Reference
1. Vellas C, Delobel P, de Souto Barreto P, Izopet J: COVID-19, Virology and Geroscience: A Perspective . The journal of nutrition, health & aging 2020, 24 (7):685-691.http://doi.org/10.1007/s12603-020-1416-2
2. Pascarella G, Strumia A, Piliego C, Bruno F, Del Buono R, Costa F, Scarlata S, Agrò FE: COVID-19 diagnosis and management: a comprehensive review . Journal of internal medicine 2020,288 (2):192-206.http://doi.org/10.1111/joim.13091
3. Esakandari H, Nabi-Afjadi M, Fakkari-Afjadi J, Farahmandian N, Miresmaeili SM, Bahreini E: A comprehensive review of COVID-19 characteristics . Biological procedures online 2020,22 :19.http://doi.org/10.1186/s12575-020-00128-2
4. Vardhana SA, Wolchok JD: The many faces of the anti-COVID immune response . J Exp Med 2020, 217 (6).http://doi.org/10.1084/jem.20200678
5. Liu H, Yuan M, Huang D, Bangaru S, Zhao F, Lee CD, Peng L, Barman S, Zhu X, Nemazee D et al : A combination of cross-neutralizing antibodies synergizes to prevent SARS-CoV-2 and SARS-CoV pseudovirus infection . Cell Host Microbe 2021,29 (5):806-818 e806.http://doi.org/10.1016/j.chom.2021.04.005
6. Isho B, Abe KT, Zuo M, Jamal AJ, Rathod B, Wang JH, Li Z, Chao G, Rojas OL, Bang YM et al : Persistence of serum and saliva antibody responses to SARS-CoV-2 spike antigens in COVID-19 patients .Sci Immunol 2020, 5 (52).http://doi.org/10.1126/sciimmunol.abe5511
7. Gaebler C, Wang Z, Lorenzi JCC, Muecksch F, Finkin S, Tokuyama M, Cho A, Jankovic M, Schaefer-Babajew D, Oliveira TY et al :Evolution of antibody immunity to SARS-CoV-2 . Nature2021, 591 (7851):639-644.http://doi.org/10.1038/s41586-021-03207-w
8. Jiang XL, Wang GL, Zhao XN, Yan FH, Yao L, Kou ZQ, Ji SX, Zhang XL, Li CB, Duan LJ et al : Lasting antibody and T cell responses to SARS-CoV-2 in COVID-19 patients three months after infection . Nat Commun 2021, 12 (1):897.http://doi.org/10.1038/s41467-021-21155-x
9. Araf Y, Akter F, Tang YD, Fatemi R, Parvez MSA, Zheng C, Hossain MG:Omicron variant of SARS-CoV-2: Genomics, transmissibility, and responses to current COVID-19 vaccines . J Med Virol 2022,94 (5):1825-1832.http://doi.org/10.1002/jmv.27588
10. Crotty S: T Follicular Helper Cell Biology: A Decade of Discovery and Diseases . Immunity 2019, 50 (5):1132-1148.http://doi.org/10.1016/j.immuni.2019.04.011
11. Patil VS, Madrigal A, Schmiedel BJ, Clarke J, O’Rourke P, de Silva AD, Harris E, Peters B, Seumois G, Weiskopf D et al :Precursors of human CD4(+) cytotoxic T lymphocytes identified by single-cell transcriptome analysis . Sci Immunol 2018,3 (19).http://doi.org/10.1126/sciimmunol.aan8664
12. Poon MML, Byington E, Meng W, Kubota M, Matsumoto R, Grifoni A, Weiskopf D, Dogra P, Lam N, Szabo PA et al : Heterogeneity of human anti-viral immunity shaped by virus, tissue, age, and sex .Cell Rep 2021, 37 (9):110071.http://doi.org/10.1016/j.celrep.2021.110071
13. Dan JM, Mateus J, Kato Y, Hastie KM, Yu ED, Faliti CE, Grifoni A, Ramirez SI, Haupt S, Frazier A et al : Immunological memory to SARS-CoV-2 assessed for up to 8 months after infection .Science 2021, 371 (6529).http://doi.org/10.1126/science.abf4063
14. Cohen KW, Linderman SL, Moodie Z, Czartoski J, Lai L, Mantus G, Norwood C, Nyhoff LE, Edara VV, Floyd K et al :Longitudinal analysis shows durable and broad immune memory after SARS-CoV-2 infection with persisting antibody responses and memory B and T cells . Cell Rep Med 2021, 2 (7):100354.http://doi.org/10.1016/j.xcrm.2021.100354
15. Wang H, Wang Z, Cao W, Wu Q, Yuan Y, Zhang X: Regulatory T cells in COVID-19 . Aging Dis 2021, 12 (7):1545-1553.http://doi.org/10.14336/AD.2021.0709
16. Bjorkstrom NK, Ponzetta A: Natural killer cells and unconventional T cells in COVID-19 . Curr Opin Virol 2021,49 :176-182.http://doi.org/10.1016/j.coviro.2021.06.005
17. Kreutmair S, Unger S, Nunez NG, Ingelfinger F, Alberti C, De Feo D, Krishnarajah S, Kauffmann M, Friebel E, Babaei S et al :Distinct immunological signatures discriminate severe COVID-19 from non-SARS-CoV-2-driven critical pneumonia . Immunity 2021,54 (7):1578-1593 e1575.http://doi.org/10.1016/j.immuni.2021.05.002
18. von Massow G, Oh S, Lam A, Gustafsson K: Gamma Delta T Cells and Their Involvement in COVID-19 Virus Infections . Front Immunol 2021, 12 :741218.http://doi.org/10.3389/fimmu.2021.741218
19. Haeryfar SMM: MAIT Cells in COVID-19: Heroes, Villains, or Both? Crit Rev Immunol 2020, 40 (2):173-184.http://doi.org/10.1615/CritRevImmunol.2020034943
20. Shi J, Zhou J, Zhang X, Hu W, Zhao JF, Wang S, Wang FS, Zhang JY:Single-Cell Transcriptomic Profiling of MAIT Cells in Patients With COVID-19 . Front Immunol 2021, 12 :700152.http://doi.org/10.3389/fimmu.2021.700152
21. Brandt L, Cristinelli S, Ciuffi A: Single-Cell Analysis Reveals Heterogeneity of Virus Infection, Pathogenicity, and Host Responses: HIV as a Pioneering Example . Annu Rev Virol 2020,7 (1):333-350.http://doi.org/10.1146/annurev-virology-021820-102458
22. Wang X, Bai H, Ma J, Qin H, Zeng Q, Hu F, Jiang T, Mao W, Zhao Y, Chen X et al : Identification of Distinct Immune Cell Subsets Associated With Asymptomatic Infection, Disease Severity, and Viral Persistence in COVID-19 Patients . Front Immunol 2022,13 :812514.http://doi.org/10.3389/fimmu.2022.812514
23. Mukund K, Nayak P, Ashokkumar C, Rao S, Almeda J, Betancourt-Garcia MM, Sindhi R, Subramaniam S: Immune Response in Severe and Non-Severe Coronavirus Disease 2019 (COVID-19) Infection: A Mechanistic Landscape . Front Immunol 2021, 12 :738073.http://doi.org/10.3389/fimmu.2021.738073
24. Xie X, Cheng X, Wang G, Zhang B, Liu M, Chen L, Cheng H, Hao S, Zhou J, Zhu P et al : Single-cell transcriptomes of peripheral blood cells indicate and elucidate severity of COVID-19 . Sci China Life Sci 2021, 64 (10):1634-1644.http://doi.org/10.1007/s11427-020-1880-y
25. DiPiazza AT, Graham BS, Ruckwardt TJ: T cell immunity to SARS-CoV-2 following natural infection and vaccination . Biochem Biophys Res Commun 2021, 538 :211-217.http://doi.org/10.1016/j.bbrc.2020.10.060
26. Sette A, Crotty S: Adaptive immunity to SARS-CoV-2 and COVID-19 . Cell 2021, 184 (4):861-880.http://doi.org/10.1016/j.cell.2021.01.007
27. Peng X, Ouyang J, Isnard S, Lin J, Fombuena B, Zhu B, Routy JP:Sharing CD4+ T Cell Loss: When COVID-19 and HIV Collide on Immune System . Front Immunol 2020, 11 :596631.http://doi.org/10.3389/fimmu.2020.596631
28. Zhang JY, Wang XM, Xing X, Xu Z, Zhang C, Song JW, Fan X, Xia P, Fu JL, Wang SY et al : Single-cell landscape of immunological responses in patients with COVID-19 . Nat Immunol 2020,21 (9):1107-1118.http://doi.org/10.1038/s41590-020-0762-x
29. Yao C, Bora SA, Parimon T, Zaman T, Friedman OA, Palatinus JA, Surapaneni NS, Matusov YP, Cerro Chiang G, Kassar AG et al :Cell-Type-Specific Immune Dysregulation in Severely Ill COVID-19 Patients . Cell Rep 2021, 34 (1):108590.http://doi.org/10.1016/j.celrep.2020.108590
30. Li S, Wu B, Ling Y, Guo M, Qin B, Ren X, Wang C, Yang H, Chen L, Liao Y et al : Epigenetic Landscapes of Single-Cell Chromatin Accessibility and Transcriptomic Immune Profiles of T Cells in COVID-19 Patients . Front Immunol 2021, 12 :625881.http://doi.org/10.3389/fimmu.2021.625881
31. Wauters E, Van Mol P, Garg AD, Jansen S, Van Herck Y, Vanderbeke L, Bassez A, Boeckx B, Malengier-Devlies B, Timmerman A et al :Discriminating mild from critical COVID-19 by innate and adaptive immune single-cell profiling of bronchoalveolar lavages .Cell Res 2021, 31 (3):272-290.http://doi.org/10.1038/s41422-020-00455-9
32. Moore MJ, Blachere NE, Fak JJ, Park CY, Sawicka K, Parveen S, Zucker-Scharff I, Moltedo B, Rudensky AY, Darnell RB: ZFP36 RNA-binding proteins restrain T cell activation and anti-viral immunity . Elife 2018, 7 .http://doi.org/10.7554/eLife.33057
33. Zhao P, Zou J, Zhou F, Zhu Y, Song Q, Yu D, Li X: Immune features of COVID-19 convalescent individuals revealed by a single-cell RNA sequencing . Int Immunopharmacol 2022, 108 :108767.http://doi.org/10.1016/j.intimp.2022.108767
34. Sureshchandra S, Lewis SA, Doratt BM, Jankeel A, Coimbra Ibraim I, Messaoudi I: Single-cell profiling of T and B cell repertoires following SARS-CoV-2 mRNA vaccine . JCI Insight 2021,6 (24).http://doi.org/10.1172/jci.insight.153201
35. Meckiff BJ, Ramirez-Suastegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H, Eschweiler S, Grifoni A, Pelosi E, Weiskopf D et al :Imbalance of Regulatory and Cytotoxic SARS-CoV-2-Reactive CD4(+) T Cells in COVID-19 . Cell 2020, 183 (5):1340-1353 e1316.http://doi.org/10.1016/j.cell.2020.10.001
36. Kaneko N, Boucau J, Kuo HH, Perugino C, Mahajan VS, Farmer JR, Liu H, Diefenbach TJ, Piechocka-Trocha A, Lefteri K et al :Temporal changes in T cell subsets and expansion of cytotoxic CD4+ T cells in the lungs in severe COVID-19 . Clin Immunol 2022,237 :108991.http://doi.org/10.1016/j.clim.2022.108991
37. Meckiff BJ, Ramirez-Suastegui C, Fajardo V, Chee SJ, Kusnadi A, Simon H, Grifoni A, Pelosi E, Weiskopf D, Sette A et al :Single-Cell Transcriptomic Analysis of SARS-CoV-2 Reactive CD4 (+) T Cells . SSRN 2020:3641939.http://doi.org/10.2139/ssrn.3641939
38. Dan JM, Havenar-Daughton C, Kendric K, Al-Kolla R, Kaushik K, Rosales SL, Anderson EL, LaRock CN, Vijayanand P, Seumois G et al : Recurrent group A Streptococcus tonsillitis is an immunosusceptibility disease involving antibody deficiency and aberrant T(FH) cells . Sci Transl Med 2019, 11 (478).http://doi.org/10.1126/scitranslmed.aau3776
39. Kaneko N, Kuo HH, Boucau J, Farmer JR, Allard-Chamard H, Mahajan VS, Piechocka-Trocha A, Lefteri K, Osborn M, Bals J et al :Loss of Bcl-6-Expressing T Follicular Helper Cells and Germinal Centers in COVID-19 . Cell 2020, 183 (1):143-157 e113.http://doi.org/10.1016/j.cell.2020.08.025
40. Gong F, Dai Y, Zheng T, Cheng L, Zhao D, Wang H, Liu M, Pei H, Jin T, Yu D et al : Peripheral CD4+ T cell subsets and antibody response in COVID-19 convalescent individuals . J Clin Invest 2020, 130 (12):6588-6599.http://doi.org/10.1172/JCI141054
41. Luo XH, Zhu Y, Mao J, Du RC: T cell immunobiology and cytokine storm of COVID-19 . Scand J Immunol 2021,93 (3):e12989.http://doi.org/10.1111/sji.12989
42. Bieberich F, Vazquez-Lombardi R, Yermanos A, Ehling RA, Mason DM, Wagner B, Kapetanovic E, Di Roberto RB, Weber CR, Savic M et al :A Single-Cell Atlas of Lymphocyte Adaptive Immune Repertoires and Transcriptomes Reveals Age-Related Differences in Convalescent COVID-19 Patients . Front Immunol 2021, 12 :701085.http://doi.org/10.3389/fimmu.2021.701085
43. Grifoni A, Weiskopf D, Ramirez SI, Mateus J, Dan JM, Moderbacher CR, Rawlings SA, Sutherland A, Premkumar L, Jadi RS et al :Targets of T Cell Responses to SARS-CoV-2 Coronavirus in Humans with COVID-19 Disease and Unexposed Individuals . Cell 2020,181 (7):1489-1501 e1415.http://doi.org/10.1016/j.cell.2020.05.015
44. Braun J, Loyal L, Frentsch M, Wendisch D, Georg P, Kurth F, Hippenstiel S, Dingeldey M, Kruse B, Fauchere F et al :SARS-CoV-2-reactive T cells in healthy donors and patients with COVID-19 . Nature 2020, 587 (7833):270-274.http://doi.org/10.1038/s41586-020-2598-9
45. Le Bert N, Tan AT, Kunasegaran K, Tham CYL, Hafezi M, Chia A, Chng MHY, Lin M, Tan N, Linster M et al : SARS-CoV-2-specific T cell immunity in cases of COVID-19 and SARS, and uninfected controls .Nature 2020, 584 (7821):457-462.http://doi.org/10.1038/s41586-020-2550-z
46. Lipsitch M, Grad YH, Sette A, Crotty S: Cross-reactive memory T cells and herd immunity to SARS-CoV-2 . Nat Rev Immunol2020, 20 (11):709-713.http://doi.org/10.1038/s41577-020-00460-4
47. Bacher P, Rosati E, Esser D, Martini GR, Saggau C, Schiminsky E, Dargvainiene J, Schroder I, Wieters I, Khodamoradi Y et al :Low-Avidity CD4(+) T Cell Responses to SARS-CoV-2 in Unexposed Individuals and Humans with Severe COVID-19 . Immunity 2020,53 (6):1258-1271 e1255.http://doi.org/10.1016/j.immuni.2020.11.016
48. Ohkura N, Kitagawa Y, Sakaguchi S: Development and maintenance of regulatory T cells . Immunity 2013,38 (3):414-423.http://doi.org/10.1016/j.immuni.2013.03.002
49. Tang D, Comish P, Kang R: The hallmarks of COVID-19 disease . PLoS Pathog 2020, 16 (5):e1008536.http://doi.org/10.1371/journal.ppat.1008536
50. McElvaney OJ, McEvoy NL, McElvaney OF, Carroll TP, Murphy MP, Dunlea DM, Ni Choileain O, Clarke J, O’Connor E, Hogan G et al :Characterization of the Inflammatory Response to Severe COVID-19 Illness . Am J Respir Crit Care Med 2020,202 (6):812-821.http://doi.org/10.1164/rccm.202005-1583OC
51. Galvan-Pena S, Leon J, Chowdhary K, Michelson DA, Vijaykumar B, Yang L, Magnuson AM, Chen F, Manickas-Hill Z, Piechocka-Trocha A et al : Profound Treg perturbations correlate with COVID-19 severity . Proc Natl Acad Sci U S A 2021, 118 (37).http://doi.org/10.1073/pnas.2111315118
52. Vick SC, Frutoso M, Mair F, Konecny AJ, Greene E, Wolf CR, Logue JK, Boonyaratanakornkit J, Gottardo R, Schiffer JT et al : A differential regulatory T cell signature distinguishes the immune landscape of COVID-19 hospitalized patients from those hospitalized with other respiratory viral infections . medRxiv 2021.http://doi.org/10.1101/2021.03.25.21254376
53. Neumann J, Prezzemolo T, Vanderbeke L, Roca CP, Gerbaux M, Janssens S, Willemsen M, Burton O, Van Mol P, Van Herck Y et al :Increased IL-10-producing regulatory T cells are characteristic of severe cases of COVID-19 . Clin Transl Immunology 2020,9 (11):e1204.http://doi.org/10.1002/cti2.1204
54. Hou Y, Zhou Y, Jehi L, Luo Y, Gack MU, Chan TA, Yu H, Eng C, Pieper AA, Cheng F: Aging-related cell type-specific pathophysiologic immune responses that exacerbate disease severity in aged COVID-19 patients . Aging Cell 2022, 21 (2):e13544.http://doi.org/10.1111/acel.13544
55. Noack M, Miossec P: Th17 and regulatory T cell balance in autoimmune and inflammatory diseases . Autoimmun Rev 2014,13 (6):668-677.http://doi.org/10.1016/j.autrev.2013.12.004
56. Sciacchitano S, De Vitis C, D’Ascanio M, Giovagnoli S, De Dominicis C, Laghi A, Anibaldi P, Petrucca A, Salerno G, Santino I et al :Gene signature and immune cell profiling by high-dimensional, single-cell analysis in COVID-19 patients, presenting Low T3 syndrome and coexistent hematological malignancies . J Transl Med 2021,19 (1):139.http://doi.org/10.1186/s12967-021-02805-6
57. Policard M, Jain S, Rego S, Dakshanamurthy S: Immune characterization and profiles of SARS-CoV-2 infected patients reveals potential host therapeutic targets and SARS-CoV-2 oncogenesis mechanism . bioRxiv 2021.http://doi.org/10.1101/2021.02.17.431721
58. Shi L, Ding R, Zhang T, Wu W, Wang Z, Jia X, Li K, Liang Y, Li J, Zhu M et al : Comparative Characterization and Risk Stratification of Asymptomatic and Presymptomatic Patients With COVID-19 . Front Immunol 2021, 12 :700449.http://doi.org/10.3389/fimmu.2021.700449
59. Stephenson E, Reynolds G, Botting RA, Calero-Nieto FJ, Morgan MD, Tuong ZK, Bach K, Sungnak W, Worlock KB, Yoshida M et al :Single-cell multi-omics analysis of the immune response in COVID-19 . Nat Med 2021, 27 (5):904-916.http://doi.org/10.1038/s41591-021-01329-2
60. Liao M, Liu Y, Yuan J, Wen Y, Xu G, Zhao J, Cheng L, Li J, Wang X, Wang F et al : Single-cell landscape of bronchoalveolar immune cells in patients with COVID-19 . Nat Med 2020,26 (6):842-844.http://doi.org/10.1038/s41591-020-0901-9
61. Neidleman J, Luo X, George AF, McGregor M, Yang J, Yun C, Murray V, Gill G, Greene WC, Vasquez J et al : Distinctive features of SARS-CoV-2-specific T cells predict recovery from severe COVID-19 .Cell Rep 2021, 36 (3):109414.http://doi.org/10.1016/j.celrep.2021.109414
62. Zheng HY, Zhang M, Yang CX, Zhang N, Wang XC, Yang XP, Dong XQ, Zheng YT: Elevated exhaustion levels and reduced functional diversity of T cells in peripheral blood may predict severe progression in COVID-19 patients . Cell Mol Immunol 2020,17 (5):541-543.http://doi.org/10.1038/s41423-020-0401-3
63. Chou J, Thomas PG, Randolph AG: Immunology of SARS-CoV-2 infection in children . Nat Immunol 2022, 23 (2):177-185.http://doi.org/10.1038/s41590-021-01123-9
64. Loske J, Rohmel J, Lukassen S, Stricker S, Magalhaes VG, Liebig J, Chua RL, Thurmann L, Messingschlager M, Seegebarth A et al :Pre-activated antiviral innate immunity in the upper airways controls early SARS-CoV-2 infection in children . Nat Biotechnol2022, 40 (3):319-324.http://doi.org/10.1038/s41587-021-01037-9
65. Hung MH, Lee JS, Ma C, Diggs LP, Heinrich S, Chang CW, Ma L, Forgues M, Budhu A, Chaisaingmongkol J et al : Tumor methionine metabolism drives T-cell exhaustion in hepatocellular carcinoma .Nat Commun 2021, 12 (1):1455.http://doi.org/10.1038/s41467-021-21804-1
66. Grant RA, Morales-Nebreda L, Markov NS, Swaminathan S, Querrey M, Guzman ER, Abbott DA, Donnelly HK, Donayre A, Goldberg IA et al :Circuits between infected macrophages and T cells in SARS-CoV-2 pneumonia . Nature 2021, 590 (7847):635-641.http://doi.org/10.1038/s41586-020-03148-w
67. Ma Y, Qiu F, Deng C, Li J, Huang Y, Wu Z, Zhou Y, Zhang Y, Xiong Y, Yao Y et al : Integrating single-cell sequencing data with GWAS summary statistics reveals CD16+monocytes and memory CD8+T cells involved in severe COVID-19 . Genome Med 2022, 14 (1):16.http://doi.org/10.1186/s13073-022-01021-1
68. Severely ill COVID-19 patients display impaired exhaustion features in SARS-CoV-2-reactive CD8 + T cells . Sci Immunol 2021,6 (55).
69. Mazzoni A, Salvati L, Maggi L, Capone M, Vanni A, Spinicci M, Mencarini J, Caporale R, Peruzzi B, Antonelli A et al :Impaired immune cell cytotoxicity in severe COVID-19 is IL-6 dependent . J Clin Invest 2020, 130 (9):4694-4703.http://doi.org/10.1172/JCI138554
70. Zhang F, Gan R, Zhen Z, Hu X, Li X, Zhou F, Liu Y, Chen C, Xie S, Zhang B et al : Adaptive immune responses to SARS-CoV-2 infection in severe versus mild individuals . Signal Transduct Target Ther 2020, 5 (1):156.http://doi.org/10.1038/s41392-020-00263-y
71. Huang L, Shi Y, Gong B, Jiang L, Zhang Z, Liu X, Yang J, He Y, Jiang Z, Zhong L et al : Dynamic blood single-cell immune responses in patients with COVID-19 . Signal Transduct Target Ther 2021, 6 (1):110.http://doi.org/10.1038/s41392-021-00526-2
72. Niessl J, Sekine T, Buggert M: T cell immunity to SARS-CoV-2 . Semin Immunol 2021, 55 :101505.http://doi.org/10.1016/j.smim.2021.101505
73. Fan YY, Huang ZT, Li L, Wu MH, Yu T, Koup RA, Bailer RT, Wu CY:Characterization of SARS-CoV-specific memory T cells from recovered individuals 4 years after infection . Arch Virol 2009,154 (7):1093-1099.http://doi.org/10.1007/s00705-009-0409-6
74. Yang J, Chang T, Tang L, Deng H, Chen D, Luo J, Wu H, Tang T, Zhang C, Li Z et al : Increased Expression of Tim-3 Is Associated With Depletion of NKT Cells In SARS-CoV-2 Infection .Front Immunol 2022, 13 :796682.http://doi.org/10.3389/fimmu.2022.796682
75. Chen G, Zhang Y, Zhang Y, Ai J, Yang B, Cui M, Liao Q, Chen H, Bai H, Shang D et al : Differential immune responses in pregnant patients recovered from COVID-19 . Signal Transduct Target Ther 2021, 6 (1):289.http://doi.org/10.1038/s41392-021-00703-3
76. McBrien JB, Wong AKH, White E, Carnathan DG, Lee JH, Safrit JT, Vanderford TH, Paiardini M, Chahroudi A, Silvestri G:Combination of CD8beta Depletion and Interleukin-15 Superagonist N-803 Induces Virus Reactivation in Simian-Human Immunodeficiency Virus-Infected, Long-Term ART-Treated Rhesus Macaques . J Virol2020, 94 (19).http://doi.org/10.1128/JVI.00755-20
77. Toor SM, Saleh R, Sasidharan Nair V, Taha RZ, Elkord E:T-cell responses and therapies against SARS-CoV-2 infection .Immunology 2021, 162 (1):30-43.http://doi.org/10.1111/imm.13262
78. Lei L, Qian H, Yang X, Zhang X, Zhang D, Dai T, Guo R, Shi L, Cheng Y, Zhang B et al : The phenotypic changes of gammadelta T cells in COVID-19 patients . J Cell Mol Med 2020,24 (19):11603-11606.http://doi.org/10.1111/jcmm.15620
79. Cerapio JP, Perrier M, Pont F, Tosolini M, Laurent C, Bertani S, Fournie JJ: Single-Cell RNAseq Profiling of Human gammadelta T Lymphocytes in Virus-Related Cancers and COVID-19 Disease .Viruses 2021, 13 (11).http://doi.org/10.3390/v13112212
80. de Almeida Chuffa LG, Freire PP, Dos Santos Souza J, de Mello MC, de Oliveira Neto M, Carvalho RF: Aging whole blood transcriptome reveals candidate genes for SARS-CoV-2-related vascular and immune alterations . J Mol Med (Berl) 2022, 100 (2):285-301.http://doi.org/10.1007/s00109-021-02161-4
81. Toubal A, Nel I, Lotersztajn S, Lehuen A: Mucosal-associated invariant T cells and disease . Nat Rev Immunol 2019,19 (10):643-657.http://doi.org/10.1038/s41577-019-0191-y
82. McCarthy C, O’Donnell CP, Kelly NEW, O’Shea D, Hogan AE:COVID-19 severity and obesity: are MAIT cells a factor?Lancet Respir Med 2021, 9 (5):445-447.http://doi.org/10.1016/S2213-2600(21)00140-5
83. Yang Q, Wen Y, Qi F, Gao X, Chen W, Xu G, Wei C, Wang H, Tang X, Lin J et al : Suppressive Monocytes Impair MAIT Cells Response via IL-10 in Patients with Severe COVID-19 . J Immunol 2021,207 (7):1848-1856.http://doi.org/10.4049/jimmunol.2100228
84. Flament H, Rouland M, Beaudoin L, Toubal A, Bertrand L, Lebourgeois S, Rousseau C, Soulard P, Gouda Z, Cagninacci L et al :Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity . Nat Immunol 2021,22 (3):322-335.http://doi.org/10.1038/s41590-021-00870-z
85. Borio LL, Bright RA, Emanuel EJ: A National Strategy for COVID-19 Medical Countermeasures: Vaccines and Therapeutics .JAMA 2022, 327 (3):215-216.http://doi.org/10.1001/jama.2021.24165
86. Marian AJ: Current state of vaccine development and targeted therapies for COVID-19: impact of basic science discoveries .Cardiovasc Pathol 2021, 50 :107278.http://doi.org/10.1016/j.carpath.2020.107278
87. Majumder J, Minko T: Recent Developments on Therapeutic and Diagnostic Approaches for COVID-19 . AAPS J 2021,23 (1):14.http://doi.org/10.1208/s12248-020-00532-2
88. Jaiswal S, Kumar M, Mandeep, Sunita, Singh Y, Shukla P:Systems Biology Approaches for Therapeutics Development Against COVID-19 . Front Cell Infect Microbiol 2020, 10 :560240.http://doi.org/10.3389/fcimb.2020.560240
89. Polack FP, Thomas SJ, Kitchin N, Absalon J, Gurtman A, Lockhart S, Perez JL, Perez Marc G, Moreira ED, Zerbini C et al :Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine .N Engl J Med 2020, 383 (27):2603-2615.http://doi.org/10.1056/NEJMoa2034577
90. Baden LR, El Sahly HM, Essink B, Kotloff K, Frey S, Novak R, Diemert D, Spector SA, Rouphael N, Creech CB et al : Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine . N Engl J Med 2021,384 (5):403-416.http://doi.org/10.1056/NEJMoa2035389
91. Zhu FC, Guan XH, Li YH, Huang JY, Jiang T, Hou LH, Li JX, Yang BF, Wang L, Wang WJ et al : Immunogenicity and safety of a recombinant adenovirus type-5-vectored COVID-19 vaccine in healthy adults aged 18 years or older: a randomised, double-blind, placebo-controlled, phase 2 trial . Lancet 2020,396 (10249):479-488.http://doi.org/10.1016/S0140-6736(20)31605-6
92. Zhang Y, Zeng G, Pan H, Li C, Hu Y, Chu K, Han W, Chen Z, Tang R, Yin W et al : Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18-59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial .Lancet Infect Dis 2021, 21 (2):181-192.http://doi.org/10.1016/S1473-3099(20)30843-4
93. Caccamo N, Sullivan LC, Brooks AG, Dieli F: Harnessing HLA-E-restricted CD8 T lymphocytes for adoptive cell therapy of patients with severe COVID-19 . Br J Haematol 2020,190 (4):e185-e187.http://doi.org/10.1111/bjh.16895
94. Perales MA, Goldberg JD, Yuan J, Koehne G, Lechner L, Papadopoulos EB, Young JW, Jakubowski AA, Zaidi B, Gallardo H et al :Recombinant human interleukin-7 (CYT107) promotes T-cell recovery after allogeneic stem cell transplantation . Blood 2012,120 (24):4882-4891.http://doi.org/10.1182/blood-2012-06-437236
95. Nanjappa SG, Kim EH, Suresh M: Immunotherapeutic effects of IL-7 during a chronic viral infection in mice . Blood 2011,117 (19):5123-5132.http://doi.org/10.1182/blood-2010-12-323154
96. Vivarelli S, Falzone L, Torino F, Scandurra G, Russo G, Bordonaro R, Pappalardo F, Spandidos DA, Raciti G, Libra M: Immune-checkpoint inhibitors from cancer to COVID‑19: A promising avenue for the treatment of patients with COVID‑19 (Review) . Int J Oncol 2021,58 (2):145-157.http://doi.org/10.3892/ijo.2020.5159
97. Hu B, Huang S, Yin L: The cytokine storm and COVID-19 .J Med Virol 2021, 93 (1):250-256.http://doi.org/10.1002/jmv.26232
98. Talmadge JE, Marceau F: Covid-19 challenges to immune investigations and therapies . Int Immunopharmacol 2021,95 :107543.http://doi.org/10.1016/j.intimp.2021.107543
99. Lee C, Choi WJ: Overview of COVID-19 inflammatory pathogenesis from the therapeutic perspective . Arch Pharm Res2021, 44 (1):99-116.http://doi.org/10.1007/s12272-020-01301-7
100. Nelson BH: IL-2, regulatory T cells, and tolerance .J Immunol 2004, 172 (7):3983-3988.http://doi.org/10.4049/jimmunol.172.7.3983
101. Ye C, Brand D, Zheng SG: Targeting IL-2: an unexpected effect in treating immunological diseases . Signal Transduct Target Ther 2018, 3 :2.http://doi.org/10.1038/s41392-017-0002-5
102. Ussher JE, Bilton M, Attwod E, Shadwell J, Richardson R, de Lara C, Mettke E, Kurioka A, Hansen TH, Klenerman P et al :CD161++ CD8+ T cells, including the MAIT cell subset, are specifically activated by IL-12+IL-18 in a TCR-independent manner .Eur J Immunol 2014, 44 (1):195-203.http://doi.org/10.1002/eji.201343509