References:
1. Bartel DP. MicroRNAs: Target Recognition and Regulatory Functions.Cell . 2009;136(2):215-233. doi:10.1016/j.cell.2009.01.002
2. Iwakawa H oki, Tomari Y. The Functions of MicroRNAs: mRNA Decay and Translational Repression. Trends Cell Biol . 2015;25(11):651-665. doi:10.1016/j.tcb.2015.07.011
3. Kawamata T, Tomari Y. Making RISC. Trends Biochem Sci . 2010;35(7):368-376. doi:10.1016/j.tibs.2010.03.009
4. Kloosterman WP, Plasterk RHA. The Diverse Functions of MicroRNAs in Animal Development and Disease. Dev Cell . 2006;11(4):441-450. doi:10.1016/j.devcel.2006.09.009
5. Eulalio A, Huntzinger E, Izaurralde E. Getting to the Root of miRNA-Mediated Gene Silencing. Cell . 2008;132(1):9-14. doi:10.1016/j.cell.2007.12.024
6. O’Brien J, Hayder H, Zayed Y, Peng C. Overview of MicroRNA Biogenesis, Mechanisms of Actions, and Circulation. Front Endocrinol (Lausanne) . 2018;9:1-12. doi:10.3389/fendo.2018.00402
7. Feinbaum R, Ambros V, Lee R. The C. elegans Heterochronic Gene lin-4 Encodes Small RNAs with Antisense Complementarity to lin-14.Cell . 2004;116(116):843-854.
8. Kozomara A, Griffiths-Jones S. miRBase: annotating high confidence microRNAs using deep sequencing data. Nucleic Acids Res . 2014;42(D1):D68-D73. doi:10.1093/nar/gkt1181
9. Jens M, Rajewsky N. Competition between target sites of regulators shapes post-transcriptional gene regulation. Nat Rev Genet . 2015;16(2):113-126. doi:10.1038/nrg3853
10. Kartha R V., Subramanian S. Competing endogenous RNAs (ceRNAs): new entrants to the intricacies of gene regulation. Front Genet . 2014;5:1-9. doi:10.3389/fgene.2014.00008
11. Sun W, Julie Li YS, Huang H Da, Shyy JYJ, Chien S. MicroRNA: A master regulator of cellular processes for bioengineering systems.Annu Rev Biomed Eng . 2010;12:1-27. doi:10.1146/annurev-bioeng-070909-105314
12. Vidigal JA, Ventura A. The biological functions of miRNAs: Lessons from in vivo studies. Trends Cell Biol . 2015;25(3):137-147. doi:10.1016/j.tcb.2014.11.004
13. Schmiedel JM, Klemm SL, Zheng Y, et al. MicroRNA control of protein expression noise. Science . 2015;348(6230):128-132. doi:10.1126/science.aaa1738
14. Herranz H, Cohen SM. MicroRNAs and gene regulatory networks: Managing the impact of noise in biological systems. Genes Dev . 2010;24(13):1339-1344. doi:10.1101/gad.1937010
15. Vasudevan S. Posttranscriptional Upregulation by MicroRNAs.Wiley Interdiscip Rev RNA . 2012;3(3):311-330. doi:10.1002/wrna.121
16. Valinezhad Orang A, Safaralizadeh R, Kazemzadeh-Bavili M. Mechanisms of miRNA-Mediated Gene Regulation from Common Downregulation to mRNA-Specific Upregulation. Chen SL, ed. Int J Genomics . 2014;2014:970607. doi:10.1155/2014/970607
17. Pitto L, Ripoli A, Cremisi F, Simili M, Rainaldi G. microRNA(interference) networks are embedded in the gene regulatory networks. Cell Cycle . 2008;7(16):2458-2461. doi:10.4161/cc.7.16.6455
18. Tsang J, Zhu J, van Oudenaarden A. MicroRNA-Mediated Feedback and Feedforward Loops Are Recurrent Network Motifs in Mammals. Mol Cell . 2007;26(5):753-767. doi:10.1016/j.molcel.2007.05.018
19. Hayes J, Peruzzi PP, Lawler S. MicroRNAs in cancer: Biomarkers, functions and therapy. Trends Mol Med . 2014;20(8):460-469. doi:10.1016/j.molmed.2014.06.005
20. Peng Y, Croce CM. The role of MicroRNAs in human cancer.Signal Transduct Target Ther . 2016;1(1):15004. doi:10.1038/sigtrans.2015.4
21. Bracken CP, Scott HS, Goodall GJ. A network-biology perspective of microRNA function and dysfunction in cancer. Nat Rev Genet . 2016;17(12):719-732. doi:10.1038/nrg.2016.134
22. Ali Syeda Z, Langden SSS, Munkhzul C, Lee M, Song SJ. Regulatory Mechanism of MicroRNA Expression in Cancer. Int J Mol Sci . 2020;21(5):1723. doi:10.3390/ijms21051723
23. Stahlhut C, Slack FJ. MicroRNAs and the cancer phenotype: profiling, signatures and clinical implications. Genome Med . 2013;5(12):111. doi:10.1186/gm516
24. Hayashita Y, Osada H, Tatematsu Y, et al. A polycistronic MicroRNA cluster, miR-17-92, is overexpressed in human lung cancers and enhances cell proliferation. Cancer Res . 2005;65(21):9628-9632. doi:10.1158/0008-5472.CAN-05-2352
25. Tagawa H, Seto M. A microRNA cluster as a target of genomic amplification in malignant lymphoma. Leukemia . 2005;19(11):2013-2016. doi:10.1038/sj.leu.2403942
26. Mavrakis KJ, Wolfe AL, Oricchio E, et al. Genome-wide RNA-mediated interference screen identifies miR-19 targets in Notch-induced T-cell acute lymphoblastic leukaemia. Nat Cell Biol . 2010;12(4):372-379. doi:10.1038/ncb2037
27. Calin GA, Croce CM. MicroRNAs and chromosomal abnormalities in cancer cells. Oncogene . 2006;25(46):6202-6210. doi:10.1038/sj.onc.1209910
28. Calin GA, Sevignani C, Dumitru CD, et al. Human microRNA genes are frequently located at fragile sites and genomic regions involved in cancers. Proc Natl Acad Sci U S A . 2004;101(9):2999-3004. doi:10.1073/pnas.0307323101
29. Zhang L, Huang J, Yang N, et al. microRNAs exhibit high frequency genomic alterations in human cancer. Proc Natl Acad Sci U S A . 2006;103(24):9136-9141. doi:10.1073/pnas.0508889103
30. Saito Y, Liang G, Egger G, et al. Specific activation of microRNA-127 with downregulation of the proto-oncogene BCL6 by chromatin-modifying drugs in human cancer cells. Cancer Cell . 2006;9(6):435-443. doi:10.1016/j.ccr.2006.04.020
31. Fazi F, Racanicchi S, Zardo G, et al. Epigenetic Silencing of the Myelopoiesis Regulator microRNA-223 by the AML1/ETO Oncoprotein.Cancer Cell . 2007;12(5):457-466. doi:10.1016/j.ccr.2007.09.020
32. Saito Y, Jones PA. Epigenetic activation of tumor suppressor microRNAs in human cancer cells. Cell Cycle . 2006;5(19):2220-2222. doi:10.4161/cc.5.19.3340
33. Lehmann U, Hasemeier B, Christgen M, et al. Epigenetic inactivation of microRNA gene hsa-mir-9-1 in human breast cancer. J Pathol . 2008;214(1):17-24. doi:https://doi.org/10.1002/path.2251
34. Lujambio A, Calin GA, Villanueva A, et al. A microRNA DNA methylation signature for human. Proc Natl Acad Sci U S A . 2008;105(36):13556-13561.
35. Melo SA, Moutinho C, Ropero S, et al. A genetic defect in exportin-5 traps precursor MicroRNAs in the nucleus of cancer cells. Cancer Cell . 2010;18(4):303-315. doi:10.1016/j.ccr.2010.09.007
36. Lu J, Getz G, Miska EA, et al. MicroRNA expression profiles classify human cancers. Nature . 2005;435(7043):834-838. doi:10.1038/nature03702
37. Gu S, Jin L, Zhang Y, et al. The loop position of shRNAs and pre-miRNAs is critical for the accuracy of dicer processing in vivo.Cell . 2012;151(4):900-911. doi:10.1016/j.cell.2012.09.042
38. Zhang J, Fan XS, Wang CX, Liu B, Li Q, Zhou XJ. Up-regulation of Ago2 expression in gastric carcinoma. Med Oncol . 2013;30(3):1-7. doi:10.1007/s12032-013-0628-2
39. Völler D, Reinders J, Meister G, Bosserhoff AK. Strong reduction of AGO2 expression in melanoma and cellular consequences. Br J Cancer . 2013;109(12):3116-3124. doi:10.1038/bjc.2013.646
40. Sun G, Yan J, Noltner K, et al. SNPs in human miRNA genes affect biogenesis and function. Rna . 2009;15(9):1640-1651. doi:10.1261/rna.1560209
41. Ziebarth JD, Bhattacharya A, Cui Y. Integrative Analysis of Somatic Mutations Altering MicroRNA Targeting in Cancer Genomes. PLoS One . 2012;7(10):1-10. doi:10.1371/journal.pone.0047137
42. Moszyńska A, Gebert M, Collawn JF, Bartoszewski R. SNPs in microRNA target sites and their potential role in human disease. Open Biol . 2017;7(4). doi:10.1098/rsob.170019
43. Zhang H-M, Kuang S, Xiong X, Gao T, Liu C, Guo A-Y. Transcription factor and microRNA co-regulatory loops: important regulatory motifs in biological processes and diseases. Brief Bioinform . 2015;16(1):45-58. doi:10.1093/bib/bbt085
44. Tian XJ, Ferro MV, Goetz H. Modeling ncRNA-mediated circuits in cell fate decision. Methods Mol Biol . 2019;1912:411-426. doi:10.1007/978-1-4939-8982-9_16
45. Peláez N, Carthew RW. Biological robustness and the role of microRNAs: a network perspective. Curr Top Dev Biol . 2012;99:237—255. doi:10.1016/b978-0-12-387038-4.00009-4
46. Pedraza JM, van Oudenaarden A. Noise Propagation in Gene Networks.Science . 2005;307(5717):1965 LP - 1969. doi:10.1126/science.1109090
47. Cuccato G, Polynikis A, Siciliano V, Graziano M, di Bernardo M, di Bernardo D. Modeling RNA interference in mammalian cells. BMC Syst Biol . 2011;5:1-12. doi:10.1186/1752-0509-5-19
48. Lai X, Wolkenhauer O, Vera J. Understanding microRNA-mediated gene regulatory networks through mathematical modelling. Nucleic Acids Res . 2016;44(13):6019-6035. doi:10.1093/nar/gkw550
49. Esquela-Kerscher A, Slack FJ. Oncomirs - MicroRNAs with a role in cancer. Nat Rev Cancer . 2006;6(4):259-269. doi:10.1038/nrc1840
50. Mengardi C, Limousin T, Ricci EP, Soto-Rifo R, Decimo D, Ohlmann T. MicroRNAs stimulate translation initiation mediated by HCV-like IRESes.Nucleic Acids Res . 2017;45(8):4810-4824. doi:10.1093/nar/gkw1345
51. Lai EC. miRNAs : Whys and Wherefores of miRNA-Mediated Regulation MiRNAs are assumed to be important in animal development and miRNA Target Genes. Curr Biol . 2005;15(12):458-460.
52. Vainberg Slutskin I, Weingarten-Gabbay S, Nir R, Weinberger A, Segal E. Unraveling the determinants of microRNA mediated regulation using a massively parallel reporter assay. Nat Commun . 2018;9(1). doi:10.1038/s41467-018-02980-z
53. Mukherji S, Ebert MS, Zheng GXY, Tsang JS, Sharp PA, van Oudenaarden A. MicroRNAs can generate thresholds in target gene expression.Nat Genet . 2011;43:854. https://doi.org/10.1038/ng.905
54. Gam JJ, Babb J, Weiss R. A mixed antagonistic/synergistic miRNA repression model enables accurate predictions of multi-input miRNA sensor activity. Nat Commun . 2018;9(1):1-12. doi:10.1038/s41467-018-04575-0
55. Agarwal V, Bell GW, Nam J-W, Bartel DP. Predicting effective microRNA target sites in mammalian mRNAs. Elife . 2015;4:1-38. doi:10.7554/eLife.05005
56. McGeary SE, Lin KS, Shi CY, et al. The biochemical basis of microRNA targeting efficacy. Science . 2019;366(6472):eaav1741. doi:10.1126/science.aav1741
57. Pasquinelli AE. MicroRNAs and their targets: Recognition, regulation and an emerging reciprocal relationship. Nat Rev Genet . 2012;13(4):271-282. doi:10.1038/nrg3162
58. Nielsen AF, Gloggnitzer J, Martinez J. MicroRNAs Cross the Line: The Battle for mRNA Stability Enters the Coding Sequence. Mol Cell . 2009;35(2):139-140. doi:10.1016/j.molcel.2009.07.006
59. Subtelny AO, Eichhorn SW, Chen GR, Sive H, Bartel DP. Poly(A)-tail profiling reveals an embryonic switch in translational control.Nature . 2014;508(7494):66-71. doi:10.1038/nature13007
60. Djuranovic S, Nahvi A, Green R. miRNA-Mediated Gene Silencing by Translational Repression Followed by mRNA Deadenylation and Decay.Science . 2012;336(6078):237-240. doi:10.1126/science.1215691
61. Béthune J, Artus‐Revel CG, Filipowicz W. Kinetic analysis reveals successive steps leading to miRNA‐mediated silencing in mammalian cells.EMBO Rep . 2012;13(8):716-723. doi:10.1038/embor.2012.82
62. Hu W, Coller J. What comes first: Translational repression or mRNA degradation? the deepening mystery of microRNA function. Cell Res . 2012;22(9):1322-1324. doi:10.1038/cr.2012.80
63. Bu P, Chen KY, Chen JH, et al. A microRNA miR-34a-regulated bimodal switch targets notch in colon cancer stem cells. Cell Stem Cell . 2013;12(5):602-615. doi:10.1016/j.stem.2013.03.002
64. Ebert MS, Sharp PA. Roles for MicroRNAs in conferring robustness to biological processes. Cell . 2012;149(3):515-524. doi:10.1016/j.cell.2012.04.005
65. Duk MA, Samsonova MG, Samsonov AM. Dynamics of miRNA driven feed-forward loop depends upon miRNA action mechanisms. BMC Genomics . 2014;15(12):1-18. doi:10.1186/1471-2164-15-S12-S9
66. Sanchez A, Golding I. Genetic Determinants and Cellular Constraints in Noisy Gene Expression. Science . 2013;342(6163):1188-1193. doi:10.1126/science.1242975
67. Raj A, Peskin CS, Tranchina D, Vargas DY, Tyagi S. Stochastic mRNA synthesis in mammalian cells. PLoS Biol . 2006;4(10):1707-1719. doi:10.1371/journal.pbio.0040309
68. Raj A, van Oudenaarden A. Nature, Nurture, or Chance: Stochastic Gene Expression and Its Consequences. Cell . 2008;135(2):216-226. doi:10.1016/j.cell.2008.09.050
69. Rodriguez J, Larson DR. Transcription in Living Cells: Molecular Mechanisms of Bursting. Annu Rev Biochem . 2020;89:189-212. doi:10.1146/annurev-biochem-011520-105250
70. Larsson AJM, Johnsson P, Hagemann-Jensen M, et al. Genomic encoding of transcriptional burst kinetics. Nature . 2019;565(7738):251-254. doi:10.1038/s41586-018-0836-1
71. Hornstein E, Shomron N. Canalization of development by micrornas.Nat Genet . 2006;38(6S):S20. doi:10.1038/ng1803
72. Elowitz MB, Levine AJ, Siggia ED, Swain PS. Stochastic gene expression in a single cell. Science . 2002;297(5584):1183-1186. doi:10.1126/science.1070919
73. Samanta T, Kar S. Fine-tuning Nanog expression heterogeneity in embryonic stem cells by regulating a Nanog transcript-specific microRNA.FEBS Lett . Published online 2020:1-15. doi:10.1002/1873-3468.13936
74. Osella M, Bosia C, Corá D, Caselle M. The role of incoherent microRNA-mediated feedforward loops in noise buffering. PLoS Comput Biol . 2011;7(3). doi:10.1371/journal.pcbi.1001101
75. Slabáková E, Culig Z, Remšík J, Souček K. Alternative mechanisms of MIR-34a regulation in cancer. Cell Death Dis . 2017;8(10):1-10. doi:10.1038/cddis.2017.495
76. O’Donnell KA, Wentzel EA, Zeller KI, Dang C V., Mendell JT. c-Myc-regulated microRNAs modulate E2F1 expression. Nature . 2005;435(7043):839-843. doi:10.1038/nature03677
77. Gabay M, Li Y, Felsher DW. MYC Activation Is a Hallmark of Cancer Initiation and Maintenance. Cold Spring Harb Perspect Med . 2014;4(6):a014241-a014241. doi:10.1101/cshperspect.a014241
78. Mogilyansky E, Rigoutsos I. The miR-17/92 cluster: a comprehensive update on its genomics, genetics, functions and increasingly important and numerous roles in health and disease. Cell Death Differ . 2013;20(12):1603-1614. doi:10.1038/cdd.2013.125
79. Del Rosario RCH, Damasco JRCG, Aguda BD. MicroRNA inhibition fine-tunes and provides robustness to the restriction point switch of the cell cycle. Sci Rep . 2016;6(May):1-13. doi:10.1038/srep32823
80. Li L, Shi B, Chen J, et al. An E2F1/MiR-17-92 Negative Feedback Loop mediates proliferation of Mouse Palatal Mesenchymal Cells. Sci Rep . 2017;7(1):1-9. doi:10.1038/s41598-017-05479-7
81. Yao G, Lee TJ, Mori S, Nevins JR, You L. A bistable Rb-E2F switch underlies the restriction point. Nat Cell Biol . 2008;10(4):476-482. doi:10.1038/ncb1711
82. Shats I, Deng M, Davidovich A, et al. Expression level is a key determinant of E2F1-mediated cell fate. Cell Death Differ . 2017;24(4):626-637. doi:10.1038/cdd.2017.12
83. Aguda BD, Kim Y, Piper-Hunter MG, Friedman A, Marsh CB. MicroRNA regulation of a cancer network: Consequences of the feedback loops involving miR-17-92, E2F, and Myc. Proc Natl Acad Sci . 2008;105(50):19678-19683. doi:10.1073/pnas.0811166106
84. Sengupta D, Govindaraj V, Kar S. Alteration in microRNA-17-92 dynamics accounts for differential nature of cellular proliferation.FEBS Lett . 2018;592(3):446-458. doi:10.1002/1873-3468.12974
85. Fan X, Liu Y, Jiang J, et al. miR-20a promotes proliferation and invasion by targeting APP in human ovarian cancer cells. Acta Biochim Biophys Sin (Shanghai) . 2010;42(5):318-324. doi:10.1093/abbs/gmq026
86. Thayanithy V, Sarver AL, Kartha R V, et al. Perturbation of 14q32 miRNAs-cMYC gene network in osteosarcoma. Bone . 2012;50(1):171-181. doi:10.1016/j.bone.2011.10.012
87. Dews M, Homayouni A, Yu D, et al. Augmentation of tumor angiogenesis by a Myc-activated microRNA cluster. Nat Genet . 2006;38(9):1060-1065. doi:10.1038/ng1855
88. Fontana L, Fiori ME, Albini S, et al. Antagomir-17-5p abolishes the growth of therapy-resistant neuroblastoma through p21 and BIM.PLoS One . 2008;3(5). doi:10.1371/journal.pone.0002236
89. Szafranska a E, Davison TS, John J, et al. MicroRNA expression alterations are linked to tumorigenesis and non-neoplastic processes in pancreatic ductal adenocarcinoma. Oncogene . 2007;26(30):4442-4452. doi:10.1038/sj.onc.1210228
90. Yu Z, Willmarth NE, Zhou J, et al. microRNA 17/20 inhibits cellular invasion and tumor metastasis in breast cancer by heterotypic signaling.Proc Natl Acad Sci . 2010;107(18):8231-8236. doi:10.1073/pnas.1002080107
91. Uziel T, Karginov F V., Xie S, et al. The miR-17 92 cluster collaborates with the Sonic Hedgehog pathway in medulloblastoma.Proc Natl Acad Sci . 2009;106(8):2812-2817. doi:10.1073/pnas.0809579106
92. Sage J, Ventura A. miR than meets the eye. Genes Dev . 2011;25(16):1663-1667. doi:10.1101/gad.17454011
93. Conkrite K, Sundby M, Mukai S, et al. Mir-17~92 cooperates with RB pathway mutations to promote retinoblastoma.Genes Dev . 2011;25(16):1734-1745. doi:10.1101/gad.17027411
94. Morimura R, Komatsu S, Ichikawa D, et al. Novel diagnostic value of circulating miR-18a in plasma of patients with pancreatic cancer.Br J Cancer . 2011;105(11):1733-1740. doi:10.1038/bjc.2011.453
95. Connolly E, Melegari M, Landgraf P, et al. Elevated expression of the miR-17-92 polycistron and miR-21 in hepadnavirus-associated hepatocellular carcinoma contributes to the malignant phenotype.Am J Pathol . 2008;173(3):856-864. doi:10.2353/ajpath.2008.080096
96. Farazi TA, Horlings HM, Ten Hoeve JJ, et al. MicroRNA sequence and expression analysis in breast tumors by deep sequencing. Cancer Res . 2011;71(13):4443-4453. doi:10.1158/0008-5472.CAN-11-0608
97. Chen Q, Si Q, Xiao S, et al. Prognostic significance of serum miR-17-5p in lung cancer. Med Oncol . 2013;30(1):5-10. doi:10.1007/s12032-012-0353-2
98. Huang G, Nishimoto K, Zhou Z, Hughes D, Kleinerman ES. miR-20a encoded by the miR-17-92 cluster increases the metastatic potential of osteosarcoma cells by regulating fas expression. Cancer Res . 2012;72(4):908-916. doi:10.1158/0008-5472.CAN-11-1460
99. Osada H, Takahashi T. let-7 and miR-17-92: Small-sized major players in lung cancer development. Cancer Sci . 2011;102(1):9-17. doi:10.1111/j.1349-7006.2010.01707.x
100. Díaz-Beyá M, Navarro A, Ferrer G, et al. Acute myeloid leukemia with translocation (8;16)(p11;p13) and MYST3-CREBBP rearrangement harbors a distinctive microRNA signature targeting RET proto-oncogene.Leukemia . 2013;27(3):595-603. doi:10.1038/leu.2012.278
101. Mendell JT. miRiad Roles for the miR-17-92 Cluster in Development and Disease. Cell . 2008;133(2):217-222. doi:10.1016/j.cell.2008.04.001
102. Ventura A, Young AG, Winslow MM, et al. Targeted Deletion Reveals Essential and Overlapping Functions of the miR-17∼92 Family of miRNA Clusters. Cell . 2008;132(5):875-886. doi:10.1016/j.cell.2008.02.019
103. Vasudevan S, Tong Y, Steitz JA. Switching from Repression to Activation: MicroRNAs Can Up-Regulate Translation. Science . 2007;318(5858):1931-1934. doi:10.1126/science.1149460
104. Ørom UA, Nielsen FC, Lund AH. MicroRNA-10a Binds the 5′UTR of Ribosomal Protein mRNAs and Enhances Their Translation. Mol Cell . 2008;30(4):460-471. doi:10.1016/j.molcel.2008.05.001
105. Nyayanit D, Gadgil CJ. Mathematical modeling of combinatorial regulation suggests that apparent positive regulation of targets by miRNA could be an artifact resulting from competition for mRNA.Rna . 2015;21(3):307-319. doi:10.1261/rna.046862.114
106. Makeyev A V., Liebhaber SA. The poly(C)-binding proteins: A multiplicity of functions and a search for mechanisms. Rna . 2002;8(3):265-278. doi:10.1017/S1355838202024627
107. Chaudhury A, Chander P, Howe PH. Heterogeneous nuclear ribonucleoproteins (hnRNPs) in cellular processes: Focus on hnRNP E1’s multifunctional regulatory roles. RNA . 2010;16(8):1449-1462. doi:10.1261/rna.2254110
108. Bosia C, Pagnani A, Zecchina R. Modelling Competing Endogenous RNA Networks. PLoS One . 2013;8(6). doi:10.1371/journal.pone.0066609
109. Wang Y, Hou J, He D, et al. The Emerging Function and Mechanism of ceRNAs in Cancer. Trends Genet . 2016;32(4):211-224. doi:10.1016/j.tig.2016.02.001
110. Sumazin P, Yang X, Chiu H-S, et al. An Extensive MicroRNA-Mediated Network of RNA-RNA Interactions Regulates Established Oncogenic Pathways in Glioblastoma. Cell . 2011;147(2):370-381. doi:10.1016/j.cell.2011.09.041
111. de Giorgio A, Krell J, Harding V, Stebbing J, Castellano L. Emerging Roles of Competing Endogenous RNAs in Cancer: Insights from the Regulation of PTEN. Mol Cell Biol . 2013;33(20):3976-3982. doi:10.1128/mcb.00683-13
112. Tay Y, Kats L, Salmena L, et al. Coding-Independent Regulation of the Tumor Suppressor PTEN by Competing Endogenous mRNAs. Cell . 2011;147(2):344-357. doi:10.1016/j.cell.2011.09.029
113. Karreth FA, Tay Y, Perna D, et al. In Vivo Identification of Tumor- Suppressive PTEN ceRNAs in an Oncogenic BRAF-Induced Mouse Model of Melanoma. Cell . 2011;147(2):382-395. doi:10.1016/j.cell.2011.09.032
114. Ebert MS, Neilson JR, Sharp PA. MicroRNA sponges: Competitive inhibitors of small RNAs in mammalian cells. Nat Methods . 2007;4(9):721-726. doi:10.1038/nmeth1079
115. Denzler R, Agarwal V, Stefano J, Bartel DP, Stoffel M. Assessing the ceRNA Hypothesis with Quantitative Measurements of miRNA and Target Abundance. Mol Cell . 2014;54(5):766-776. doi:10.1016/j.molcel.2014.03.045
116. Denzler R, McGeary SE, Title AC, Agarwal V, Bartel DP, Stoffel M. Impact of MicroRNA Levels, Target-Site Complementarity, and Cooperativity on Competing Endogenous RNA-Regulated Gene Expression.Mol Cell . 2016;64(3):565-579. doi:10.1016/j.molcel.2016.09.027
117. Bosson AD, Zamudio JR, Sharp PA. Endogenous miRNA and target concentrations determine susceptibility to potential ceRNA competition.Mol Cell . 2014;56(3):347-359. doi:10.1016/j.molcel.2014.09.018
118. Aeschimann F, Kumari P, Bartake H, et al. LIN41 Post-transcriptionally Silences mRNAs by Two Distinct and Position-Dependent Mechanisms. Mol Cell . 2017;65(3):476-489.e4. doi:10.1016/j.molcel.2016.12.010