Reference:
1. Preshaw PM, Alba AL, Herrera D, Jepsen S, Konstantinidis A, Makrilakis K, Taylor R. Periodontitis and diabetes: a two-way relationship. Diabetologia (2012) 55:21–31. doi: 10.1007/s00125-011-2342-y
2. Könönen E, Gursoy M, Gursoy UK. Periodontitis: A Multifaceted Disease of Tooth-Supporting Tissues. J Clin Med (2019) 8:1135. doi: 10.3390/jcm8081135
3. Lovic D, Piperidou A, Zografou I, Grassos H, Pittaras A, Manolis A. The Growing Epidemic of Diabetes Mellitus. Curr Vasc Pharmacol (2020) 18:104–109. doi: 10.2174/1570161117666190405165911
4. American Diabetes Association. Diagnosis and Classification of Diabetes Mellitus. Diabetes Care (2007) 30:S42–S47. doi: 10.2337/dc07-S042
5. Lalla E, Papapanou PN. Diabetes mellitus and periodontitis: a tale of two common interrelated diseases. Nat Rev Endocrinol (2011) 7:738–748. doi: 10.1038/nrendo.2011.106
6. Iacopino AM. Periodontitis and Diabetes Interrelationships: Role of Inflammation. Ann Periodontol (2001) 6:125–137. doi: 10.1902/annals.2001.6.1.125
7. Preshaw PM, Bissett SM. Periodontitis and diabetes. Br Dent J (2019) 227:577–584. doi: 10.1038/s41415-019-0794-5
8. Tunes RS, Foss-Freitas MC. Impact of Periodontitis on the Diabetes-Related Inflammatory Status. (2010)8.
9. Sun S, Gu Y, Wang J, Chen C, Han S, Che H. Effects of Fatty Acid Oxidation and Its Regulation on Dendritic Cell-Mediated Immune Responses in Allergies: An Immunometabolism Perspective. J Immunol Res (2021) 2021:e7483865. doi: 10.1155/2021/7483865
10. Lee YS, Wollam J, Olefsky JM. An Integrated View of Immunometabolism. Cell (2018) 172:22–40. doi: 10.1016/j.cell.2017.12.025
11. Mathis D, Shoelson SE. Immunometabolism: an emerging frontier. Nat Rev Immunol (2011) 11:81–83. doi: 10.1038/nri2922
12. Chen J, Zhou J, Pan W. Immunometabolism: Towards a Better Understanding the Mechanism of Parasitic Infection and Immunity. Front Immunol (2021) 12: https://www.frontiersin.org/article/10.3389/fimmu.2021.661241 [Accessed June 19, 2022]
13. Kumar S, Dikshit M. Metabolic Insight of Neutrophils in Health and Disease. Front Immunol (2019) 10: https://www.frontiersin.org/article/10.3389/fimmu.2019.02099 [Accessed June 26, 2022]
14. Jeon J-H, Hong C-W, Kim EY, Lee JM. Current Understanding on the Metabolism of Neutrophils. Immune Netw (2020) 20:e46. doi: 10.4110/in.2020.20.e46
15. Newton R, Priyadharshini B, Turka LA. Immunometabolism of regulatory T cells. Nat Immunol (2016) 17:618–625. doi: 10.1038/ni.3466
16. Cohen S, Danzaki K, MacIver NJ. Nutritional effects on T-cell immunometabolism. Eur J Immunol (2017) 47:225–235. doi: 10.1002/eji.201646423
17. O’Neill LAJ, Pearce EJ. Immunometabolism governs dendritic cell and macrophage function. J Exp Med (2015) 213:15–23. doi: 10.1084/jem.20151570
18. Pearce EJ, Everts B. Dendritic cell metabolism. Nat Rev Immunol (2015) 15:18–29. doi: 10.1038/nri3771
19. Møller SH, Wang L, Ho P-C. Metabolic programming in dendritic cells tailors immune responses and homeostasis. Cell Mol Immunol (2022) 19:370–383. doi: 10.1038/s41423-021-00753-1
20. Qian C, Cao X. Dendritic cells in the regulation of immunity and inflammation. Semin Immunol (2018) 35:3–11. doi: 10.1016/j.smim.2017.12.002
21. Arizon M, Nudel I, Segev H, Mizraji G, Elnekave M, Furmanov K, Eli-Berchoer L, Clausen BE, Shapira L, Wilensky A, et al. Langerhans cells down-regulate inflammation-driven alveolar bone loss. Proc Natl Acad Sci (2012) 109:7043–7048. doi: 10.1073/pnas.1116770109
22. Meghil MM, Tawfik OK, Elashiry M, Rajendran M, Arce RM, Fulton DJ, Schoenlein PV, Cutler CW. Disruption of Immune Homeostasis in Human Dendritic Cells via Regulation of Autophagy and Apoptosis by Porphyromonas gingivalis. Front Immunol (2019) 10:2286. doi: 10.3389/fimmu.2019.02286
23. Gardner A, de Mingo Pulido Á, Ruffell B. Dendritic Cells and Their Role in Immunotherapy. Front Immunol (2020) 11:924. doi: 10.3389/fimmu.2020.00924
24. Wculek SK, Cueto FJ, Mujal AM, Melero I, Krummel MF, Sancho D. Dendritic cells in cancer immunology and immunotherapy. Nat Rev Immunol (2020) 20:7–24. doi: 10.1038/s41577-019-0210-z
25. Berges C, Naujokat C, Tinapp S, Wieczorek H, Höh A, Sadeghi M, Opelz G, Daniel V. A cell line model for the differentiation of human dendritic cells. Biochem Biophys Res Commun (2005) 333:896–907. doi: 10.1016/j.bbrc.2005.05.171
26. Krawczyk CM, Holowka T, Sun J, Blagih J, Amiel E, DeBerardinis RJ, Cross JR, Jung E, Thompson CB, Jones RG, et al. Toll-like receptor–induced changes in glycolytic metabolism regulate dendritic cell activation. Blood (2010) 115:4742–4749. doi: 10.1182/blood-2009-10-249540
27. Lawless SJ, Kedia-Mehta N, Walls JF, McGarrigle R, Convery O, Sinclair LV, Navarro MN, Murray J, Finlay DK. Glucose represses dendritic cell-induced T cell responses. Nat Commun (2017) 8:15620. doi: 10.1038/ncomms15620
28. Everts B, Amiel E, Huang SC-C, Smith AM, Chang C-H, Lam WY, Redmann V, Freitas TC, Blagih J, van der Windt GJW, et al. TLR-driven early glycolytic reprogramming via the kinases TBK1-IKKɛ supports the anabolic demands of dendritic cell activation. Nat Immunol (2014) 15:323–332. doi: 10.1038/ni.2833
29. Finucane OM, Sugrue J, Rubio-Araiz A, Guillot-Sestier M-V, Lynch MA. The NLRP3 inflammasome modulates glycolysis by increasing PFKFB3 in an IL-1β-dependent manner in macrophages. Sci Rep (2019) 9:4034. doi: 10.1038/s41598-019-40619-1
30. Alba-Loureiro TC, Munhoz CD, Martins JO, Cerchiaro GA, Scavone C, Curi R, Sannomiya P. Neutrophil function and metabolism in individuals with diabetes mellitus. Braz J Med Biol Res (2007) 40:1037–1044. doi: 10.1590/S0100-879X2006005000143
31. Edgar L, Akbar N, Braithwaite AT, Krausgruber T, Gallart-Ayala H, Bailey J, Corbin AL, Khoyratty TE, Chai JT, Alkhalil M, et al. Hyperglycemia Induces Trained Immunity in Macrophages and Their Precursors and Promotes Atherosclerosis. Circulation (2021) 144:961–982. doi: 10.1161/CIRCULATIONAHA.120.046464
32. Thiem K, Keating ST, Netea MG, Riksen NP, Tack CJ, Diepen J van, Stienstra R. Hyperglycemic Memory of Innate Immune Cells Promotes In Vitro Proinflammatory Responses of Human Monocytes and Murine Macrophages. J Immunol (2021) 206:807–813. doi: 10.4049/jimmunol.1901348
33. Van den Bossche J, O’Neill LA, Menon D. Macrophage Immunometabolism: Where Are We (Going)? Trends Immunol (2017) 38:395–406. doi: 10.1016/j.it.2017.03.001
34. Meiser J, Krämer L, Sapcariu SC, Battello N, Ghelfi J, D’Herouel AF, Skupin A, Hiller K. Pro-inflammatory Macrophages Sustain Pyruvate Oxidation through Pyruvate Dehydrogenase for the Synthesis of Itaconate and to Enable Cytokine Expression*. J Biol Chem (2016) 291:3932–3946. doi: 10.1074/jbc.M115.676817
35. Massillon D, Chen W, Barzilai N, Prus-Wertheimer D, Hawkins M, Liu R, Taub R, Rossetti L. Carbon Flux via the Pentose Phosphate Pathway Regulates the Hepatic Expression of the Glucose-6-phosphatase and Phosphoenolpyruvate Carboxykinase Genes in Conscious Rats *. J Biol Chem (1998) 273:228–234. doi: 10.1074/jbc.273.1.228
36. Pácal L, Tomandl J, Svojanovský J, Krusová D, Štěpánková S, Řehořová J, Olšovský J, Bělobrádková J, Tanhäuserová V, Tomandlová M, et al. Role of thiamine status and genetic variability in transketolase and other pentose phosphate cycle enzymes in the progression of diabetic nephropathy. Nephrol Dial Transplant (2011) 26:1229–1236. doi: 10.1093/ndt/gfq550
37. Li Y, Chang Y, Ye N, Chen Y, Zhang N, Sun Y. Advanced glycation end products‑induced mitochondrial energy metabolism dysfunction alters proliferation of human umbilical vein endothelial cells. Mol Med Rep (2017) 15:2673–2680. doi: 10.3892/mmr.2017.6314
38. Zhu Y, Ma W-Q, Han X-Q, Wang Y, Wang X, Liu N-F. Advanced glycation end products accelerate calcification in VSMCs through HIF-1α/PDK4 activation and suppress glucose metabolism. Sci Rep (2018) 8:13730. doi: 10.1038/s41598-018-31877-6
39. Thomas AM, Dong Y, Beskid NM, García AJ, Adams AB, Babensee JE. Brief exposure to hyperglycemia activates dendritic cells in vitro and in vivo. J Cell Physiol (2020) 235:5120–5129. doi: 10.1002/jcp.29380
40. Yao K, Ge J, Sun A, Hong X, Shi H, Huang R, Jia Q, Wang K, Zhong C, Cao X, et al. [Effects and mechanism of hyperglycemia on development and maturation and immune function of human monocyte derived dendritic cells]. Zhonghua Xin Xue Guan Bing Za Zhi (2006) 34:60–64.
41. Ade N, Antonios D, Kerdine-Romer S, Boisleve F, Rousset F, Pallardy M. NF-kappaB plays a major role in the maturation of human dendritic cells induced by NiSO(4) but not by DNCB. Toxicol Sci Off J Soc Toxicol (2007) 99:488–501. doi: 10.1093/toxsci/kfm178
42. Hernandez A, Burger M, Blomberg BB, Ross WA, Gaynor JJ, Lindner I, Cirocco R, Mathew JM, Carreno M, Jin Y, et al. Inhibition of NF-KappaB during human dendritic cell differentiation generates anergy and regulatory T cell activity for one -but not two- HLA-DR mismatches. Hum Immunol (2007) 68:715–729. doi: 10.1016/j.humimm.2007.05.010
43. Tran CW, Gold MJ, Garcia-Batres C, Tai K, Elford AR, Himmel ME, Elia AJ, Ohashi PS. Hypoxia-inducible factor 1 alpha limits dendritic cell stimulation of CD8 T cell immunity. PLOS ONE (2020) 15:e0244366. doi: 10.1371/journal.pone.0244366
44. Perrin-Cocon L, Aublin-Gex A, Diaz O, Ramière C, Peri F, André P, Lotteau V. Toll-like Receptor 4–Induced Glycolytic Burst in Human Monocyte-Derived Dendritic Cells Results from p38-Dependent Stabilization of HIF-1α and Increased Hexokinase II Expression. J Immunol (2018) 201:1510–1521. doi: 10.4049/jimmunol.1701522
45. Gilardini Montani MS, Granato M, Cuomo L, Valia S, Di Renzo L, D’Orazi G, Faggioni A, Cirone M. High glucose and hyperglycemic sera from type 2 diabetic patients impair DC differentiation by inducing ROS and activating Wnt/β-catenin and p38 MAPK. Biochim Biophys Acta BBA - Mol Basis Dis (2016) 1862:805–813. doi: 10.1016/j.bbadis.2016.01.001
46. Jafar N, Edriss H, Nugent K. The Effect of Short-Term Hyperglycemia on the Innate Immune System. Am J Med Sci (2016) 351:201–211. doi: 10.1016/j.amjms.2015.11.011
47. Morey M, O’Gaora P, Pandit A, Hélary C. Hyperglycemia acts in synergy with hypoxia to maintain the pro-inflammatory phenotype of macrophages. PLOS ONE (2019) 14:e0220577. doi: 10.1371/journal.pone.0220577
48. Restrepo BI, Twahirwa M, Rahbar MH, Schlesinger LS. Phagocytosis via Complement or Fc-Gamma Receptors Is Compromised in Monocytes from Type 2 Diabetes Patients with Chronic Hyperglycemia. PLOS ONE (2014) 9:e92977. doi: 10.1371/journal.pone.0092977
49. Rodriguez-Fernandez S, Murillo M, Villalba A, Perna-Barrull D, Cano-Sarabia M, Gomez-Muñoz L, Aguilera E, Maspoch D, Vazquez F, Bel J, et al. Impaired Phagocytosis in Dendritic Cells From Pediatric Patients With Type 1 Diabetes Does Not Hamper Their Tolerogenic Potential. Front Immunol (2019) 10: https://www.frontiersin.org/article/10.3389/fimmu.2019.02811 [Accessed April 10, 2022]
50. Véron P, Segura E, Sugano G, Amigorena S, Théry C. Accumulation of MFG-E8/lactadherin on exosomes from immature dendritic cells. Blood Cells Mol Dis (2005) 35:81–88. doi: 10.1016/j.bcmd.2005.05.001
51. Miksa M, Wu R, Dong W, Das P, Yang D, Wang P. DENDRITIC CELL-DERIVED EXOSOMES CONTAINING MILK FAT GLOBULE EPIDERMAL GROWTH FACTOR-FACTOR VIII ATTENUATE PROINFLAMMATORY RESPONSES IN SEPSIS. Shock (2006) 25:586–593. doi: 10.1097/01.shk.0000209533.22941.d0
52. Li B-Z, Zhang H-Y, Pan H-F, Ye D-Q. Identification of MFG-E8 as a novel therapeutic target for diseases. Expert Opin Ther Targets (2013) 17:1275–1285. doi: 10.1517/14728222.2013.829455
53. Das A, Ghatak S, Sinha M, Chaffee S, Ahmed NS, Parinandi NL, Wohleb ES, Sheridan JF, Sen CK, Roy S. Correction of MFG-E8 Resolves Inflammation and Promotes Cutaneous Wound Healing in Diabetes. J Immunol (2016) 196:5089–5100. doi: 10.4049/jimmunol.1502270
54. Lu Y, Liu L, Pan J, Luo B, Zeng H, Shao Y, Zhang H, Guan H, Guo D, Zeng C, et al. MFG-E8 regulated by miR-99b-5p protects against osteoarthritis by targeting chondrocyte senescence and macrophage reprogramming via the NF-κB pathway. Cell Death Dis (2021) 12:1–15. doi: 10.1038/s41419-021-03800-x
55. Monroy-Mérida G, Guzmán-Beltrán S, Hernández F, Santos-Mendoza T, Bobadilla K. High Glucose Concentrations Impair the Processing and Presentation of Mycobacterium tuberculosis Antigens In Vitro. Biomolecules (2021) 11:1763. doi: 10.3390/biom11121763
56. Piganelli JD, Martin T, Haskins K. Splenic Macrophages From the NOD Mouse Are Defective in the Ability to Present Antigen. Diabetes (1998) 47:1212–1218. doi: 10.2337/diab.47.8.1212
57. Zeituni AE, Jotwani R, Carrion J, Cutler CW. Targeting of DC-SIGN on Human Dendritic Cells by Minor Fimbriated Porphyromonas gingivalis Strains Elicits a Distinct Effector T Cell Response. J Immunol (2009) 183:5694–5704. doi: 10.4049/jimmunol.0901030
58. Exel E van, Gussekloo J, Craen AJM de, Frölich M, Wiel AB der, Westendorp RGJ. Low Production Capacity of Interleukin-10 Associates With the Metabolic Syndrome and Type 2 Diabetes: The Leiden 85-Plus Study. Diabetes (2002) 51:1088–1092. doi: 10.2337/diabetes.51.4.1088
59. Cunningham C, Ansboro S, McGarry T, Veale D, Fearon U. P011 The role of cellular metabolism in rheumatoid and psoriatic arthritis. Abstracts. BMJ Publishing Group Ltd and European League Against Rheumatism (2019). p. A4.2-A4 doi: 10.1136/annrheumdis-2018-EWRR2019.8
60. Badii M, Gaal O, Popp RA, Crișan TO, Joosten LAB. Trained immunity and inflammation in rheumatic diseases. Joint Bone Spine (2022) 89:105364. doi: 10.1016/j.jbspin.2022.105364
61. Cheng S (James), Quintin J, Cramer R, Shepardson K, Saeed S, Kumar V, Giamarellos-Bourboulis E, Martens J, Rao N, Aghajanirefah A, et al. MTOR- and HIF-1α-mediated aerobic glycolysis as metabolic basis for trained immunity. Science (2014) 345:1250684. doi: 10.1126/science.1250684
62. Nandi D, Pathak S, Verma T, Singh M, Chattopadhyay A, Thakur S, Raghavan A, Gokhroo A, Vijayamahantesh. T cell costimulation, checkpoint inhibitors and anti-tumor therapy. J Biosci (2020) 45:50. doi: 10.1007/s12038-020-0020-2
63. Tai Y, Wang Q, Korner H, Zhang L, Wei W. Molecular Mechanisms of T Cells Activation by Dendritic Cells in Autoimmune Diseases. Front Pharmacol (2018) 9: https://www.frontiersin.org/article/10.3389/fphar.2018.00642 [Accessed July 1, 2022]
64. Hubo M, Trinschek B, Kryczanowsky F, Tuettenberg (Giesecke) A, Steinbrink K, Jonuleit H. Costimulatory Molecules on Immunogenic Versus Tolerogenic Human Dendritic Cells. Front Immunol (2013) 4:82. doi: 10.3389/fimmu.2013.00082
65. Samuel RO, Ervolino E, de Azevedo Queiroz ÍO, Azuma MM, Ferreira GT, Cintra LTA. Th1/Th2/Th17/Treg Balance in Apical Periodontitis of Normoglycemic and Diabetic Rats. J Endod (2019) 45:1009–1015. doi: 10.1016/j.joen.2019.05.003
66. Ingulli E, Mondino A, Khoruts A, Jenkins MK. In Vivo Detection of Dendritic Cell Antigen Presentation to CD4+ T Cells. J Exp Med (1997) 185:2133–2141. doi: 10.1084/jem.185.12.2133
67. Henrickson SE, Mempel TR, Mazo IB, Liu B, Artyomov MN, Zheng H, Peixoto A, Flynn MP, Senman B, Junt T, et al. T cell sensing of antigen dose governs interactive behavior with dendritic cells and sets a threshold for T cell activation. Nat Immunol (2008) 9:282–291. doi: 10.1038/ni1559
68. Xie N, Cui H, Ge J, Banerjee S, Guo S, Dubey S, Abraham E, Liu R-M, Liu G. Metabolic characterization and RNA profiling reveal glycolytic dependence of profibrotic phenotype of alveolar macrophages in lung fibrosis. Am J Physiol-Lung Cell Mol Physiol (2017) 313:L834–L844. doi: 10.1152/ajplung.00235.2017
69. Lin H, Muramatsu R, Maedera N, Tsunematsu H, Hamaguchi M, Koyama Y, Kuroda M, Ono K, Sawada M, Yamashita T. Extracellular Lactate Dehydrogenase A Release From Damaged Neurons Drives Central Nervous System Angiogenesis. EBioMedicine (2018) 27:71–85. doi: 10.1016/j.ebiom.2017.10.033
70. Swarup A, Bell BA, Du J, Han JYS, Soto J, Abel ED, Bravo-Nuevo A, FitzGerald PG, Peachey NS, Philp NJ. Deletion of GLUT1 in mouse lens epithelium leads to cataract formation. Exp Eye Res (2018) 172:45–53. doi: 10.1016/j.exer.2018.03.021
71. Furuse T, Mizuma H, Hirose Y, Kushida T, Yamada I, Miura I, Masuya H, Funato H, Yanagisawa M, Onoe H, et al. A new mouse model of GLUT1 deficiency syndrome exhibits abnormal sleep-wake patterns and alterations of glucose kinetics in the brain. Dis Model Mech (2019) 12:dmm038828. doi: 10.1242/dmm.038828
72. Fang Y, Wang B, Zhao Y, Xiao Z, Li J, Cui Y, Han S, Wei J, Chen B, Han J, et al. Collagen scaffold microenvironments modulate cell lineage commitment for differentiation of bone marrow cells into regulatory dendritic cells. Sci Rep (2017) 7:42049. doi: 10.1038/srep42049
73. Alahdal M, Xing Y, Tang T, Liang J. 1-Methyl-D-tryptophan Reduces Tumor CD133+ cells, Wnt/β-catenin and NF-κβp65 while Enhances Lymphocytes NF-κβ2, STAT3, and STAT4 Pathways in Murine Pancreatic Adenocarcinoma. Sci Rep (2018) 8:9869. doi: 10.1038/s41598-018-28238-8
74. Roh J-I, Kim Y, Oh J, Kim Y, Lee J, Lee J, Chun K-H, Lee H-W. Hexokinase 2 is a molecular bridge linking telomerase and autophagy. PloS One (2018) 13:e0193182. doi: 10.1371/journal.pone.0193182
75. Du P, Liao Y, Zhao H, Zhang J, Muyiti, Keremu, Mu K. ANXA2P2/miR-9/LDHA axis regulates Warburg effect and affects glioblastoma proliferation and apoptosis. Cell Signal (2020) 74:109718. doi: 10.1016/j.cellsig.2020.109718
76. Pyla R, Poulose N, Jun JY, Segar L. Expression of conventional and novel glucose transporters, GLUT1, -9, -10, and -12, in vascular smooth muscle cells. Am J Physiol-Cell Physiol (2013) 304:C574–C589. doi: 10.1152/ajpcell.00275.2012
77. Liechty KW, Adzick NS, Crombleholme TM. DIMINISHED INTERLEUKIN 6 (IL-6) PRODUCTION DURING SCARLESS HUMAN FETAL WOUND REPAIR. Cytokine (2000) 12:671–676. doi: 10.1006/cyto.1999.0598
78. Kooreman NG, de Almeida PE, Stack JP, Nelakanti RV, Diecke S, Shao N-Y, Swijnenburg R-J, Sanchez-Freire V, Matsa E, Liu C, et al. Alloimmune Responses of Humanized Mice to Human Pluripotent Stem Cell Therapeutics. Cell Rep (2017) 20:1978–1990. doi: 10.1016/j.celrep.2017.08.003
79. Zou M, Jiang D, Wu T, Zhang X, Zhao Y, Wu D, Sun W, Cui J, Moreland L, Li G. Post-GWAS functional studies reveal an RA-associated CD40-induced NF-kB signal transduction and transcriptional regulation network targeted by class II HDAC inhibitors. Hum Mol Genet (2021) 30:823–835. doi: 10.1093/hmg/ddab032
80. Zhang H, Li M, Kaboli PJ, Ji H, Du F, Wu X, Zhao Y, Shen J, Wan L, Yi T, et al. Identification of cluster of differentiation molecule-associated microRNAs as potential therapeutic targets for gastrointestinal cancer immunotherapy. Int J Biol Markers (2021) 36:22–32. doi: 10.1177/17246008211005473
81. Wang J, Roderiquez G, Jones T, McPhie P, Norcross MA. Control of In Vitro Immune Responses by Regulatory Oligodeoxynucleotides through Inhibition of pIII Promoter Directed Expression of MHC Class II Transactivator in Human Primary Monocytes. J Immunol (2007) 179:45–52. doi: 10.4049/jimmunol.179.1.45