References
[1] Das, T., Shin, S. C., Song, E.
J., Regulation of Deubiquitinating Enzymes by Post-Translational
Modifications. 2020, 21 .
[2] Dupree, E. J., Jayathirtha,
M., Yorkey, H., Mihasan, M., et al. , A Critical Review of
Bottom-Up Proteomics: The Good, the Bad, and the Future of This Field.Proteomes 2020, 8 , 14.
[3] Chen, W., Ding, Z., Zang, Y.,
Liu, X., Characterization of proteoform post-translational modifications
by top-down and bottom-up mass spectrometry in conjunction with UniProt
annotations. bioRxiv 2023, 2023.2004.2004.535618.
[4] Gregorich, Z. R., Chang, Y.
H., Ge, Y., Proteomics in heart failure: top-down or bottom-up?Pflugers Archiv : European journal of physiology 2014,466 , 1199-1209.
[5] Xu, H., Wang, Y., Lin, S.,
Deng, W., et al. , PTMD: A Database of Human Disease-associated
Post-translational Modifications. Genomics, proteomics &
bioinformatics 2018, 16 , 244-251.
[6] Karve, T. M., Cheema, A. K.,
Small changes huge impact: the role of protein posttranslational
modifications in cellular homeostasis and disease. Journal of
amino acids 2011, 2011 , 207691.
[7] Duan, G., Walther, D., The
roles of post-translational modifications in the context of protein
interaction networks. PLoS computational biology 2015, 11 ,
e1004049.
[8] The Universal Protein Resource
(UniProt) in 2010. Nucleic Acids Res 2010, 38 , D142-148.
[9] Fert-Bober, J., Murray, C. I.,
Parker, S. J., Van Eyk, J. E., Precision Profiling of the Cardiovascular
Post-Translationally Modified Proteome: Where There Is a Will, There Is
a Way. Circulation research 2018, 122 , 1221-1237.
[10] Nieman, D. C., Groen, A. J.,
Pugachev, A., Simonson, A. J., et al. , Proteomics-Based Detection
of Immune Dysfunction in an Elite Adventure Athlete Trekking Across the
Antarctica. Proteomes 2020, 8 .
[11] Vidova, V., Stuchlikova, E.,
Multiplex Assay for Quantification of Acute Phase Proteins and
Immunoglobulin A in Dried Blood Spots. 2019, 18 , 380-391.
[12] Eshghi, A., Pistawka, A. J.,
Liu, J., Chen, M., et al. , Concentration Determination of
>200 Proteins in Dried Blood Spots for Biomarker Discovery
and Validation. Molecular & cellular proteomics : MCP 2020,19 , 540-553.
[13] Percy, A. J., Chambers, A.
G., Parker, C. E., Borchers, C. H., Absolute quantitation of proteins in
human blood by multiplexed multiple reaction monitoring mass
spectrometry. Methods in molecular biology (Clifton, N.J.) 2013,1000 , 167-189.
[14] Chambers, A. G., Percy, A.
J., Hardie, D. B., Borchers, C. H., Comparison of proteins in whole
blood and dried blood spot samples by LC/MS/MS. J Am Soc Mass
Spectrom 2013, 24 , 1338-1345.
[15] Chambers, A. G., Percy, A.
J., Yang, J., Borchers, C. H., Multiple Reaction Monitoring Enables
Precise Quantification of 97 Proteins in Dried Blood Spots.Molecular & cellular proteomics : MCP 2015, 14 ,
3094-3104.
[16] Chambers, A. G., Percy, A.
J., Yang, J., Camenzind, A. G., Borchers, C. H., Multiplexed
quantitation of endogenous proteins in dried blood spots by multiple
reaction monitoring-mass spectrometry. Molecular & cellular
proteomics : MCP 2013, 12 , 781-791.
[17] Bennike, T., Lauridsen, K.,
Olesen, M., Andersen, V., Birkelund, S., & Stensballe, A., Optimizing
the Identification of Citrullinated Peptides by Mass Spectrometry:
Utilizing the Inability of Trypsin to Cleave after Citrullinated Amino
Acids. Journal Of Proteomics & Bioinformatics 2013, 6 .
[18] Steckel, A., Schlosser, G.,
Citrulline Effect Is a Characteristic Feature of Deiminated Peptides in
Tandem Mass Spectrometry. 2019, 30 , 1586-1591.
[19] Jin, Z., Fu, Z., Yang, J.,
Troncosco, J., et al. , Identification and characterization of
citrulline-modified brain proteins by combining HCD and CID
fragmentation. Proteomics 2013, 13 , 2682-2691.
[20] Raijmakers, R., van Beers,
J. J., El-Azzouny, M., Visser, N. F., et al. , Elevated levels of
fibrinogen-derived endogenous citrullinated peptides in synovial fluid
of rheumatoid arthritis patients. Arthritis research & therapy2012, 14 , R114.
[21] György, B., Tóth, E.,
Tarcsa, E., Falus, A., Buzás, E. I., Citrullination: a posttranslational
modification in health and disease. The international journal of
biochemistry & cell biology 2006, 38 , 1662-1677.
[22] Koziel, J., Mydel, P.,
Potempa, J., The link between periodontal disease and rheumatoid
arthritis: an updated review. Current rheumatology reports 2014,16 , 408.
[23] Baka, Z., Gyorgy, B., Geher,
P., Buzas, E. I., et al. , Citrullination under physiological and
pathological conditions. Joint, bone, spine : revue du rhumatisme2012, 79 , 431-436.
[24] Tutturen, A. E.,
Fleckenstein, B., de Souza, G. A., Assessing the citrullinome in
rheumatoid arthritis synovial fluid with and without enrichment of
citrullinated peptides. Journal of proteome research 2014,13 , 2867-2873.
[25] Sohn, D. H., Rhodes, C.,
Onuma, K., Zhao, X., et al. , Local Joint inflammation and histone
citrullination in a murine model of the transition from preclinical
autoimmunity to inflammatory arthritis. Arthritis & rheumatology
(Hoboken, N.J.) 2015, 67 , 2877-2887.
[26] Tonelli, M., Karumanchi, S.
A., Thadhani, R., Epidemiology and Mechanisms of Uremia-Related
Cardiovascular Disease. Circulation 2016, 133 , 518-536.
[27] Yuzhalin, A. E.,
Citrullination in Cancer. Cancer Research 2019, 79 ,
1274-1284.
[28] Goldin, A., Beckman, J. A.,
Schmidt, A. M., Creager, M. A., Advanced glycation end products:
sparking the development of diabetic vascular injury. Circulation2006, 114 , 597-605.
[29] Zhao, S., Wu, Y., Wei, Y.,
Xu, X., Zheng, J., Identification of Biomarkers Associated With CD8+ T
Cells in Coronary Artery Disease and Their Pan-Cancer Analysis.Frontiers in immunology 2022, 13 , 876616.
[30] Ahn, S. G., Thiele, D. J.,
Redox regulation of mammalian heat shock factor 1 is essential for Hsp
gene activation and protection from stress. Genes & development2003, 17 , 516-528.
[31] Noble, E. G., Shen, G. X.,
Impact of exercise and metabolic disorders on heat shock proteins and
vascular inflammation. Autoimmune diseases 2012, 2012 ,
836519.
[32] Nikpay, M., McPherson, R.,
Convergence of biomarkers and risk factor trait loci of coronary artery
disease at 3p21.31 and HLA region. npj Genomic Medicine 2021,6 , 12.
[33] González, F. E. M.,
Ponce-RuÍz, N., Rojas-GarcÍa, A. E., Bernal-Hernández, Y. Y., et
al. , PON1 concentration and high-density lipoprotein characteristics as
cardiovascular biomarkers. Archives of medical sciences.
Atherosclerotic diseases 2019, 4 , e47-e54.
[34] El Refaey, M. M., Mohler, P.
J., Ankyrins and Spectrins in Cardiovascular Biology and Disease.Frontiers in physiology 2017, 8 , 852.
[35] Yin, X., Subramanian, S.,
Hwang, S.-J., O’Donnell, C. J., et al. , Protein Biomarkers of
New-Onset Cardiovascular Disease. Arteriosclerosis, thrombosis,
and vascular biology 2014, 34 , 939-945.
[36] Almeida, A., Ferreira, J.
A., Teixeira, F., Gomes, C., et al. , Challenging the limits of
detection of sialylated Thomsen-Friedenreich antigens by in-gel
deglycosylation and nano-LC-MALDI-TOF-MS. Electrophoresis 2013,34 , 2337-2341.
[37] Ruhaak, L. R., Miyamoto, S.,
Kelly, K., Lebrilla, C. B., N-Glycan profiling of dried blood spots.Analytical chemistry 2012, 84 , 396-402.
[38] Barbariga, M., Curnis, F.,
Spitaleri, A., Andolfo, A., et al. , Oxidation-induced structural
changes of ceruloplasmin foster NGR motif deamidation that promotes
integrin binding and signaling. The Journal of biological
chemistry 2014, 289 , 3736-3748.
[39] Golizeh, M., Lee, K.,
Ilchenko, S., Ösme, A., et al. , Increased serotransferrin and
ceruloplasmin turnover in diet-controlled patients with type 2 diabetes.Free radical biology & medicine 2017, 113 , 461-469.
[40] Hermann, J., Schurgers, L.,
Jankowski, V., Identification and characterization of post-translational
modifications: Clinical implications. Molecular Aspects of
Medicine 2022, 86 , 101066.
[41] Chong, Y. K., Ho, C. C.,
Leung, S. Y., Lau, S. K. P., Woo, P. C. Y., Clinical Mass Spectrometry
in the Bioinformatics Era: A Hitchhiker’s Guide. Computational and
structural biotechnology journal 2018, 16 , 316-334.