linial, M., Domb, A. J., Hydrophobized dextran-spermine conjugate as potential vector for in vitro gene transfection. Journal of Controlled Release 2004,96 , 309-323.
[15] Li, S., Yi, J., Li, W., Wang, L., Wang, Z., Synthesis and characterization of three novel amphiphilic dextran self-assembled micelles as potential drug delivery system. Journal of Materials Science 2017, 52 , 12593-12607.
[16] Hosseinkhani, H., He, W.-J., Chiang, C.-H., Hong, P.-D., et al. , Biodegradable nanoparticles for gene therapy technology.Journal of nanoparticle research 2013, 15 , 1-15.
[17] Su, H., Liu, Y., Wang, D., Wu, C., et al. , Amphiphilic starlike dextran wrapped superparamagnetic iron oxide nanoparticle clsuters as effective magnetic resonance imaging probes.Biomaterials 2013, 34 , 1193-1203.
[18] Ghadiri, M., Vasheghani-Farahani, E., Atyabi, F., Kobarfard, F., Hosseinkhani, H., In-vitro assessment of magnetic dextran-spermine nanoparticles for capecitabine delivery to cancerous cells.Iranian journal of pharmaceutical research: IJPR 2017, 16 , 1320.
[19] Meng, T., Wu, J., Yi, H., Liu, J., et al. , A spermine conjugated stearic acid-g-chitosan oligosaccharide polymer with different types of amino groups for efficient p53 gene therapy.Colloids and Surfaces B: Biointerfaces 2016, 145 , 695-705.
[20] Azzam, T., Eliyahu, H., Makovitzki, A., Domb, A.,Macromolecular Symposia , Wiley Online Library 2003, pp. 247-262.
[21] Liu, Z., Zhang, Z., Zhou, C., Jiao, Y., Hydrophobic modifications of cationic polymers for gene delivery. Progress in Polymer Science 2010, 35 , 1144-1162.
[22] Shaki, H., Ganji, F., Kempen, P. J., Dolatshahi-Pirouz, A., Vasheghani-Farahani, E., Self-assembled amphiphilic-dextran nanomicelles for delivery of rapamycin. Journal of Drug Delivery Science and Technology 2018, 44 , 333-341.
[23] Alvizo-Baez, C. A., Luna-Cruz, I. E., Vilches-Cisneros, N., Rodríguez-Padilla, C., Alcocer-González, J. M., Systemic delivery and activation of the TRAIL gene in lungs, with magnetic nanoparticles of chitosan controlled by an external magnetic field. International journal of nanomedicine 2016, 11 , 6449.
[24] Dobson, J., Gene therapy progress and prospects: magnetic nanoparticle-based gene delivery. Gene therapy 2006, 13 , 283-287.
[25] Mohammad-Taheri, M., Vasheghani-Farahani, E., Hosseinkhani, H., Shojaosadati, S. A., Soleimani, M., Fabrication and characterization of a new MRI contrast agent based on a magnetic dextran–spermine nanoparticle system. Iranian Polymer Journal 2012, 21 , 239-251.
[26] Qu, J., Liu, G., Wang, Y., Hong, R., Preparation of Fe3O4–chitosan nanoparticles used for hyperthermia. Advanced Powder Technology 2010, 21 , 461-467.
[27] Wu, W., He, Q., Jiang, C., Magnetic iron oxide nanoparticles: synthesis and surface functionalization strategies. Nanoscale research letters 2008, 3 , 397-415.
[28] Rasouli, E., Basirun, W. J., Rezayi, M., Shameli, K., et al. , Ultrasmall superparamagnetic Fe3O4 nanoparticles: honey-based green and facile synthesis and in vitro viability assay.International journal of nanomedicine 2018, 13 , 6903.
[29] Scott, V., Clark, A. R., Docherty, K., The gel retardation assay. Protocols for gene analysis 1994, 339-347.
[30] Magdeldin, S., Gel electrophoresis: Principles and basics , BoD–Books on Demand 2012.
[31] Schnurr, B., Ahrens, T., Regenass, U., Optical assays in drug discovery. 2007.
[32] Namgung, R., Singha, K., Yu, M. K., Jon, S., et al. , Hybrid superparamagnetic iron oxide nanoparticle-branched polyethylenimine magnetoplexes for gene transfection of vascular endothelial cells. Biomaterials 2010, 31 , 4204-4213.
[33] Yu, Y., Hu, Y., Li, X., Liu, Y., et al. , Spermine-modified Antheraea pernyi silk fibroin as a gene delivery carrier. International journal of nanomedicine 2016, 11 , 1013.
[34] Tauxe, L., Mullender, T., Pick, T., Potbellies, wasp‐waists, and superparamagnetism in magnetic hysteresis. Journal of Geophysical Research: Solid Earth 1996, 101 , 571-583.
[35] El Ghandoor, H., Zidan, H., Khalil, M. M., Ismail, M., Synthesis and some physical properties of magnetite (Fe3O4) nanoparticles. Int. J. Electrochem. Sci 2012, 7 , 5734-5745.
[36] Mohamed, M. A., Jaafar, J., Ismail, A., Othman, M., Rahman, M., Fourier transform infrared (FTIR) spectroscopy, Membrane Characterization , Elsevier 2017, pp. 3-29.
[37] ur Rahman, O., Mohapatra, S. C., Ahmad, S., Fe3O4 inverse spinal super paramagnetic nanoparticles. Materials Chemistry and Physics 2012, 132 , 196-202.
[38] Cao, H., Li, J., Shen, Y., Li, S., et al. , Green synthesis and surface properties of Fe3O4@ SA core–shell nanocomposites. Applied surface science 2014, 301 , 244-249.
[39] Mistry, B., A handbook of spectroscopic data. Chemistry2009.
[40] Tassa, C., Shaw, S. Y., Weissleder, R., Dextran-coated iron oxide nanoparticles: a versatile platform for targeted molecular imaging, molecular diagnostics, and therapy. Accounts of chemical research 2011, 44 , 842-852.
[41] Cen, C., Wu, J., Zhang, Y., Luo, C., et al. , Improving magnetofection of magnetic polyethylenimine nanoparticles into MG-63 osteoblasts using a novel uniform magnetic field. Nanoscale research letters 2019, 14 , 1-14.
[42] Estelrich, J., Escribano, E., Queralt, J., Busquets, M. A., Iron oxide nanoparticles for magnetically-guided and magnetically-responsive drug delivery. International journal of molecular sciences 2015, 16 , 8070-8101.
[43] Lee, H., Nguyen, Y., Muthiah, M., Vu-Quang, H., et al. , MR traceable delivery of p53 tumor suppressor gene by PEI-functionalized superparamagnetic iron oxide nanoparticles. Journal of biomedical nanotechnology 2012, 8 , 361-371.
[44] Predescu, A. M., Matei, E., Berbecaru, A. C., Pantilimon, C., et al. , Synthesis and characterization of dextran-coated iron oxide nanoparticles. Royal Society open science 2018, 5 , 171525.
[45] Amini, R., Jalilian, F. A., Abdullah, S., Veerakumarasivam, A., et al. , Dynamics of PEGylated–dextran–spermine nanoparticles for gene delivery to leukemic cells. Applied biochemistry and biotechnology 2013, 170 , 841-853.
[46] Holst, C. M., Oredsson, S. M., Comparison of three cytotoxicity tests in the evaluation of the cytotoxicity of a spermine analogue on human breast cancer cell lines. Toxicology in vitro 2005,19 , 379-387.
[47] Hosseinkhani, H., Azzam, T., Tabata, Y., Domb, A., Dextran–spermine polycation: an efficient nonviral vector for in vitro and in vivo gene transfection. Gene therapy 2004, 11 , 194-203.